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A%stract. Hoare axiom systems for establishing partial correctness of
programs may fail to be completé because of (a) incompleteness of ghe
assertion language relative to the underlying interpretation or (b) in-
ability of the assertion language to express the iavariants of Joops.
S. Cook has shown that if there is a complete proof system for the as-
sertion language (i.e. all true statements of the assertion language)

and if the assertion language satisfies natural expressibility condition

then a sound and complete zxiom system for a large subset of Algol may be
dévised. We exhibit programming language constructs for which it is im—
possible to obtain sound and complete sets of Hoare axioms even in this
special sense of Cook's. These constructé incluﬁe (i) recursive procedures
with procedure parameters in a programming language which uses static scope
of identifiers and (ii) coroutines in a language which allows parameterless
Trecursive procedures, Modifications of these constructs for which sound

and complete systems of axioms may be obtained are also discussed.
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1.1 Background

Many different formalisms have been proposed for Proving Algol-like Progirams
correct, Of these probably the most widely referenced is the axiomatic
~approach of C;A.R, Hoare [12], The formulas in Hoare's system are triples
of the form {p} S {Q} where S is a statement in the programming language

and P and Q are Predicates in the language of the first order predicate cal-

culus (the assertion language), The partial correctness formula {P} s {Q}

is true iff whenever P holds for the initial values of the program variables
and S is eXecuted, then either § will fail to terminate or Q will be satig-
fied by the final values of the program variables, A typical rule of ip-

ference is

o {P1b} s {P)
1P} while b do S {PA~b}

The axioms ang inference rules are designed to capture the meanings of the
individual Statements of the programming language. Proofs of correctness
for programs are constructed by using these axioms together with a proof
system for the assertion language.

- What is a "goog" Hoare axiom.system? One property a good system should
have is soundness (f101:061). & deduction system is sound iff every theorem
is actually true. Another Property isg comgletenesslféj, which means that
every true statement is provable, From thé Gddel incompleteness theorem we
See that if the deductidn system for the assertion language is axiomatizable
and if asufficiently ricp interpretation (such as number theory) is used_for
the assertion language, then.for any (sound) Hoare axiom system there will be
assertions {P} § {Q} which are true but not provable within the system, The

question is whether this incompleteness reflects some inherent complexity of



the programming language constructs or whether it is due entirely to the
incompleteness of the assertion language, For example, when dealing with
the integers, for any consistent axiomatizable proof system there will be

predicates which are true of the integers but not provable within the

system. How can we talk about the completeness of a Hoare axiom system
independently of its assertion language?

One'way of answering this question was pfoposed by S. Cook [4]., Cook
glves a Hoare axiom system for a subset of Algol including the wﬁiie state=
ment and nonrecursive procedures, He then proves that if there is a com—
plete proof system for the assertion language (i.e. all true statements of
the assertion language) and if the assertion language satisfies a natural
expressibility condition, then every true partial correctness assertion
will be provable. Gorelick [7] extends Cook's work to recursive procedures.

Similar completeness results are given by deBakker and Meertens [5] and by

Manna [13].

1.2 New Results of This Paper

Modern programming languages provide constructs which are considerably more
complicated than the while statement, and one might wonder how well Hoare's
axiomatic approach can be extended to handle more complicated statements. 1In
this paper we will be interested in the question of whether there are pro-
gramming languages for which it is impossible to obtain a good (i,e. sound
and complete) Hoare axiom system, This question is of obvious importance in
the design of programming lénguages whose programs can be naturally proved
correct.

We first consider the problem of obtaining a sound and complete system of

axioms for an Algol-like programming language which allows precedure names as



Parameters in procedure calls, We Prove that in general it is impossible
to obtain such a System of axioms eyen if we disallow calls of the fornm

“oa13 PCoiyPyoaa)™, (Calls of this form are necessary to directly simy-~
late the lambda calculus by parameter passing.) We then consider restric-

tions to the Programming language which allow one to obtain a good axiom

The incompleteness Tesult is obtaiped for a block-structured program=~
ming language with the following features:
(i) Procedure names ag Parameters of prbcédure calls
(ii) Tecursion
(iii) static scope
(iv) global variabiles

(v) internal pProcedures

dynamic Scope, a complete set of axioms may he obtained for (1) procedures
with procedure Parameters, (ii) Tecursion, (iv) global variables, and (v)
internal Procedures; or if we disallow internal Procedures, a complete System
may be obtained for (i) Procedures with procedure parametérs, (ii) Tecursion,
(iii) statdic Scope, and (iv) global variabjes. As far as we know, this is

the first axiomatic Ltreatment of Procedure parameters.

