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ABSTRACT
In this paper we address the problem of verifying in stochas-
tic hybrid systems temporal logic properties whose proba-
bility of being true is very small — rare events. It is well
known that sampling-based (Monte Carlo) techniques, such
as statistical model checking, do not perform well for es-
timating rare-event probabilities. The problem is that the
sample size required for good accuracy grows too large as the
event probability tends to zero. However, several techniques
have been developed to address this problem. We focus on
importance sampling techniques, which bias the original sys-
tem to compute highly accurate and efficient estimates. The
main difficulty in importance sampling is to devise a good
biasing density, that is, a density yielding a low-variance es-
timator. In this paper, we show how to use the cross-entropy
method for generating approximately optimal biasing den-
sities for statistical model checking. We apply the method
with importance sampling and statistical model checking for
estimating rare-event probabilities in stochastic hybrid sys-
tems coded as Stateflow/Simulink diagrams.

Categories and Subject Descriptors
C.3 [Special-purpose and application-base systems]:
Real-time and embedded systems; D.2.4 [Software Engi-
neering]: Software/Program Verification—statistical meth-
ods, formal methods

Keywords
Probabilistic model checking, hybrid systems, stochastic sys-
tems, rare events, statistical model checking

1. INTRODUCTION
Stochastic hybrid systems [2] are among the most difficult

systems to verify. They combine discrete, continuous, and
probabilistic behavior, thereby exacerbating the state explo-
sion problem that afflicts many automated verification tech-
niques (e.g., model checking). In particular, temporal logic
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verification for stochastic hybrid systems is currently out-
side the reach of formal verification methods. To deal with
this problem, one can instead use statistical model checking.
This technique blends randomized (i.e., Monte Carlo) simu-
lation, model checking, and statistical analysis, and it enjoys
better scalability than other formal verification techniques
[17, 16]. With statistical model checking one can compute
approximations of the probability that a stochastic hybrid
system satisfies a given temporal logic specification. The
accuracy of the computed probability can be controlled by
the user (the probability is usually given with a confidence
interval, and the user can control width and coverage of the
interval). Naturally, higher accuracy will require more sim-
ulations. Since the vast majority of the computational cost
of statistical model checking is due to system simulation, it
is important to keep the sample size — the number of sim-
ulations — as small as possible. In most cases, statistical
model checking techniques can give accurate estimates with
feasible sample sizes, i.e., smaller than 104. However, it is
well known that Monte Carlo techniques, such as statistical
model checking, suffer from the rare-event problem [10]. An
event is said rare when it occurs with very small probabil-
ity. For example, the negation of a safety property can be
thought as a rare event: it should be very unlikely that the
system is unsafe. Now, the problem is that estimating accu-
rately rare-event probabilities using standard Monte Carlo
techniques requires very high sample sizes. Thus, these tech-
niques quickly become unfeasible, as we next explain.

The Monte Carlo approach for estimating probabilities
relies on the strong law of large numbers for its correct-
ness, and on relative frequencies for computing estimates.
The strong law of large numbers states that if X1,X2, . . . is
a sequence of independent and identically distributed (iid)
random variables with E[|X1|] <∞, then

P

„
lim

n→∞
Sn

n
= μ

«
= 1

where Sn =
Pn

i=1Xi and μ = E[X1]. Therefore, we can
approximate μ by taking the average of a finite number of
realizations (samples) of X1, since we know that the aver-
age will not converge to μ only for a negligible subset of
realizations (a set of measure 0). It can be shown that the
condition E[|X1|] <∞ is necessary and sufficient for the av-
erage Sn

n
to converge to a finite limit (with probability 1).

Also, the strong law of large numbers holds in the case that
μ = E[X1] exists but it is not finite [14, Chapter 4].

Now, suppose we want to estimate p = P(X ∈ B), the
probability thatX belongs to a given Borel set B, whereX is
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a random variable defined over a probability space (Ω,F ,P).
First, we obtain a number of independent realizations of
IB(X), the indicator function of B — IB(x) is 1 if x ∈ B
(“X ∈ B has occurred”), 0 otherwise. Then, we compute
their average and return that as the estimate of p. Note
that the random variable IB(X) is a Bernoulli of success
parameter p, that is, P(IB(X) = 1) = p. Also, note that p =
E[IB(X)]. Therefore, given a finite sequence X1, . . . ,XN of
random variables iid as X, we define the crude Monte Carlo
estimator as p̂ = 1

N

PN
i=1 IB(Xi). By the strong law of large

numbers p̂ converges to p as N → ∞ (with probability 1).
Also, p̂ is unbiased (i.e., E[p̂] = p).

The speed of convergence of p̂ depends on the variance of
IB(X), which is finite (it is of course p(1−p)). In particular,
from the central limit theorem it follows that for large N the
distribution of p̂ is approximately a normal distribution of
mean p and variance Var(IB(X))/N . From this we can com-
pute approximate confidence intervals for p in the following
way. Let zγ denote the γ-quantile of the standard normal
distribution, i.e., the number such that P(N � zγ) = γ,
where N is a normal random variable with mean 0 and vari-
ance 1. Then, for α < 1 and large N the following holds:

P

„
|p− p̂| � z1− α

2

S√
N

«
≈ 1 − α

where S is the square root of sample variance

S2 def
=

1

N − 1

NX
i=1

(IB(Xi) − p̂)2

which, again by the strong law of large numbers, converges
to Var(IB(X)) with probability 1. The term 2z1− α

2

S√
N

is

the absolute width of the (1 − α)100% confidence interval.
In the rare event case (p � 1) it is very important to have
confidence intervals of relative width, i.e., we would like an
estimate p̂ such that

P (|p− p̂| � δp) ≈ 1 − α

for some small δ > 0. Clearly, a confidence interval of abso-
lute width 0.01 would not make much sense if we wanted to
estimate, say, p = 10−10. For example, it can be shown that
a 99% approximate confidence interval of relative width δ
needs about 1−p

pδ2 samples. To estimate p = 10−8 with a rel-

ative width δ = 0.01 we would thus need about N ≈ 1
pδ2 =

1012 samples — an unfeasible quantity. Furthermore, we see
that if p → 0 while δ is fixed, the sample size grows larger
and larger.

