Reprinted from INFORMATION AND COMPUTATION Vol. 81, No. I, April 1989
All Rights Reserved by Academic Press. New York and London Printed in Belgiuny

Reasoning about Networks with
Many ldentical Finite State Processes*

M. C. BRowNE, E. M. CLARKE, AND O. GRUMBERG

Carnegie Mellon University, Pittsburgh, Pennsylvania

1. INTRODUCTION

Consider a distributed mutual exclusion algorithm for processes
arranged in a ring network in which mutual exclusion is guaranteed by
means of a token that is passed around the ring (Dijkstra 1985, Kurshan
1985, Martin 1985). How can we determine that such a system of processes
is correct? Our first attempt might be to consider a reduced system with
one or two processes. If we can show that the reduced system is correct and
if the individual processes are really identical, then we are tempted to con-
clude that the entire system will be correct. In fact, this type of informal
argument is used quite frequently by designers in constructing systems that
contain large numbers of identical processing elements. Of course, it is easy
to contrive an example in which some pathological behavior only occurs
when, say, 100 processes are connected together. By examining a system
with only one or two processes it might even be quite difficult to determine
that this behavior is possible. Nevertheless, one has the feeling that in many
cases this kind of intuitive reasoning does lead to correct results. The
question that we address in this paper is whether it is possible to provide a
solid theoretical basis that will prevent fallacious conclusions in arguments
of this type.

In addition to providing a firm basis for a common type of informal
reasoning, our results are crucial for the success of automatic verification
methods that involve temporal logic model checking (Clarke, Emerson, and
Sistla, 1986; Lichtenstein and Pnueli, 1985; Quielle and Sifakis, 1981: Sistla
and Clarke, 1986). These techniques check that a finite-state concurrent
system satisfies a temporal logic formula by searching all possible paths in
the global state graph determined by the concurrent system. They have
been used successfully to find subtle errors in tricky self-timed circuits
—errors that were apparently unknown to the designers of the circuits

* This research was partially supported by NSF Grant MCS-82-16706. The third author,
O. Grumberg, was on leave from Technion, Haifa, during this period and was partially sup-
ported by a Weizmann postdoctoral fellowship.

13
0890-5401/89 $3.00

Copyright T 1989 by Academic Press, Inc.
All rights of reproduction in any form reserved.

14 BROWNE, CLARKE, AND GRUMBERG

Browne et al.,, 1986; Dill and Clarke, 1986). Although model checking is
linear in the size of the global state graph, the number of states in the
graph may be exponential in the number of processes. We cail this problem
the state explosion phenomenon. By using the results of this paper, model
checking may become feasible for networks with large numbers of identical
processes, thus extending the usefulness of this verification method
considerably.

The logic that we use for specification is based on computation trees and
is called indexed CTL*, or ICTL*. It includes all of CTL* (Clarke et al.,
1986; Emerson and Halpern, 1983) with the exception of the nexttime
operator and can, therefore, handle both linear and branching time proper-
ties with equal facility. Typical operators include AG f, which will hold in a
state provided that f holds globally along all possible computation paths
starting from that state, and AF £, which will hold in a state provided that
S eventually holds along all computation paths. In addition, our logic
permits formulas of the form A, f(i) and V, f(i), where £(i) is a formula of
our logic. The subformula £(i) is called a generic formula; all of the atomic
propositions that appear within it must be subscripted by i. A formula of
our logic is said to be closed if all indexed propositions are within the scope
of either a A; or /..

A model for our logic is a labeled state transition graph or Kripke struc-
ture that represents the possible global state transitions of some finite-state
concurrent system. For a family of N identical processes this state graph
may be obtained as a composition of the state graphs of the individual
processes. Instances of the same atomic proposition in different processes
are distinguished by using the number of the process as a subscript; thus,
As rtepresents the instance of atomic proposition A associated with
process 5.

Since a closed formula of our logic cannot contain any atomic
propositions with constant index values, it is impossible to refer to a
specific process by writing such a formula. Hence, changing the number of
processes in a family of identical processes should not affect the truth of a
formula in our logic. We make this intuitive idea precise by introducing a
new notion of bisimulation (Milner, 1979) between two Kripke structures
with the same set of indexed propositions but different sets of index values.
We then show that if two structures correspond in this manner, a closed
formula of indexed CTL* will be true in the initial state of one if and only
if it is true in the initial state of the other.

We illustrate these ideas by considering a distributed mutual exclusion
algorithm like the one mentioned above. We assume that the atomic
proposition ¢, is true when the ith process is in its critical region, and that
the atomic proposition 4, is true when the ith process is delayed waiting to
enter its critical region. A typical requirement for such a system is that a

NETWORKS WITH FINITE STATE PROCESSES 15

process waiting to enter its critical region will eventually enter the critical
region. This condition is easily expressed in our logic by the formula

/\ AG(d,= AFc,).