An independent source of incompleteness is the coroutine construct. If
Procedures are not recursive, there is 3 simple method for Proving correctness

of coroutines based on the addition of auxiliary variables {15]. If, however,



procedures are recursive, no such simple method can give completeness,
These observations generalize to languages with paragllelism and recursion,
Additional programming language constructs for which it is impossible

to obtain good axioms are discussed in Section 8,

1.3 Outline of Paper

The development of these results is divided into two parts——the first deal-
ing with procedures as parameters and the second with the coroutine con-
struct. In Section 2 a formal description is given for a programming lan-
guage with static scope, global wvariables, and procedures with procedure
parameters. This is followed by a discussion of Cook's expressibility
condition. Modifications necessary td handie dynamic scope are also dis-
cuséed. In Sgction 3 we prove that it is impossible to obtain a sound and
complete axiom system for this language. In Sections 4, 5, and 6 we discuss
restrictions sufficient to insure that good Hoare axioms can be found.
Sections 8 and 9 are devoted to completeness and incompleteness results for
the coroutine construct and follow the same outline as was used in the first
part of the paper. The paper concludes with a discussion of the results and

remaining open problems,

2. A Simple Programming Language and its Semantics.

As in [4] we distinguish two logical systems involved in discussions of pro-
gram correctness—-the assertion language LA in which predicates describing
a program's behavior are specified and the expression language LE in which the

terms forming the right hand sides of assignment statements and (quantifier-—

free) boolean expressions of conditionals and while statements are specified.



Both LA and LE are first order languages with equality and LA is an ex~
tention of LE' The variables of LE are called program identifiers

(PROG_ID) and are ordered by the positive integers, The variables of

LA are called variable identifiers (VAR _ID),

An interpretation I for LA consists of, a set D (the domain of the in-

terpretation), an assignment of functions on D to the function symbols

of LA and an assignment of predicates on D to the predicate symbols of

LA' _We will use the notation II] for the cardinality of the domaié-of 1.
Once an interpretation I has been specified, meanings may be assigned to the

variable~free terms and closed formulas of LA (LE).

Let 1 be an interpretation with domain D. A program state is an ordered

list of pairs of the form:
(Vl'dl) (vz.qz) e . (vn'dn)

where each v, is a variable identifier and each di is an element of D. Thus

a program state is similar to the association list used in the definition of

Lisp. 1f s is a program state and v is a variable identifer than s(v) is

the value associated with the first occurrence of v in s. Similarly, ADD (s,v,d)
is the program state obtained by adding the pair (v.d) to the head of

list s, and DROP(s,v) is the program state obtained from s by deleting the

first pair which contains v. VAR(s) is the set of all vériable identifiers
appearing in s, |

If t is a term of I, with variables x

N 12%pr 0 X and s is a progranm

state, then we will use the notation t(s) to mean

t S(:;cl):q-.vs(xn)

X x
1:i1ln



i.e. the term obtained by simultaneous substitution of s(xl) for Xy e
s(x ) for X

Likewise we may define P(s) where P is a formula of LA' It is fre-~
quently convenient to identify a formula P with the set of all program
states which make P true, i.e. with the set {s|I[P(s)]=true}. If this
identification is made, then false will correspond to the empty state
éet and true wili correspond to the set of all program states.