Finally, an important quantity associated with the esti-
mator p̂ is its relative error:

RE(p̂)
def
=

p
Var(p̂)

E[p̂]

and intuitively it is a “measure” of the accuracy of the es-
timator p̂ with respect to its standard deviation. Since p̂ is
unbiased, the sampleX1, . . . ,XN is iid, and p� 1, it follows
that

RE(p̂) =

p
Var(IB(X))/N

p
=

p
p(1 − p)

p
√
N

≈
r

1

Np
.

It is easy to see that if N is kept constant and p → 0, then
RE(p̂) → ∞. Therefore, in order to keep the relative error
low as X ∈ B becomes rarer, we need to increase the sample

size. This means that the crude MC estimator is useless in
the rare-event case.

A possible solution to this problem is to search for an-
other estimator whose variance is smaller than Var(p̂), for a
given sample size. Importance sampling is a technique for
devising estimators with reduced variance, and thus with
low relative error. In particular, in importance sampling
the original system is biased to increase the likelihood of the
event of interest. The samples are then weighted in order
to obtain unbiased estimates. The main difficulty in impor-
tance sampling is to devise a good biasing distribution, that
is, one yielding a low-variance estimator. The cross-entropy
method is a recent technique that can help in devising a
biased distribution.

In this work we use statistical model checking with impor-
tance sampling and the cross-entropy method for estimating
rare-event probabilities in stochastic hybrid systems. The
paper is divided as follows. In Section 2 we briefly reca-
pitulate temporal logic and statistical model checking; in
Section 3 we define our semantic model for stochastic hy-
brid systems; in Sections 4 and 5 we introduce importance
sampling and the cross-entropy method, respectively. Fi-
nally, in Section 6 we apply the techniques to an example of
stochastic hybrid system modeled in Stateflow/Simulink.

2. STATISTICAL MODEL CHECKING
We give a short introduction to temporal logic and statis-

tical model checking. In this paper, we use Bounded Lin-
ear Temporal Logic (BLTL) [7, 21, 6] as our specification
language. BLTL restricts Linear Temporal Logic (LTL) [9]
with time bounds on the temporal operators. For example,
we can specify that “within 10 time units the system will
shut down and the shutdown signal will be ON until then”
as the BLTL formula

shutdown_ON U10
sysdown

where shutdown_ON and sysdown are predicates over the sys-
tem’s state space and time defined to be true iff the shut-
down signal is ON and iff the system is down at that time,
respectively. Again, a BLTL formula expressing the specifi-
cation “it is not the case that in the future 25 time units the
system is globally down for one time unit” is written as

¬(F25G1
sysdown)

where the F25 operator encodes “future 25 time units”, and
G1 expresses “globally for one time unit”. Formally, the
syntax of BLTL is given by:

φ ::= y∼v | (φ1 ∨ φ2) | (φ1 ∧ φ2) | ¬φ1 | (φ1U
tφ2),

where ∼ ∈ {≥,≤,=}, y ∈ SV (the finite set of state vari-
ables), v ∈ R, t ∈ R>0, and ¬,∧,∨ are the usual Boolean
connectives. Formulae of the type y ∼ v are also called
atomic propositions (AP ). The formula φ1U

tφ2 holds true
if and only if, within time t, φ2 will be true and φ1 will hold
until then. Note that the operators Ft and Gt referenced
above can be easily defined in terms of the until Ut operator:
Ftφ = true Utφ requires φ to hold true within time t (true
is the atomic proposition identically true); Gtφ = ¬Ft¬φ
requires φ to hold true up to time t.

The semantics of BLTL formulae [7, 21, 6] is defined with
respect to system traces (or executions). A trace is a se-
quence σ = (s0, t0), (s1, t1), . . . where the si’s are states and
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the ti’s represent time. The pair (si, ti) expresses the fact
that the system moved to state si+1 after having spent ti
time units in state si. The trace suffix of σ starting at k ∈ N

is denoted by σk, and σ0 denotes the full trace σ.

Definition 1. The semantics of BLTL for a trace σk is:

• σk |= AP iff AP holds true in state sk;

• σk |= φ1 ∨ φ2 iff σk |= φ1 or σk |= φ2;

• σk |= φ1 ∧ φ2 iff σk |= φ1 and σk |= φ2;

• σk |= ¬φ1 iff σk |= φ1 does not hold;

• σk |= φ1U
tφ2 iff ∃i ≥ 0 such that

a)
Pi−1

l=0 tk+l ≤ t, and

b) σk+i |= φ2, and

c) ∀ 0 ≤ j < i, σk+j |= φ1.