In this case, to establish the bisimulation between networks with dif-
ferent numbers of processes it is sufficient to prove that some simple safety
properties hold regardless of the size of the network. By using our results it
is then possible to show that exactly the same formulas of our logic hold in
the network with 1000 processes. as hold in the network with two
processes! Thus, we can use the temporal logic model checking algorithm
to verify automatically that the above formula holds in the network of size
two and conclude that it also holds in the network of size 1000. Although
this example is quite simple, it should suggest many potential applications
for the results of our paper.

Brookes and Rounds (1983), Hennessy and Milner (1980), and Graf and
Sifakis (1985) have all investigated the relationship between temporal logic
and various notions of bisimulation among concurrent programs.
However, none of the logics in their papers have operators that permit
assertions about large numbers of similar processes; consequently, their
results are not directly useful in solving the problem that we address in this
paper. Kurshan (1985) has studied the state explosion problem in the con-
text of an automatic protocol verification system being developed at Bell
Labs. In his system, protocols are verified by showing inclusion between
two finite-state machines, one representing the protocol under study and
one representing its specification. The state explosion problem is handled
by using a homomorphism to collapse a large state machine into a much
smaller one while preserving those properties that are important for
verification. Since Kurshan does not use temporal logic formulas for
specification, he has no analog of our indexed formulas or of our
correspondence theorem. In Reif and Sistla (1985) a logic is described that
has spatial as well as temporal operators. The spatial operators can range
over the processes in a concurrent program and express properties similar
to those expressed by our indexed formulas. However, they do not provide
a way of collapsing large machines into smaller ones, and even the
propositional version of their logic is undecidable. Wolper (1986) also con-
siders a similar logic for reasoning about programs that are data-indepen-
dent; however, his indexed variables range over data elements, while ours
range over processes. Also, there is no notion of correspondence between
structures in his work. Some limitations on the type of reasoning that we
propose are discussed in Apt and Kozen (1986).

Our paper is organized as follows: In Section 2 we introduce the basic

16 BROWNE, CLARKE, AND GRUMBERG

temporal logic CTL*. In Section 3 we state the notion of correspondence
or bisimulation that we use between two finite-state machines. We also
prove that this notion of bisimulation preserves the truth of CTL*
formulas. In Section 4 we extend CTL* to include formulas of the form
A S(i) and V/, f(i) as explained above. We also extend our notion of
correspondence and show that corresponding structures satisfy the same
indexed CTL* formulas. Section 5 illustrates how the ideas in this paper
can be applied to a concrete example, the distributed mutual exclusion
algorithm discussed earlier. The paper ends in Section 6 with some
suggestions for possible extensions.

2. Tue LoGic CTL*

There are two types of formulas in CTL*: state formulas (which are true
in a specific state) and path formulas (which are true along a specific path).
Let AP be the set of atomic proposition names. A state formula is either:

c A, if Ae AP,
 If fand g are state formulas, then —1fand f v g are state formulas.
* If /' is a path formula, then E(f) is a state formula.

A path formula is either:

* A state formula.
* If fand g are path formulas, then TS v g and fUg are path
formulas.

Unless otherwise stated, we will refer to the set of state formulas
generated by the above rules as CTL*.
We define the semantics of CTL* with respect to a structure
M= {5, R, L,sy>, where
* Sis a set of states,
e R< Sx.S is the transition relation, which must be total. We write
§; = §5 to indicate that (s,, s,)e R.
* L:8§—2""is the proposition labeling.
* 5, is the initial state.

We define a parh in M to be a sequence of states, m=s,, 5, ... such that
for every i =0, 5, > s,, ,. n’ will denote the suffix of m starting at s,. We will
sometimes refer to a prefix of a path as a path as well.

We use the standard notation to indicate that a state formula f holds in
a structure: M, s |= f means that f holds at state s in structure M.

NETWORKS WITH FINITE STATE PROCESSES 17

Similarly, if / is a path formula, M, 7 }= f means that / holds along path =
in structure M. The relation k= is defined inductively as follows (assuming
that f} and f, are state formulas and g1 and g, are path formulas):

l. sk A< Ae L(s)

2.5 fi<es b f.

3.5F 1 Viiesk fiors = /12

4. 5 = E(g,) < there exists a path x starting with s such that = E g
S. = fi<ss = f,. where s is the first state of 7.

6 nk g el

7. ”':gl\/gzﬁ"rf:gl ormf= g,.

8. m = g, Ug,<>there exists k>0 such that rf = g, and for all
O<j<k, n'l=g,.

We will also use the following abbreviations in writing CTL* formulas:

¢ Fagsnfv gl e Ff=true Uf
* A)=-E(Nf) < Gf=-Faf

We have omitted the nexttime operator, since it can be used to count the
number of processes. For example, consider a ring of processes that pass
around a token. If ¢, is true when process 1 has the token, then using the
nexttime operator X,

AG(1, = (XXX1,))

says that whenever process | gets the token it will receive it again in
exactly three steps. This is only true if the ring has exactly three processes.