We consider a simple programming language which allows assignment,

procedures calls, while, compound and block statements. Procedure de-—

clarations have the form "proc q(ﬁ:ﬁ); K<§,E> end" where q is the name

of the procedure, x is the list of formal variable parameters, p is the

list of formal procedure parameters, and K<§,5> is a statement involving

the parameters x and p. A procedure call has the form "call q(a:P)" where

a is the 1list of actual variable parameters and P is the list of actual

frocedure parameters. To simplify the treatment of parameters we restrict
the entries in a to be simple prograﬁ identifiers. We further require that
procedure names be declared before they abpear in procedure calls. An en-
_ﬁironment e is a finite set of procedure declarations which does not contain
two different declarations with the same name. If 7 is a procedure declara-
tion, then ADD[e,n] is the environment obtained from e by first deleting all
procedure declarations which have the same name as 7, and then adding m,
Meanings of statements are specified by a meaning function M=MI which
associates with statement S, state s, and environment e a new state s'., In-
tuitively s' is the state resulting if S is executed with initial state s and
initial envirommen. e. The definition of M is given operationally in a rather

non-standard manner which makes extensive use of renaming. This type of



definition allows static scope of identifiers without the introduction of
closures to handle procedures, The definition of M[S](e,s) is by cases
on S

(1) s is '"begin new x; B<x> end" -~ DROP (M[begin B<ﬁi> end](e,s'),xi)
where i is the index of the first program identifier not éppearing in S, e,

or VAR(s) and s'=ADD(s,xi,ao). (ao is a special domain element which is

used as the initial value of program identifiers.)

(2) S is "begin proc q(x:p); K<x,p,q> end; B<q> end"-—M[begin B<qi> end] (e',s)
where i is the index of the first procedure identifier . not occurring in B<q>
or e and e' = ADD(e, "proc qi(§:§); K<§,§,q1> end").

(3) S .is "begin B,5 B, end" -~ M[begin B, end](e,M[B,](e,s))

(4) S is "begin end'-—s

(5) S is "x:=t"-—ss' where s'=ADD(DROP(s,x), x, I[t(s)])

M[Bl](e,s) if seb
(6) {(conditional) S is "b +Bl,B2"—-+
M[Bz](e,s) otherwise

M[b*B] (e ,M[B] (e,s)) if scb

. "*"
(7)  (vhile) s g TERl S otherwise

“[M[K<a,P>](e,s) if “proc q(x:p); K<x,p> end" ¢ e,

(8) S is "call q(g:ﬁ)”~-+ length (a)=length(X), and length(p
=length (P).
undefined otherwise

Sometimes it will be easier to work with computation sequences than with the

definition of M directly, A computation sequence C of the form

CE(50360980) LIS N ] :(Si’ei’si) Tte e



gives the statement, environment and program state during the ith step in
the computation of M[SO](eb,sb). Since the rules for generating computa-
tion sequences may be obtained in a straightforward manner form the de-
finition of M, they will not be included here,

The meaning function M may be easily modified to give dynamic scope of

identifiers., With dynamic scope when an identifier is referenced, the most

recently declared active copy of the identifier is used, This will occur

with our model if we omit the renaming of variables which is used in clauses
(1) and (2) in the definition of M. Thus, fof example,
M[begin new x; B end](e,s)=DROP(M[begin B end] (e,s'),x) where s'=ADD(s,x,ao).
Unless explicitly stated we will always assume static scope of identifiers
in this paper.

Partial cdiréctness assertions will have form {P} S {Q}/e where S is a

program statement, P and Q are formulas of LA’ and e is an environment.

2.1 Definition

{P} S {Q}/e is true with respect to I (I=I'{P} S {Q}/e) iff

v s,s'[seP A M[S](e,s)=s'-=>s'eQ] and every procedure which is global to S or
tb some procedure declaration in e is contained in e. If T is a set of partial
correctness assertions and every assertion in I' is true with respect to I,

then we write F=IT.
To discuss the completeness of an axiom system independently of its as—

sertion language we introduce Cook's notion of expressibility,.

2.2 Definition

LALis expressive with respect to LE and I iff for all S, Q, e there is a



formula of LA which expresses the weakest precondition for partial correct—

ness 'wp(S,e,Q)¥{s[M[S](e,s) is undefined or M[S](e,s)eQ}. (Note that we
could have alternatively used the strongest postcondition
SP(S,e,P)={M[S](e,s)[seP}.) |

If LA is expressive with respect to Ly and I, then invariants of while
loops and recursive procedures will be expressible by formulas of LA. Not
eiery choice of LA’ LE’ and I gives expressibility., Cook demostrates this
i# the case where the assertion and expression languages are both the
lénguage of Presburger Arithmetic., Wand [18] gives another gxample of the
same phenomenon. More realistic choices of LA’ LE, and I do give expressi=-
bility. 1If LA and LE are both the full language of number theory and I is
an interpretation in which the symbols of number theory receive their usual
méanings, then LA is expressive with respect to LE and I. Also, if the

domain of I is finite, expressibility is assured.