If the trace σ satisfies the property φ we write σ |= φ.
Statistical model checking [19, 18, 5, 13, 4] combines Monte

Carlo simulation, model checking, and statistical analysis,
for verifying stochastic systems. Its main assumption is the
existence of a probability measure P over the set of system
traces satisfying a given BLTL formula. In particular, for
every BLTL formula φ, the probability P{σ | σ |= φ} must
be well-defined. Given a stochastic process and probability
measure over it, this requirement does not pose any problem
in practice — see [20] for more details. In the next Section
we define a model for stochastic hybrid systems and we show
that it induces a well-defined stochastic process and a unique
probability measure over the process’ traces. This is clearly
a crucial requirement for statistical model checking to make
sense.

Suppose now that p = P{σ | σ |= φ} for a given formula
φ. The verification problem is thus to compute (or approxi-
mate) p. Statistical model checking treats it as a statistical
inference problem, and solves it through randomized sam-
pling of the system traces. The traces are model checked
to determine whether φ holds, and the number of satisfying
traces is used to estimate p. Specifically, we seek to approxi-
mate probabilistically (i.e., compute with high probability a
value close to) p. Note that the system behavior with respect
to φ can be characterized as a Bernoulli random variable un-
der the measure P. Given a system trace σ we can define the
Bernoulli random variable Z to be 1 if σ |= φ, and 0 other-
wise. Thus, P(Z = 1) = p (and of course P(Z = 0) = 1−p).
In statistical model checking, one therefore aims at estimat-
ing the success parameter of Z. Statistical techniques are
applied to independent samples of Z to estimate p. In par-
ticular, to obtain n samples of Z we first have to run n
iid system simulations that yield the traces σ1, . . . , σn, and
then we check property φ on each trace σi. To estimate
p, one can then use fixed-sample size statistical techniques
such as the Chernoff-Hoeffding bound [5], or sequential tech-
niques such as Bayesian credibility intervals [21]. Another
statistical model checking approach [19, 18] uses statistical
hypothesis testing techniques aimed at deciding whether p
is greater than a given threshold. However, such techniques
suffer from the rare-event problem, too.

We have seen that in order to generate each sample of
Z we need to check property φ on a trace. Because BLTL
properties are time-bounded, it is possible to decide whether
a trace σ satisfies a given property only by checking a finite
prefix of σ [21]. That result assumes that the system un-

der verification does not exhibit Zeno behavior. In particu-
lar, for any system trace σ it must be

P∞
i=0 ti = ∞, which

means that the system cannot make an infinite number of
transitions in a finite amount of time. This assumption is
widely adopted and it is sufficient for ensuring termination
of statistical model checking algorithms. (However, it is not
always necessary. For example, for finite-state continuous-
time Markov chains it can be shown that the set of traces
exhibiting Zeno behavior has measure zero [1].)

3. STOCHASTIC HYBRID SYSTEMS
In this Section we present our semantic model for stochas-

tic hybrid systems, and we prove that it induces a well-
defined Markov process. The model is especially suited for
capturing the behavior of simulation engines for hybrid sys-
tems, such as Stateflow/Simulink.

3.1 Preliminaries
We shall consider stochastic processes over Polish spaces.

A Polish space is a separable topological space metrizable
by a complete metric. A Borel set in a topological space
is a set formed by countable union, intersection, or relative
complement of open sets (equivalently, closed sets). Given
a Polish space S, we denote its Borel σ-algebra by B(S).

Definition 2. A stochastic kernel on a measurable space
(S,B(S)) is a function K:S × B(S) → [0, 1] such that:

• for each x ∈ S, K(x, ·) is a probability measure on
B(S); and

• for each B ∈ B(S), K(·, B) is a (Borel) measurable
function on S.

Since we consider discrete time systems, we define the sam-
ple space Ω = Sω and the product σ-algebra F of Ω. Given a
stochastic kernelK on (Ω,F) and an initial state x ∈ S, then
Kolmogorov’s theorem shows [14, Section II.9] that there ex-
ists a unique probability measure P defined on (Ω,F) and a
Markov process {Xt : t ∈ N} such that for all B ∈ B(S) and
for all xi ∈ S:

• P(X1 ∈ B) = δB(x); and

• P(Xt+1 ∈ B | (x1, . . . , xt)) = P(Xt+1 ∈ B |xt) = K(xt, B)

where δB is the usual Dirac measure.
Our aim is to introduce a hybrid automaton model and a

“probabilistic simulation function”that will induce a stochas-
tic kernel, in order to use Kolmogorov’s theorem.

3.2 Hybrid Automata
We first define non-probabilistic hybrid automata.

Definition 3. A discrete-time hybrid automaton (DTHA)
consists of:

• a continuous state space R
n;

• a finite set Q of locations;

• an edge relation E ⊆ Q×Q (control switches);

• one initial state (q0, x0) ∈ Q× R
n;

• a flow function ϕ : Q×R>0×R
n → R

n representing the
time evolution of the (continuous) state, in a specific
location. For each q ∈ Q, the flow function
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ϕq : R>0 × R
n, (t, x) �→ ϕ(q, t, x),

is (Borel) measurable.

• a jump function jump : E×R
n → R

n, representing the
(possibly) discontinuous change of state after switching
location.

A DTHA may feature nondeterminism because of mul-
tiple outgoing edges from a location. We assume that the
directed graph (Q,E) of locations does not have self-loops or
terminal locations, i.e., (q, q) /∈ E for all q ∈ Q and for each
q ∈ Q there is at least one edge (q, q′) ∈ E. Also, note that
continuous flow functions are automatically (Borel) measur-
able.