3. CORRESPONDENCE OF STRUCTURES

We want to be able to define a correspondence (or bisimulation)
between two structures, M — (S, R L,sy> and M'=(S" R, L', 5o such
that if the structures correspond, then one structure satisfies a CTL* for-
mula if and only if the other satisfies it as well. There may be a portion of a
path along which several consecutive states are all labeled by the same set
of propositions. We will call such a sequence of states a block. Since CTL*
has no nexttime operator, it is impossible to differentiate between a single
state and a block with the same labeling as the state. However, when we
correspond a state with a block, we must insure that the block is finite.
Therefore, we define a finire correspondence relation, £< .S x S’ x N which

18 BROWNE, CLARKE, AND GRUMBERG

is total for both § and §". Intuitively, (s, s, k) is in £ if state s behaves
like state s* and k is an upper bound on the size of the block that will
correspond to s (or 5). We will call k the degree of the correspondence.

We will write sE*s" to denote (s, s, k)e E. Also, we will say that two
structures, M and M', correspond if there is a correspondence relation £
between the two structures. Formally, E is a correspondence relation if the
following conditions are satisfied:

1. 50 E sy for some ke N. (The initial states should behave similarly.)
2. For every se S and s'€ 5’ such that sE*s":
a. For every Ae AP, s = A<>s"|= A. (The proposition labelings
are the same.)
b. Isi[s" = st A SE'S\] v Vs, [s > 5, = (5, E' v 35| [s' > s1A
s E"s11)], where 0<v<k and w>=0.
C 3si[s > sy A S ES'] v VSI[s = 5, = (sE', v 35, [s — S A
s £"511)], where 0<v <k and w=0.

We will write sEs’ to indicate that there exists a & such that (s,8',k)eE.
Furthermore, if B and B’ are sequences of states, we will write BEB' to
indicate that every state in B corresponds to every state in B’

We will say that two states exactly match if for every successor of one
state, there is a corresponding successor of the other and vice versa. The
above definition ensures an exact match between two states if they corre-
spond with degree 0. If two corresponding states do not exactly match,
then the degree of the correspondence sets an upper bound on the total
number of transitions that can be made from each state until an exact
match is reached. It is easy to prove that the minimal degree of correspon-
dence is equal to the minimal number of transitions until an exact match is
reached. Since we never have to make a transition to the same state twice,
the minimal number of transitions from each state must be bounded by the

FiG. 3.1. An illustration of corresponding structures.

NETWORKS WITH FINITE STATE PROCESSES 19

number of states in the machine. Therefore, the minimal degree of
correspondence is bounded by the number of states in the machine as well.

For example in Fig. 3.1, state s, exactly matches state s!", so these states
can correspond with degree 0. State s} can reach an exact match with s,
within 2 transitions, so these two states can correspond with degree 2. Note
that the definition of a correspondence relation is not constructive. The
above definition can be used to determine if a given relation E is a
correspondence relation. However, in its present form the definition cannot
be used as the basis for an algorithm to determine if two structures
correspond. An algorithm for determining correspondence between
structures can be found in (Browne er al., 1987).

We use this intuition to prove the following lemma:

LemMMa 1. Let M and M’ be two structures that correspond. Then, for
every (s, s'Ve E and for every path w in M that starts in s, there is a path ©'
in M' that starts in s', a partition of n (B, B>, ..), and a partition of
n'(By B, ..} such that for all j, B,EB] and both |B,| and |B]| are at least 1
and at most |S| + |5'|.

Moreover, for every path n' in M', there is a path n in M and partitions of
both paths that satisfy similar conditions.

Proof. First, we will prove this for finite paths by induction on the
length of 7. First, note that if we consider M and M’ to be one structure, it
is easy to see that the minimal degree of correspondence between any two
states must be bounded by |S| + |.S’].

Base. mis of length 1, so m=s. Let B, = {s), n'=5', and B, = {s').

Induction. Let m=s,s,, .., s,. By the inductive hypothesis, there is a
partition of n, B B,,..,B,, a path n' in M’, and a partition of ',
B\ B, ..., By such that B,EB; for 1 <</ Now we want to show that if we
lengthen 7 by adding some s, , such that s, — s, , the lemma still holds.

Since s, is the last state of z, it must be in the last block B,, so there
must be a & such that s, E* last(B;). We will prove by induction on & that it
is possible to extend 7’ as required.

The basis for the second induction is 5, E° last(B;). By the definition of
E®, there exists a s} such that last(B)) — s} A s, E¥s} for some w>0. We
can extend the partitions of = and #n' by defining B,,,= {s,,,> and
B, = {s)). Therefore, the basis case is true.

For the inductive step, the definition of £ has three cases:

1. dsi[last(B,) = s} A s, ., E¥s] for some w = 0. This casc is the same
as the base case.

2. 3si[last(B)) — s| A s, E's}] for some 0< <k, but not case 1. If
|B,| #1, we can remove the last state, s, from B,. Let B, be B, with s,

20 BROWNE, CLARKE, AND GRUMBERG

removed, B, ;= <{s,), and B}, , = {5\ >. On the other hand, if |B,| =1, we
can simply add s} to B). In both cases, since the degree of correspondence
between s, and s} is less than &, by the inductive hypothesis, we can extend
n" appropriately. Furthermore, since the minimal degree of correspondence
between first(B,) and first(B;) must be bounded by |S|-+|S’| and the
degree of correspondence decreases as we add states to B), we will put at
most | S| +|S’| states into B; in this step.