2.3 Lemma
I1f LA’ LE are first order languages with equality and the domain of I is

finite, then LA is expressive with respect to LE and I,

- Proof. Let D be the domain of I and suppose that |D|<w, Let S be a

statement, e an environment, and Q a formula of LA' Suppose that xl,..,x

n

are the variables which occur free in Q, global to S, or global to some
procedure in e. Since D is finite, there exists a finite set of n—tuple

T a'{(ai,...,ai) | 1 =3 < m} such that s ¢ wp(8,e,Q) iff for some n-tuple

(aJ,...,aj) in I we have s(x.) = a? for 1 £ i<n, IfR = \V/ ¥ = al A
1 n i i . 1 1
1<j<m

Xy = ag Ao A X, = ai, then it is not difficult to show that R expresses

WP(S:G:Q)v



If H ig a Hoare axiom system and T is a proof system for the
assertion language LA (relative to I),ythen a proof in the system (H,T)
will consist of a sequence of partial correctness assertions {P} s {Q}/e
and formulas of LA each of which is either an axiom (of H or T) or follows
from previous formulas by a rule of inference (of H or T), If {P} A {Q}/e
occurs as a line in such a proof, then we write }'H,f{P} s {Q}/e. In a

similar manner, we may define T }E-TA where I' and A are sets of partial
H

correctness assertions.

2.2 Definition

A Hoare axiom system H for a programming language PL is sound and complete

(in the sense of Cook) iff for all T, L,, L_, and I, such that (a) L, is

A

A* TR?

expressive with respect to L, and I and (b) T is a cdﬁplete proof system for
P E

LA with respect to I,

I—H,T{P} S {Q}/e <=> F (P} s {Q}/e

3. Recursive Procedures with Procedure Parameters

In this section we prove :

3.1 Theorem
It is impossible to obtain a system of Hoare axioms H which is sound and com-
plete in the sense of Cook for a programming language which allows:
(1) procedures as parameters of procedure calls
(i1) recursion
(iii) static scope
(iv) global variables

(v) internal procedures



Remark; In section 4 show that it is possible to obtain a sound, complete
system of Hoare axioms by modifying any one of the above features. To
obtain the.incompleteness result, only procedure identifiers are needed

as parameters of procedure calls, The completeness proof allows, in
addition, variable parameters which are passed by direct syntactic gybsti-
tution,

| In order to prove the theorem we need the following lemma.

3.2 Lemma
The Halting Problem is undecidable for programs in a programming language
with features (i) - (v) above all finite interpretations I with IIIZZ.

The proof of the lemma uses a modification of a result of Jones and
Muchnick [11]. Note that the lemma is not true for flowchart schemes or
while schemes; In each of these cases if ]I]<m the program may be viewed
as a finite state machine and we may test for termination (at least theoreti-
célly) by watching the execution sequence of the program to see whether any
program state is repeated. In the case of recursion one might expect that
the program could be viewed as a type of ﬁushdown automaton (for which the
Halting Problem is decidable). This is not the case if we allow procedures
as parameters. The static scope execution rule, which states that procedure
calls are elaborated in the environment of the procedure's declaration
rather than in the environment of the procedure éall, allows the simulation
program to access values normally bﬁried in the runtime stéck without first
"popping the top" of the stack.