Notation:. If e ∈ E, we shall write jumpe(x) for jump(e, x).
Similarly, if q ∈ Q then ϕq denotes the function (t, x) �→
ϕ(q, t, x).

Definition 4. The semantics of a DTHA is a transition
system T with

• state space S = Q× R
n

• initial state s0 = (q0, x0) ∈ S

• transition relation −→⊆ S × (E ∪ R>0) × S given by
the following two rules:

x′ = ϕq(t, x)

(q, x) −→t (q, x′)

e = (q, q′) ∈ E, x′ = jumpe(x)

(q, x) −→e (q′, x′)
continuous transition

(time passage)
discrete transition

(switching location)

Any nondeterminism in a DTHA is resolved by a simula-
tion function. In particular, such function can capture the
determinism necessary for simulating a DTHA. An example
is the “12 o’clock” graphical rule in Stateflow diagrams. (It
states that the first edge, in clockwise orientation from 12,
that is enabled shall be selected.)

Definition 5. A simulation function for a DTHA is a map

Δ : S → E ∪ R>0

A simulation function induces a subsystem of T where each
state s ∈ S has a unique successor state, namely the unique
state s′ such that s −→σ s

′ where σ = Δ(s). In particular,
Δ induces an infinite path in T :

s0 s1 s2 s3 . . . where si −→Δ(si) si+1 for i = 0, 1, 2, . . .

An alternative definition of a deterministic simulation func-
tion could be to take the absolute time as an additional
parameter. That is,

Δ : S × R�0 → E ∪ R>0

which induces a timed path of T :

path(Δ) = (s0, θ0) (s1, θ1) (s2, θ2) . . . ∈ (S × R
n
�0)

ω

where s0 is the initial state of T , θ0 = 0 and for each i ∈ N:

• if Δ(si, θi) = e ∈ E then θi+1 = θi and si+1 is the
unique state in S such that si −→e si+1

• if Δ(si, θi) = t ∈ R>0 then θi+1 = θi + t and si+1 is
the unique state in S such that si −→t si+1

This is slightly more “powerful” since it allows to make dif-
ferent choices for the same state s when visiting s at dif-
ferent time instances. A corresponding time-dependent (or
even history-dependent) definition of probabilistic simula-
tion functions could be defined for the probabilistic case. In
this paper we exclusively deal with Markovian systems, so
we shall not pursue the more general case.

Now, Discrete Time Stochastic Hybrid Automata (DT-
SHA) are obtained by replacing the (deterministic) simula-
tion function Δ with a probabilistic version. The probabilis-
tic simulation function decides for each state s = (q, x) ∈ S

• either to take some continuous transition; in which case
the size of the time step will be “sampled” according
to some probability distribution over the non-negative
reals;

• or to take some discrete transition; in which case the
choice of which edge (q, q′) ∈ E to take is resolved
according to a probability distribution over

E(q) = {e ∈ E : e = (q, q′) for some q′ ∈ Q}.

Remember that we suppose E(q) �= ∅ for all q ∈ Q.

We denote by P(·) the set of probability measures over (·).

Definition 6. A probabilistic simulation function is a map

λ : S → P(B(R>0)) ∪ P(E)

satisfying the conditions (where we assume s = (q, x) ∈ S):

(P1) For each state s ∈ S such that λ(s) ∈ P(E) and each
edge e ∈ E we have:

if e = (p, p′) where p �= q then λ(s)(e) = 0

This is equivalent to
P

e∈E(q)

λ(s)(e) = 1.

(P2) For each state s ∈ S such that λ(s) ∈ P(B(R>0)), we
define the function

Πs : B(S) → [0, 1], Πs(B)
def
= λ(s)(time(s,B))

where time(s,B) is the set of time points for which
evolution (from state s = (q, x) ∈ S) of ϕq,x(·) =
ϕq(·, x) ends up in B. Formally,

time(s,B)
def
=
˘
t ∈ R>0 : ϕq(t, x) ∈ B

¯
= ϕ−1

q,x(Bq)

where

ϕq,x : R>0 → R
n, ϕq,x(t) = ϕq(t, x)

Bq
def
=
˘
y ∈ R

n : (q, y) ∈ B
¯
.

(P3) The sets of states for which λ is a probability measure
over reals and over E must be measurable. That is,
the sets

Sc
def
=

˘
s ∈ S : λ(s) ∈ P(B(R>0))

¯
Sd

def
=

˘
s ∈ S : λ(s) ∈ P(E)

¯
are measurable.

(P4) For each edge e = (q, q′) ∈ E, the function ψe : Sd →
[0, 1], s �→ λ(s)(e) is measurable over Sd.
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(P5) For each Borel-set B ⊆ B(S), the function φB : Sc →
[0, 1], s �→ λ(s)(time(s,B)) is measurable over Sc.

Remark 1. In condition (P2) for fixed state s = (q, x),
the function ϕq,x is measurable when we require that ϕ is
measurable. If B is a measurable subset of S = Q×R

n then
Bq = {y ∈ R

n : (q, y) ∈ B} is a measurable subset of R
n.

Therefore, the pre-image ϕ−1
q,x(Bq) is a measurable subset of

R>0.

As Q is finite, the measures over E are discrete. For mea-
sures over the non-negative reals if, for example, λ(s) corre-
sponds to an exponential distribution of parameter κ(s) ∈
R>0, then for all T ∈ B(R>0)

λ(s)(T ) =

Z
T

κ(s) · e−κ(s)tdt .

We can now define the stochastic kernel induced by a prob-
abilistic simulation function.