3. 5,1 E" last(By) for some 0<v <k, but not case 1. To begin with, if
|Bi| # 1, we can remove the last element of B; and put it into a new block
of the partition. Let B] be B] without the last element, B, , = (last(B})),
and B, ;= (s, > These partitions satisfy the lemma. On the other hand,
if |Bj| =1, we can simply add s,,, , to B,. Furthermore, since the minimal
degree of correspondence between first(8,) and first(B;) must be bounded
by |S] + (5’| and the degree of correspondence decreases as we add states
to B,, we will put at most |S| + |S’| states into B, in this step. Therefore,
the lemma holds for this case.

Now that we have proven the lemma for finite paths, we will show that if
an infinite path does not have a corresponding infinite path, then there
must be a finite prefix of the path that does not have a corresponding path.
The argument uses Konig's lemma. In order (o apply this lemma, we con-
struct a tree in which each node is labeled with a state from S’. n’ will be a
path through the tree if and only if n’ is a path through M’ and there is a
prefix of m (perhaps consisting of the entire path) and partitions of both
paths that satisfy the conditions of the lemma. Note that this tree is finitely
branching since M has only a finite number of states. Furthermore, there
can be no infinite path through the tree. If there were, the correspondence
to a prefix of # must consist of an infinite number of blocks, since each
block must be finite, so the prefix of n must be infinite as well. The only
infinite prefix of = is the entire path, which contradicts our assumption. By
Konig’s lemma, the tree must have an finite number of nodes, and therefore
a finite height m. Now consider the prefix of = of length »1 x (|S] + ||} + 1.
Since the size of each block is bounded by |S|+[S'|, any corresponding
path in M’ must have at least m+ | blocks. But since the longest path
through the tree has only m states, there can be at most m blocks.
Therefore, we conclude that this finite prefix has no corresponding path.

Since we have already proven the lemma for finite paths, we can
conclude that it holds for infinite paths as well.

Given n” in M, we can use the same argument to show the existence of
in M and the corresponding partitions. Therefore, the lemma holds.

We now prove the CTL* correspondence theorem.

NETWORKS WITH FINITE STATE PROCESSES 21

THEOREM 2. Let M, and M, be two structures that correspond. Then for
all he CTL*, M, siEhe M, “.(2) E A

This theorem is a consequence of the following lemma:

LEMMA 3. Let M, and M, be two structures that correspond. Let h be
either a state formula or a path formula. Let 7 be a path in M| starting with
sand ' be a path in M, starting with s'. If there is a partition of n(B, B,, ...)
and a partition of n'(B\ B, ...) such that all of the blocks are finite and
B, E B for all j, then

s hes' | hifhisastate formula, and
k= h<sn' = h if his a path formula.

Proof. Since se B, and 5" € B), sEs’. We will now prove the lemma by
induction on the structure of /.

Base. h= A. By the definition of E sEA<ss = A

Induction. There are several cases:

1. ==k, a state formula,

SkEhes kb,
<=5 B h (induction hypothesis)
=5 = h

The same reasoning holds if / is a path formula.
2. h=h, v h,, a state formula. Without loss of generality,

SEhesk horskh,
=5 = h
s = h (induction hypothesis)
=5 = A

The argument is the same in the other direction. We can also use
this argument if 4 is a path formula.
3. h=E(h,), a state formula. Suppose that s = 4. Then there is a path,
T; = 8§8,55,... starting with s such that =, = 4,. By Lemma 1, there is an
partition of this path, B, B,,., and a path =} in M, with a partition,
B B3, ... such that the blocks of both partitions are finite and B,EB; for all
j=1. So by the induction hypothesis, 7, =/, et Eh e Eh.
Therefore, s = E(h,)=3s" = E(h,). We can use the same argument in the
other direction, so the lemma holds,

22 BROWNE, CLARKE, AND GRUMBERG

4. h=h,, where h is a path formula and #," is a state formula.
Although the lengths of 4 and /i, are the same, we can imagine that
h=path(/,), where path is an operator which converts a state formula into
a path formula. Therefore, we are simplifying /# by dropping this path
operator. So now,

TlEhesskE=ER

=s' = (induction hypothesis)

=71 = L

The reverse direction is similar.

5. h=hUh,, a path formula. Suppose that = = h , Uh,. By the
definition of the until operator, there is a k such that #* |= 4, and for all
0<j<k, n’' = h,. Suppose that s, is in block B,. Then, B, B, ,, .., where
B, is the part of B, starting with s,, is a partition of n,. So B,B, ,, ... is the
partition of a path in M, such that B;EB] is true for all j >/ Therefore, by
the induction hypothesis,

BB,k hy.

Now, any state s,, before first(B/) on the path =’ is in some block B, j<lI
If B} is the part of B; starting with s/, , then BB, |,.. is a partition of 1",
Also, BB, |, ... is a partition of a suffix of n such that B, EB/, is true for all
n 2 j. Since we know j </, we know that this path starts with a state before
S$ks 80 BB, ... = h,. Therefore, by the induction hypothesis, n'"" |= h, for
any m before first(B]). Therefore 7’ |= h.