Definition 7. A probabilistic simulation function λ induces
the stochastic kernel Π : S×B(S) → [0, 1] defined as follows:

Π(s,B)
def
=

(
Πs(B) if s ∈ Sc

Ψs(B) if s ∈ Sd

where Πs is as per Definition 6 (condition P2), and Ψs is
the map

Ψs(B)
def
=

X
e∈Edges(s,B)

ψe(s) =
X

e∈Edges(s,B)

λ(s)(e)

where Edges(s,B) is the set of edges for which a transition
from state s results in a state in B. Formally (where s =
(q, x) ∈ S):

Edges(s,B)
def
=
˘
e = (q, q′) ∈ E : (q′, jumpe(x)) ∈ B

¯
.

Proposition 1. The function Π of Definition 7 is a stochas-
tic kernel.

Proof. We start by showing that for each state s ∈
S, Π(s, ·) is a probability measure over B(S). If λ(s) ∈
P(B(R>0)) then by condition (P2) in Definition 6

Π(s,B) = Πs(B) = λ(s)
`
ϕ−1

q,x(Bq)
´

and this is indeed a probability measure. If λ(s) ∈ P(E),
then

Π(s,B) = Ψs(B) =
X

(q,q′)∈E

λ(s)(e) · δB(q′, jumpe(x))

where δB is the Dirac measure over B. Condition (P1) and
the assumption that (q, q′) ∈ E for at least one location
q′ ∈ Q ensure that Π(s, S) = 1. Since E is finite, this is a
probability measure too.

Next, we need to show that for each B ∈ B(S), the func-
tion ΠB : S → [0, 1], s �→ Π(s,B) is measurable. We must
thus show that for any I ∈ B([0, 1]) the set Π−1

B (I) is mea-
surable. Note that:

Π−1
B (I) = {s ∈ S : Π(s,B) ∈ I}

= {s ∈ Sc : Πs(B) ∈ I} ∪ {s ∈ Sd : Ψs(B) ∈ I}
= {s ∈ Sc : φB(s) ∈ I} ∪ {s ∈ Sd : Ψs(B) ∈ I}

= φ−1
B (I) ∪ {s ∈ Sd :

X
e∈Edges(s,B)

ψs(e) ∈ I}

Measurability of Π−1
B (I) follows thus directly from condi-

tions (P4)-(P5) and ∪−closedness.

Proposition 1 enables us to show (see Section 3.1) the exis-
tence of the discrete-time Markov process and the probabil-
ity measure over the product σ-algebra F for our stochastic
hybrid systems model.

4. IMPORTANCE SAMPLING
Importance Sampling is a variance-reduction technique for

the Monte Carlo method. Here we present a brief overview of
the technique — the interested reader can find more details
in [15], for example.

4.1 Basics
Consider the general case of estimating c = E[g(X)] for a

random variable X and a measurable function g:R → R
�0,

assuming 0 < c < ∞. We also assume that the distribution
of X is absolutely continuous with respect to the Lebesgue
measure, and denote by f the corresponding density. Recall
that in statistical model checking we are interested in deter-
mining the probability that a stochastic system satisfies a
certain temporal logic formula φ. In this setting, the func-
tion g is just the model checker that verifies whether a trace
satisfies φ. Therefore, given a random trace σ, the random
variable g(σ) is a Bernoulli — 1 if the trace σ satisfies φ,
and 0 otherwise.

Let X1, . . . ,XN be random variables iid as X. The crude

Monte Carlo (MC) estimator is ĉ
def
= 1

N

PN
i=1 g(Xi). By the

strong law of large numbers, ĉ converges to c with probability
1. (Clearly, the sequence g(X1), . . . , g(XN ) is iid with mean
E[g(X)], so the law of large numbers applies.) Also, ĉ is
unbiased, and its variance is

Var(ĉ) =
1

N
(E[g2(X)] − c2) . (1)

We now introduce Importance Sampling. Suppose we
had another (absolutely continuous) distribution for X, with
corresponding density f∗, such that the ratio f/f∗ is well-
defined. Importance sampling is based upon the following
identity:

c = E[g(X)]

=

Z
R

g(x)f(x) dx

=

Z
R

g(x)
f(x)

f∗(x)
f∗(x) dx

=

Z
R

g(x)W (x)f∗(x) dx

= E∗[g(X)W (X)] (2)

where E∗ denotes expectation with respect to the density f∗.
The term W (x) = f(x)

f∗(x)
is the likelihood ratio. We require

that for all x such that g(x)f(x) > 0, it must be f∗(x) > 0;
the density f∗ is known as the biasing (or proposal) density.

Definition 8. LetX1, . . . ,XN be random variables iid with
density f∗. The Importance Sampling (IS) estimator is

ĉIS =
1

N

NX
i=1

g(Xi)W (Xi)

where W (x) = f(x)/f∗(x) is the likelihood ratio.
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Note that the samples Xi’s are drawn from the proposal
distribution. The IS estimator is unbiased by (2), and its
variance is (see Appendix A):

Var(ĉIS) =
1

N
(E∗[g

2(X)W 2(X)] − c2) . (3)

The key problem in importance sampling is to find a pro-
posal density such that the variance (3) of the IS estimator
is smaller than the variance (1) of the crude MC estimator.

4.2 Optimal bias
It is not difficult to show that there exists a proposal den-

sity which can minimize the variance (3) of the IS estimator.
In particular, if the function g is non-negative the following
optimal proposal density results in a zero-variance estimator:

f∗(x)
def
=

g(x)f(x)

c
. (4)

When g is a real (non necessarily positive) function the vari-
ance can be minimized, although the minimum is non-zero
— see Appendix A.

The claim that (4) gives a zero-variance estimator can be
easily verified:

ĉIS =
1

N

NX
i=1

g(Xi)W (Xi) =
1

N

NX
i=1

g(Xi)
f(Xi)

f∗(Xi)

=
c

N

NX
i=1

g(Xi)
f(Xi)

g(Xi)f(Xi)
= c .

Therefore, for any sample size (with at least one sample x for
which g(x) �= 0) the IS estimator is constant. But this does
not help in practice, since f∗ depends on c = E[g(X)], the
(unknown) quantity we are trying to estimate. Therefore,
instead of trying to come up with the optimal density, it may
be preferable to search in a parametrized family of densities
for a biasing density “close” to the optimal one. This is
exactly the approach taken by the cross-entropy method, as
we show in the next Section.

5. THE CROSS-ENTROPY METHOD
The cross-entropy method was introduced in 1999 by Ru-

binstein [11]. It assumes that the original (or nominal) den-
sity f of X belongs to a parametric family {f(·, u) |u ∈ U},
and in particular f(·) = f(·, v) for some fixed v ∈ U . The
method seeks the density in the family which minimizes
the Kullback-Leibler divergence with the optimal proposal
density. Basically, to estimate probabilities using impor-
tance sampling and the cross-entropy method, we perform
two steps. First, we find a density with minimal Kullback-
Leibler divergence with respect to the optimal proposal den-
sity. Second, we perform importance sampling with the
proposal density computed in the previous step to estimate
E[g(X)]. Both steps require sampling, and in practice the
number of samples generated for the second step will be
much larger than for the first.

Definition 9. The Kullback-Leibler divergence of two den-
sities f, h is

D(f, h) =

Z
R

f(x) ln
f(x)

h(x)
dx.

The Kullback-Leibler divergence is also known as the cross-
entropy (CE). Formally, it is not a distance, since it is not
symmetric, i.e., D(f, h) �= D(h, f) in general. However,
it can be shown (see Appendix B) that D is always non-
negative, and that D(f, h) = 0 iff f = h. Therefore, the CE
can be useful in assessing how close two densities are.

Our task is to estimate c = E[g(X)], where X is a random
variable with density f and g is a non-negative, measurable
function. Again, the idea of the CE method is to find a
density in the parametric family such that the CE with the
optimal proposal density f∗ is minimal. Therefore, we need
to solve the minimization problem:

u∗ def
= argmin

u∈U
D(f∗(·), f(·, u))

where f∗(x) = g(x)f(x, v)/c is the optimal proposal den-
sity. It is easy to transform the minimization problem into
a maximization problem:

argmin
u∈U

D(f∗(·), f(·, u)) = argmin
u∈U

E∗

»
ln

f∗(X)

f(X,u)

–

= argmin
u∈U

Z
R

f∗(x) ln f∗(x) dx−
Z

R

f∗(x) ln f(x, u) dx

= argmax
u∈U

Z
R

f∗(x) ln f(x, u) dx

= argmax
u∈U

Z
R

g(x)f(x, v) ln f(x, u) dx

= argmax
u∈U

E[g(X) ln f(X, u)]

where in the second step we used the fact is D is non-
negative and that the first integral does not depend on u.
It is worth to observe that in the maximization problem the
dependency on f∗ has disappeared, thus simplifying it. In
fact, Rubinstein and Kroese [12] show that for certain fam-
ilies of densities the maximization problem can be solved
analytically. Assume now that X is a random vector, i.e.,
X:Ω → R

n (of course g must be defined over R
n). Note

that this does not change what we obtained so far. The

following Proposition gives the optimal parameter u∗ def
=

argmaxu∈U E[g(X) ln f(X, u)] when X is a vector of inde-
pendent, one-dimensional exponential family of distributions.

Proposition 2. [12] Let X be a random vector of n inde-
pendent one-dimensional exponential distributions parametrized
by the mean; g:Rn → R

�0 be a measurable function. Then
the optimal parameter u∗ = (u∗

1, . . . , u
∗
n) is

u∗
j =

E[g(X)Xj ]

E[g(X)]

where Xj is the j-th component of X.

From the Proposition, we see that the optimal parameter
depends on the quantity we are estimating, i.e., E[g(X)].
Therefore, u∗ needs itself to be estimated by Monte Carlo
simulation. More specifically, the j-th component of u∗ may
be estimated from iid random variables X1, . . . ,XN (as in
the Proposition above) by

û∗
j =

PN
i=1 g(Xi)XijPN

i=1 g(Xi)
(5)

where Xij is the j-th component of Xi. However, recall that
in statistical model checking g(Xi) is either 1 or 0 — a sam-
ple trace either satisfies a given temporal logic property or it
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does not. Also, in the rare-event case it will be very unlikely
to sample traces that satisfy the temporal logic property.
This means that for reasonable sample sizes the estimator
in (5) would most likely be 0

0
, thereby of little use.