We can use the same argument in the other direction.

4, AppLYING CTL* 10 NETWORKS OF PROCESSES

In order to reason about networks of identical processes, we need to be
able to distinguish between the atomic propositions of the different
processes. Therefore, we introduce the notion of indexed atomic
propositions such that A4, is the value of proposition 4 in process i. Let IP
be a set of proposition names which will be indexed by a set of index
variables, 7V, and let 4P be a set of atomic propositions as before. The
logic indexed CTL* is an extension of CTL*, where

* A, is a state formula if 4 /P and ielV.

e If fis a state formula that has exactly one free index variable 7, then
V, [is a state formula. (We will write f(/) to indicate that f has a free
index variable 1.)

NETWORKS WITH FINITE STATE PROCESSES 23

Indexed CTL* is the set of closed state formulas generated by these rules
and the rules in Section 2.
We define the semantics of indexed CTL* with respect to a structure
M= (AP IP I, S, R, L, 5,5, where
* AP is the set of atomic formulas.
* [P is the set of atomic formulas indexed by values from 7.
« [is the set of index values (a subset of N).
* Sis a set of states.
* R<= Sx S is the transition relation.
* L:§-247vUPxD) s the proposition labeling. We will write A,
instead of (A, 7).
* 59 is the initial state.

We extend the relation |= to deal with indexed CTL* fromulas as well:
l.s A, A.e L(s).
2 sEVfili)ess = file).
We will use A, /(i) as an abbreviation for — Vi f().
Even without the nexttime operator, this logic is too powerful; by
nesting the operators A; and \/, it might still be possible to count the num-
ber of processes in a concurrent system. Suppose we take as our Kripke

structure the global state graph for the concurrent program in Fig. 4.1. The
following formula sets a lower bound on the number of processes:

\/ (A,- A EF (B,- A \I./(AK,- A EF (B,. A \k/ .,)))))

]

Once B; becomes true, it remains true. Therefore, if \/,. 4, is true, we know
that this k is different from all of the preceding indices mentioned in the
formula. For this reason, we will use a restricted form of ICTL*. The
additional restrictions are:

Fig. 4.1. Example to illustrate restrictions on ICTL*,

24 BROWNE, CLARKE, AND GRUMBERG

¢ V., [is a permissible state formula only if / does not contain any \/,
operators.

* £ Ug, is a permissible path formula only if neither £, nor g, con-
tains any \/; operators.

In practice, many of the most interesting properties of networks of identical
processes can be expressed in the restricted logic. One important property
that cannot be expressed is that an indexed proposition holds for exactly
one index value, since this involves nesting of /\: operators. Nevertheless.
we can handle such a property within the framework that we have
developed by means of a slight extension to the language and its semantics.
We add a special non-indexed atomic formula, @, P;to AP for every P in
IP. The proposition labeling is then extended as follows: @®; P,eL(s)if and
only if there is exactly one ¢ e/ such that ce/ such that P e L{s). In the
remainder of the paper, we will refer to the restricted logic with this
extension as ICTL* unless otherwise stated.

We can use the notion of correspondence defined in Section 3 to define
an indexed correspondence between two structures M and M’ with sets of
index values 7 and ', respectively. Since the restrictions to ICTL* do not
permit the use of two different indices with an “until” operator, it is
impossible to refer to the behavior of two different processes along a
specific path. Thus, the notion of indexed correspondence between struc-
tures only needs to refer to one index value from each structure at a time.
Because of this, we will define a set of correspondence relations, £, that
relate the behavior of an index i in 7 to the behavior of an index i’ in 7.

Let M be a structure and 7 be an index value from I The reduction of M
to i (denoted by M]|,) is a structure identical to M except that the new
proposition labeling L, is defined as

Lis)=L(s)n(APUIPx {i})

In other words, all of the indexed atomic formulas are omitted except those
that are indexed by /.

Now, we say that two structures, M and M’ with the same set of
indexed and nonindexed atomic formulas, (i, i’)-correspond if and only if
M|, EM'|.. We will write this as M E,, M’

We can prove an analogous result to Lemma | for (i, i')-corresponding
structures, where the correspondence between states is now an (i, i")-
correspondence. Using this result, we can prove the following lemma
concerning unquantified formulas;

LEMMA 4. Let M and M' be two structures that (i, i")-correspond. Let
h(i) be an indexed CTL* formula without any A, operators and with one free

NETWORKS WITH FINITE STATE PROCESSES 25

index variable. Let © be a path in M starting with s and ' be a path in M’
starting with s'. If there is a partition of n(B\B,, ..) and a partition of
n'(By B,...) such that all of the blocks are finite and B,E,. B} for all j then

SE R =5 = Wi, if his a state Jormula, and
Tl h(i)en' = A, if"h is a path formula,

The proof follows the same lines as the proof of the CTL* correspon-
dence theorem except that there is an extra base case for indexed atomic
propositions. By the definition of (i, i")-correspondence, s = A,<>s' |= A,
Is immediate.