This problem can be solved by noting that, for an arbi-
trary tilting parameter w ∈ U , the following holds

u∗
j =

E[g(X)Xj ]

E[g(X)]
=

Ew[g(X)W (X,w)Xj ]

Ew[g(X)W (X,w)]

where W (x,w) = f(x)/f(x,w) and f(x) = f(x, v) is the
nominal density of X. It is important to note that the ex-
pectation is computed with respect to the proposal density
f(·, w). Now, we can use Monte Carlo simulation again to
estimate u∗

j by

û∗
j =

PN
i=1 g(Xi)W (Xi, w)XijPN

i=1 g(Xi)W (Xi, w)
(6)

where the Xi’s are sampled from f(·, w). In other terms,
we use importance sampling with a proposal density given
by the tilting parameter w. Naturally, w must be chosen
in such a way to avoid the 0

0
problem of the estimator (6).

Therefore, w should increase the probability of the event
g(X) = 1, i.e., we should sample more often traces satisfying
the given temporal property. However, it is not required to
“guess” a tilting parameter close to the optimal one: it is
often sufficient that the chosen w increases the probability of
the rare event in the range 0.01-0.1. This enables meaningful
estimates of the optimal u∗ using (6).

We point it out that the CE method does not guarantee
that the computed proposal density minimizes the variance
(3). This is because in general the optimal proposal density
may not belong to the parametric family. However, the CE
method has been shown to work very well in many applica-
tions [12]. As we show in the next Section, the CE method
works well with statistical model checking, too.

Finally, Rubinstein [11] has presented a multi-level CE al-
gorithm for estimating the probability of rare events of the
form {g(X) � γ}, where g is a real function and γ a con-
stant. The algorithm first gets N samples X1, ...XN of the
system under the nominal (unbiased) distribution. Then it
computes the sample quantile of the g(Xi)’s, and it adap-
tively tunes γ to make the event of interest more frequent.
Besides the more restricted class of events considered, this
algorithm does not work in our case. In statistical model
checking the function g is in fact the model checker that
checks whether a simulation trace satisfies the given tem-
poral logic formula. Function g thus returns either 0 or 1.
When computing the sample quantile one has to order the
values of the g(Xi)’s. But these would most likely all be 0,
since the system is sampled with the original distribution,
under which the event {g(X) � γ} is rare. Therefore, this
technique is not directly applicable in our case.

6. EXPERIMENTS
We have applied the cross-entropy method to an example

of stochastic hybrid system modeled in Stateflow/Simulink.
The model implements a fault-tolerant controller for an air-
craft elevator system1. The model is part of a larger Simulink

1More information about the model is available at
http://mathworks.com/products/stateflow/demos.html?
file=/products/demos/shipping/stateflow/
sf_aircraft.html

modeling of the HL-20 crew rescue vehicle developed by
NASA [3]. Typically, the two horizontal tails on the sides of
an aircraft fuselage are each governed by one elevator, and
there are two independent hydraulic actuators per elevator
— four in total. During normal operation, each elevator is
positioned by its corresponding outer actuator, and an in-
ner actuator can be used in case of malfunctioning. The two
outer actuators are driven by two separate hydraulic cir-
cuits, while the two inner actuators are both connected to a
third hydraulic circuit. The outer actuators operates during
normal use, and in case of failure the inner actuators can be
operated. The system should ensure that at any given time
only one set of actuators (i.e., either outer or inner) position
the elevators. If a fault arises in the outer actuators or in
their corresponding hydraulic circuits, the system will acti-
vate the inner actuators; the outer actuators will be switched
off and eventually isolated if the fault persists. Failures in
the hydraulic circuits may be temporary, and a failed circuit
can always placed back online if the fault condition termi-
nates. The control logic of the system is implemented as
a Stateflow diagram, while the hydraulic actuators and the
elevators are modeled using Simulink. More details about
the model can be found in [8].

We have modified the Stateflow/Simulink model by adding
random failures in the three hydraulic circuits only. A fail-
ure is modeled as an out-of-bounds reading of the circuit
pressure. We model failure injection as three independent
Poisson processes. When a failure in a hydraulic circuit oc-
curs, the circuit will stay in faulty condition for one second,
after which the pressure reading returns to its normal value,
and the fail condition terminates. The nominal fault rates
for the three circuits were all set to 1/3600. In our experi-
ments we estimated the probability of BLTL formula φ:

φ = F25G1((H1fail ∨ H3fail) ∧ H2fail)

where H1 and H3 denote the hydraulic circuits driving the
outer actuators, and H2 denotes the circuit driving the inner
actuators. Informally, we want to estimate the probability
that, within 25 seconds, the horizontal tails do not respond
to the control inputs for a duration of one second. Since the
fault rates of the three hydraulic circuits are low (1/3600),
we expect φ to be a rare event.

We have performed three experiments, depending on the
number of samples used to compute the optimal CE rates
and in importance sampling (the higher numbers are always
used for importance sampling). The proposal density is im-
plemented by changing the fault rates of the three Poisson
processes modeling the fault injection. The initial fault rates
(tilting rates) for the computation of the optimal bias were
1/10, except for the first experiment (100/1,000 samples)
where we used 1/8. This because during the computation
of the CE rates the proportion of satisfying traces was too
low. All our experiments have been performed on a 3.2GHz
Intel Xeon computer running Matlab R2010a.

In Table 1 we report the estimate for the probability that
φ holds, the (approximate) relative error, the total com-
putation time (i.e., simulation, model checking, and cross-
entropy calculations), and the (approximately) optimal rates
computed by the CE method. These were the actual rates
used in importance sampling. The relative error is com-
puted as the ratio between the estimated standard devia-
tion of the estimate and the estimate itself. (We recall that
the standard deviation can be estimated by the square root
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Samples Estimate RE Time Rates

100
1, 000

1.58 × 10−14 0.58 0.23
1/1.00
1/2.00
1/1.00

1, 000
10, 000

8.54 × 10−14 0.24 2.45
1/0.98
1/2.01
1/1.02

10, 000
100, 000

8.11 × 10−14 0.17 23.9
1/0.52
1/2.01
1/1.48

Table 1: Cross-Entropy and Importance Sampling.