Using this lemma, we can prove the major result of this paper, the
ICTL* correspondence theorem:

THEOREM 5. Let M and M’ be two structures and IN be a relation over
Ix I that is total for both I and I'. If for every (i, i') € IN, the two structures
(i, 7')-correspond, then M, sy |= h<> M’, So = h for every ICTL* formula h.

Proof. We prove this theorem by induction on the structure of h. The
only interesting case is the base case, when h=\,h(i). If 55 =\, h, (),
then there is some i, such that s, = hy(iy). Since IN is total, there is an i
such that (i,, iy) € IN. Therefore, since M and M’-correspond, Lemma 4
gives sy = /1,(iy). Therefore, s = V: h(i). The reverse argument is similar,
The other base case, h= 4 € AP, is straightforward.

The proof of the remaining cases (M and h, v h,) are straightforward.
Therefore, the ICTL* correspondence theorem is true.

5. DISTRIBUTED MUTUAL EXCLUSION EXAMPLE

In this section we illustrate how our ideas might be applied to the
distributed mutual exclusion example mentioned in the introduction. We
assume that r processes are arranged in a ring. Each process P, is always in
one of three states: A neutral state (denoted by n;), a delay state (denoted
by d,), or a critical state (denoted by ¢,). Exactly one process will have the
token at any given time; if process i has the token this will be denoted by
t;- The global state graph for the case of two processes is shown in Fig. 5.1.
In the case of r > 2 processes, there may be more than one delayed process.
Whenever this occurs, the process P, with the token should eventually give
the token to the closest neighbor to its left that is in a delay state; we
denote the closest neighbor to the left by cln(i).! We next define the state

"It is assumed that the token will be transferred through consecutive processes from P, to
Pniy» however the exact mechanism of this transfer will not be explicitly represented in our
model at this level of abstraction. Thus, the transfer of the token only requires one global

transition.

26 BROWNE, CLARKE, AND GRUMBERG

L= =g

1MLt d,cztz

FiG. 5.1. Two-process mutual exclusion example,

transition graph in the case of r processes: G, = (AP, IP,1,S, R,, L,, 560
where

C AP =¥
* IP={d c,nt)
o« L={1,.,r}

» S=dgli=(DNT.C 0>}, where each of D, N, T, C, and O is a
subset of 7,. We will refer to these subsets as the parts of state s. Intuitively,
i€ D means that process 7 is in its delay state. Similarly, i e N means that P,
is in its neutral state without the token, i€ 7" means that P, is in its neutral
state with the token, and /e C means that P, is in its critical state with the
token. Finally, e O means that none of the above conditions hold.

* R,={(s,5)|s=(D,N, T, C.O)As;=(D,N,,T,,C,;,0,>
A[GENAD =DU{i} AN=N={i}AT,=Ta C,=C]
v3idjlieD A jeTuC Ai=cln(j)

Dy=D—{i} AN,=Nu {j}
I'=T-{j} nC=C~{j}u{i}]
V3I[ieTAD =DAN=NAT,=T—{i} A Cy=Cudill
vii[ieCAD=F AD =DAN =N
T\=Tu{i} AC;=C-{i}]]}.
In the first transition some process moves from its neutral state to its delay

state. In the second transition a token is transferred from a process P, to a
process P,, where /=cln(/). In the third transition a process with a token

NETWORKS WITH FINITE STATE PROCESSES 27

moves from its neutral state to its critical state. In the last transition a
process with a token moves from its critical state to its neutral state; since
no other process wants to token, it remains with the same process.

* Lis)={dieD}u{n|ieN}u {n, 1,|ie TYyu{c, t;|ieC}
2 ‘?6: <®: {2, rery r}a {1}’ @3 Qj>

Ultimately, we want to establish a correspondence between the mutual
exclusion program with r processes and the program with 2 processes. (It is
impossible to establish a correspondence between the r process version and
the one process since no process can enter its delay state in the one process
version.) In order to prove the correctness of the correspondence, we must
show that certain simple invariants hold in our mutual exclusion program:

. D, N, T, and C form a partiton of /,, ie., they are disjoint and O is
always empty.

2. Once a process has requested the token, it continues to request it
until the token is received,

A AG(d,= E[d,U —d, A —11,]).

3. There is exactly one process with the token at any time, AG @, 1,.

To establish these invariants, it is sufficient to show that they hold
initially in s, and every transition in R, preserves them. In this case, the
proofs are trivial, so we omit them.

The state transition graph given above is not a Kripke structure since
some states may not have any transitions (i.e., the state where all processes
are delayed and no process has the token). However, if we restrict G, to be
defined over the set of states reachable from so we do obtain a Kripke
structure which we denote by AM,. Since we have shown that every
reachable state has a process with the token, this process can always make
the transition to and from its critical section; therefore R, is total.

In order to define the bisimulation between M, and M,, we must first
define the relation IN < I, x I, that determines the correspondence between
index values in the two structures:

IN={1L1}u{(2,i)|iel - {1}}.
Next, we must define the correspondence between states £, =5, x 5, x N
for every (i, i) e IN:

I. Two states, s in M, and s’ in M,, (i, i'}-correspond if i is in the
same part of s as i’ is in 5" and if ie C then D= @< D' = (.