Samples used for CE rates computation and importance

sampling; probability estimate; relative error; total com-

putation time (hours); computed cross-entropy rates.

of the sample variance 1
N−1

PN
i=1(g(Xi)W (Xi)− ĉ)2, where

X1, . . . ,XN are iid as the proposal distribution, and ĉ is the
probability estimated by importance sampling on the same
sample X1, . . . ,XN .)

The table shows that statistical model checking with im-
portance sampling and cross-entropy can efficiently estimate
rare-event probabilities. In particular, with a feasible sample
size of 104 it is possible to estimate probabilities in the or-
der of 10−14 with reasonable accuracy (RE = 0.24). Clearly,
standard statistical model checking and crude Monte Carlo
would need an unfeasible number of samples to provide sim-
ilar levels of accuracy. Also, we see that by increasing the
sample size the relative error decreases — as one would ex-
pect — thereby yielding more accurate estimates.

Finally, since each sample can be generated independently
from the others, Monte Carlo methods can readily take ad-
vantage of parallel/multi-core systems. That further con-
tributes in making statistical model checking an effective
technique.

7. CONCLUSIONS
In this paper we have addressed the verification of rare

events for stochastic hybrid systems via statistical model
checking. We have proposed a semantic model for stochastic
hybrid systems that is tailored for simulation environments.
We have shown that the model induces a Markov process
and a well-defined probability measure, and it is thus us-
able with statistical model checking. Previous works have
shown that statistical model checking can efficiently verify
large, “difficult” systems. However, this verification tech-
nique suffers from the rare-event problem: if the property
to verify is true with an extremely small probability, then
statistical model checking becomes inefficient. In particu-
lar, a large number of simulations is required to obtain an
accurate estimate of the probability. The problem can be
tackled by combining importance sampling and the cross-
entropy method with statistical model checking, as we have
proposed. Our initial findings indicate that this combina-
tion can efficiently address the verification of rare events for
stochastic hybrid systems.
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APPENDIX
For completeness, we report some standard results about
importance sampling [15] and the cross-entropy [12].

A. IMPORTANCE SAMPLING
We calculate the variance of the IS estimator of Definition

8. In the following, Var∗ denotes variance taken with respect
to the biasing density f∗. The variance of the IS estimator
is

Var(ĉIS) = Var∗

 
1

N

NX
i=1

g(Xi)W (Xi)

!

=
1

N2

NX
i=1

Var∗(g(Xi)W (Xi))

=
1

N
Var∗(g(X)W (X))

=
1

N
(E∗[g

2(X)W 2(X)] − E2
∗[g(X)W (X)])

=
1

N
(E∗[g

2(X)W 2(X)] − c2) (7)

where by (2) it is c = E∗[g(X)W (X)] = E[g(X)]. Also,
the variance can be expressed in a slightly different form.
Continuing from (7) we have

Var(ĉIS) =
1

N

„Z
R

g2(x)
f2(x)

f2∗ (x)
f∗(x) dx− c2

«

=
1

N

„Z
R

g2(x)
f(x)

f∗(x)
f(x) dx− c2

«

=
1

N
(E[g2(X)W (X)]− c2)

We now calculate the optimal biasing density. Since the
variance is always non-negative, we need to minimize the

expectation term in (7). By Jensen’s inequality we get

E∗[g
2(X)W 2(X)] � E2

∗[|g(X)|W (X)] (8)

= E2
∗[|g(X)| f(X)

f∗(X)
]

=

„Z
|g(x)| f(x)

f∗(x)
f∗(x) dx

«2

= E2[|g(X)|] (9)

and, since the square function is strictly convex, equality
holds in (8) iff the random variable |g(X)|W (X) is constant,

i.e.,

|g(X)|W (X) = k

for some constant k and X ∼ f∗ (because in (8) the expec-

tation is computed with respect to f∗). But W (x) = f(x)
f∗(x)

,

so we deduce that

f∗(x) =
1

k
|g(x)|f(x) (10)

is the optimal biasing density, i.e., the density which mini-
mizes the variance (7) by attaining the lower bound in (9).
It remains to calculate k: when |g(X)|W (X) = k, we have
immediately from (9) that k = E[|g(X)|]. Therefore, from
(7) the variance of the IS estimator is

Var∗(ĉIS) =
1

N
(k2 − c2)

which in general may be non-zero, but will of course tend
to zero as N → ∞. Note that when g is non-negative, then
k = E[|g(X)|] = E[g(X)] = c and therefore Var∗(ĉIS) = 0.

B. CROSS-ENTROPY
We show that the cross-entropy (or Kullback-Leibler di-

vergence) of two densities f ang g is always non-negative.
Recall its definition

D(f, g) =

Z
R

f(x) ln
f(x)

g(x)
dx = E

»
ln
f(X)

g(X)

–

where X is a random variable with density f . The proof is
a simple application of Jensen’s inequality (note that − ln is
a convex function):

E

»
ln
f(X)

g(X)

–
= E

»
− ln

g(X)

f(X)

–
�

− ln E

»
g(X)

f(X)

–
= − ln

Z
R

g(x) dx = 0

where the last equality holds because g is a probability den-
sity. Also, it follows that D(f, g) = 0 iff f = g.
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