2. Let an i-idle transition be a transition which does not have any

28 BROWNE, CLARKE, AND GRUMBERG

effect on J, i.e., / belongs to the same part of the state before and after the
transition and if ie C and D is empty, then D remains empty. We define the
rank of s, r(s. i), to be the maximal number of consecutive i-idle transitions
possible from s, if this number is finite. Otherwise, the rank of s is 0. The
degree of the correspondence between s and s' is defined to be
ris, i)+ (s,).

In the Appendix, we show that E satisfies the requirements of a
correspondence relation. Once we have established this, we can use the
CTL model checking algorithm (Clarke, Emerson, Sistla, 1986) to establish
the following properties:

1. A token is transferred only upon request:

=15 EF{—dpn it A B vl n it 02,00

2. Only the process with a token may get into its critical state:

NAG(c;=1t).

3. If a process requests the token, then it will eventually receive it:

A AG(d,= A[d,U1,]).

4. Every process that wants to enter its critical state, eventually does:

A\ AG(d,= AFc)).

6. DIRECTIONS FOR FUTURE RESEARCH

The notion of bisimulation introduced in Section 4 currently requires
some representation for the global states of a product machine. When the
individual processes in such a product are more complicated than the ones
in the ring network example of Section 5, it may be difficult to find such a
representation, Perhaps, an appropriate notion of bisimulation can be
found that applies directly to the individual processes rather than to the
global state graph. More work clearly needs to be done on this problem.
Another problem concerns the restriction on nesting of A s and \/,s given
in Section 4. We showed how nesting of these operators could be used to
count the number of processes in a concurrent program, so some restric-
tion is clearly necessary. We conjecture that with formulas having at most
k operators of this type, it is impossible to distinguish between programs
that have more than k processes. In other words, if f is a formula with k

NETWORKS WITH FINITE STATE PROCESSES 29

levels of A; and \/; operators and M, is a Kripke structure obtained as a
product of # identical processes, then f will hold in M, for n>k if and only
if f holds in M,. It is easy to prove this result when the product of the
individual processes is a free product, i.e., when there is no synchronization
between the individual processes. When the processes are synchronized the
conjecture seems much more difficult to prove, however.

APPENDIX: PROOF OF THE CORRESPONDENCE IN SECTION 5

We assume that the relation E and the rank of a state, r(s, i) are defined
as in Section 5. Note that the only case in which the number of consecutive
i-idle transitions from s is infinite is when s = n,. Also note that if s, is
reachable from s by pursuing i-idle transitions only and if r(s, /)#0, then
r(s,, [)<r(s, i)

First, we show how to compute r(s, /). There are a number of cases,
depending on which part of the state 7 is in:

. 7e N. In this case, there are an infinite number of consecutive i-idle
transitions starting from s, so r(s, i) =0.
2. ieD. Let process j be the one with the token. There are four
sources of /-idle transitions in this case:
a. Processes that are initially neutral may be come delayed. (|N|
transitions.)
b. The process with the token may enter its critical section. (17
transitions.)
¢. The token may be transferred to a delayed process between j and
i. ((j—1) mod n—1 transitions.)
d. The processes that gave up the token in the previous step may
become delayed. ((j— i) mod n— 1 transitions.)
Therefore, r(s, [)=|N| +|T| + 2(j— i) mod n — 2.
3. ieT. The only i-idle transitions are neutral processes becoming
delayed. So r(s, I)=|N]|.
4. ie C and D = . Since all transitions either move 7 into a different
part of the state or add processes to D, r(s, i)=0.

5. ieC and D+# . The only i-idle transitions are neutral processes
becoming delayed. Therefore, r(s, i) = |N]|.

Now, we must check that E is a correspondence relation.

Clause (1). Because all of the processes are neutral in the initial states

30 BROWNE, CLARKE, AND GRUMBERG

of M, and M,, these states correspond for every (i, i')e IN, with a degree
k=r(sh, i)+ r(sd, i').

Clause (2a). Immediately from the definition of E,., for every two
states s, s" that (7, i")-correspond with any degree, s = 4;< 5" = A, for
every A€ IP.

Clause (2b). Assume sEX.s', where k = r(s, i)+ r(s',i'). There are five
cases, one for each of the clauses in the definition of r(s, 7). We check the
first two cases; the others are similar.

I.ie Nandi"e N'. From above, r(s, i) =r(s",i') =0, so k=0. From s,
two kinds of transitions are possible:

a. Process ii can become delayed in state s;. Since i’ e N, process i’
can also become delayed in some state si. These two next states
are L. related. since ie D, and i’ e Dy,

b. Some process can make an i-idle transition to state s,. In this
case, some process in M, can also make an i’-idle transition to
s). Since 7 and i’ are still in the same part, these two next states
are Y. related.

Since every transition from s has a corresponding transition from s’, Clause
(2b) holds in this case.

2. ieD and i'e D'. There are three cases:

a. Some process can make an i-idle transition to a state s;. Since
ieD, s Ejs' for v=r(s,, i)+r(s, i) r(s, 1) measures the
maximum possible number of i-idle transitions from s. Because
an j-idle transition from s has been made. r(sy, iy<r(s, i) so
v <k, so Clause (2b) holds.

b. Process 7 receives the token from process j and process i’ can
receive the token from process j'. After these transitions, both f
and i’ are in C, so the successor states correspond.

c. Process i receives the token from process j, but process i’ cannot
receive the token from process j (i’ #cln(/’)). Thus, there must
be a delayed process between J' and i' which is the closest
neighbor of ;. Therefore, there is an i’-idle transition in which
this closest neighbor receives the token. The resulting state, s/,
corresponds to s with degree v =r(s, i) + r(si, i'). Since an i'-idle
transition from s" has been made, r(sy, i')<r(s',i’) so v<k, so
Clause (2b) holds.

Clause (2c). Proven similarly to Clause (2b).
This completes the proof of the bisimulation of M, and M,

NETWORKS WITH FINITE STATE PROCESSES 31

ACKNOWLEDGMENTS

We would like to acknowledge Prasad Sistla, Nissim Francez, and the anonymous referees
for their insightful comments on early versions of this paper.

RECEIVED March 7, 1987 ACCEPTED July 5, 1987

REFERENCES

Art, K., AND KozZEN, D. (1986), Limits for automatic verification of finite-state concurrent
systems. Inform. Process. Letr. 22, No. 6, 307-309,

BROOKES, S. D., anDp Rounps, W. C. (1983), Behavioural equivalence relations induced by
programming logics, in “10th ICALP, 1983, Lect. Notes in Comput. Sci. Vol. 154,
Springer-Verlag, New York.

BROWNE, M., CLARKE, E.. Du L. D., aND MisHRA, (1986), Automatic verification of sequen-
tial circuits using temporal logic, IEEE Trans. Comput. C-35, No. 12.

BrownE, M. C., CLarke, E. M., anND GRUMBERG, O, (1987), Characterizing Kripke
structures in temporal logic, in “Colloquium on Trees in Algebra and Programming,” Pisa,
Italy, March; (1988), Theorer. Comput. Sci. 59, 115-131.

CLARKE, E. M., Emerson, E. A., AND SisTLA, A, P. (1986), Automatic verification of finite-
state concurrent systems using temporal logic specifications, ACM Trans. Progranim, Lang.
Systents 8, No. 2, 244-263.

DukstraA, E. (1985), Invariance and non-determinacy, in “Mathematical Logic and Program-
ming Languages” (C.A.R. Hoare and J. C. Shepherdson, Eds.), pp. 157-163, Prentice-Hall,
Englewood Cliffs, NJ.

DiL, D. L.. aND CLARKE, E. M. (1986), Automatic verification of asynchronous circuits
using temporal logic, /EE-E Proc. .

EMERSON, E. A., AND Haipern, J. Y. (1983), “Sometimes” and “not never” revisited: On
branching versus linear time, in “Proceedings 10th ACM Symp. on Principles of Program-
ming Languages.”

GRAF, 8., AND SIFAKIS, J. (1985), From synchronization tree logic to acceptance model logic,
in “Logics of Programs,” Lect. Notes in Comput. Sci. Vol. 193, Springer-Verlag, New York/
Berlin.

HENNESSY, M. anD MiLner, R. (1980), On observing nondeterminism and concurrency, in
“Tth ICALP.” Lect. Notes in Comput. Sci. Vol 85, Springer-Verlag, New York/Berlin.
Kursaan, R. P. (1985), Modelling concurrent processes, in “Proceedings, Symposia in

Applied Mathematics.”

LicHTENSTEIN, O., AND PNUELI, A. (1985), Checking that finite state concurrent prograrms
satisfy their linear specification, in “Conference Record of the Twelth Annual ACM
Symposium on Principles of Programming Languages,” New Orleans, LA, January.

MARTIN, A. {1985), The design of a self-timed circuit for distributed mutual exclusion, in
“Proceedings, Chapel Hill Conf. on VLSL” pp. 247-260.

MiLNER, R. (1979), “A Calculus of Communicating Systems,” Lect. Notes in Comput. Sci.
Vol. 92, Springer-Verlag, New York,/Berlin.

QuIELLE, J. P., Sirakis, J. (1981), Specification and verification of concurrent systems in
CESAR, in Proceedings, Filth International Symposium in Programming.

REF, J., AND SisTLA, P. (1985), A multiprocess network logic with temporal and spatial
modalities, J. Comput. System Sei. 30, No. 1.

SisTLA, A, P., aAND CLARKE, E. M. (1986), Complexity of propositional temporal logics,
J. Assoc. Comput. Mach. 32, No. 3, 733-749,

WoLPER, P. (1986), Expressing interesting properties of programs in propositional ternporal
logic, in “Thirteenth ACM Symposium on Principles of Programming Languages.”

Printed by Catherine Press, Ltd., Tempelhof 41, B-8000 Brugge, Belgium