Formally we show that it is possible to simulate a queue machine which has
three types of instructions A) Enqueue x--add the value of % to the rear of

the queue, B) Dequeue x—--remove the front entry from the queue and place in x,



and C) if x=y then go to L--~conditional branch, Since the Halting
Problem for queue machines is undecidable, the desired result follows,

The queue is represented by the successive activations of a recursive
procedure "sim'" with the qucue entries being maintained as values of the
variable "top" which is local to "sim", Thus an addition to the rear
of the queue may be accomplished by having "“sim" call itself recursively,
Dgletions from the front of the queue are more complicated. "Sim" also
contains a local procedure "up" which is passed as a parameter during the
récursive call which takes place when an entry is added to the rear of
the queue. In deleting an entry from the front of queue, this parameter
is used to return control to previous activations of "sim" and inspect the
values of "top" local to those activations., The first entry in the queue
will be indicated by marking (e.g. negating) the appropriate copy of "top',

Suppose that the queue machine program to be simulated is given by

Q=1:INST1;...K:IN$Tk

then the simulation program (in the language of Section 2) has the form

proc sim(:back);
begin new top, bottom, progress;

<declaration of local procedure up>

progress:=1;
while progress=1 do
begin
if prog counter=1 then "INST." else
if prog_counter=2 then "INSTZ” else

if prog counter=K then "INSTk" else progress:=0

end
end
end

end sim;

prog_counter:=1;

empty queue:=1;

call sim(:loop)



, The variable "empty queue" tells whether the queue contains any elements.
"prog counter" is the instruction counter for the program being simulated,

If the size the queue program is greater than the number of elements in the
domain of the interpretation, then "prog_counter" may be replaced by a

fixed number of new variables which hold its binary representation.
"progress”is used to indicate when control should be returned to the previous
activation of the procedure "sim", The procedure "loop" diverges for all

values of its parameters; it will be called when an attempt is made to remove

an entry from the empty queue. Declarations for "empty queue", "prog_counter",

"progress", "loop" and the program variables for the queue machine are omitted
from the outline of the simulation program.

The appropriate encoding for queue machine instructions is given by cases:

(a) 1f INSTj is "If X=X then go to n" replace by:

begin
If x =x
P m
then prog_counter:=n;

else prog_counter:=prog counter+l
end

“(B) 1If INSTj is "j:enqueue A" then replace by:

begin
if empty queue # 1 then top:“A
else begin topi=-A; .. -
empty queue:=0
end
Prog_counter;=prog_counter+l;
call sim(iup);
progress;:=0
end

- :Note that we are assuming that the first instruction in any queue program

will be an "enqueue" instruction. Note also that if "progress" ever becomes



0, the simulation program will eyventually terminate,
(c) 1If INSIais "j:dequeue %" then replace by

begin
if empty queue=1 then call loop( );
call back (x, bottom;);
If bottom=1 then empty queue:=1;
Xi==x}
Prog counter:=prog counter+l

end

If the queue is not‘empty, "back" will correspond to the local procedure

"up" declared in the previous activation of "sim". On return from the call
on "back" the first parameter x will contain the value of "top" in the first
activation of "sim'". The second parameter‘of "back" ("up") is only used
when "back" is called from within "up",

Finally, we must describe the procedure "up" which is used by "sim" in deter-

mining the value of the first element in the queue and deleting that element:

proc up (front_of queue, first:)
if top < 0
then begin
fron;_pf_gueue:=top;
first:=1
end
else begin
call back (front_of queue, first:);
If first=1 then begin top;=~top;
first:=0
end
end
end up;

After a call on "up", the arameter "front_of queue" will contain the value of
P s P _0+ g
"top" in the first activation of "sim", The parameter "first" is used in

marking the queue element which will henceforth be first in the queue.



This completes the description of the simulation program, Contour
diagrams [17] describing the simulation of the queue program
"enqueue 5; dequeue X" are given in figures 1 and 2, We now return to
the proof of the incompleteness theorem, Suppose that there were a sound,
complete Hoare axiom system H for programs of the type described at the

beginning of this section. Thus for all LA’ LE’ and I, if (a) T is a

complete proof system for LA and I, and (b) LA is expressive relative to
Lp and I, then

F 1P} 5 {Q}/e <=>|— (P} s {Q}/e

This leads to a condradiction. Choose I to be a finite interpretation with
II]22. Observe that T may be chosen in a particularly simple manner; in fact,
there is a decision procedure for the truth of formulas in LA relative to I.
Note also that LA is expressive to LE and I; this was shown by the lemma in
Section 2 since I is finite. Thus both hypothesis (a) and (b) are satisfied.
From the definition of partial correctness, we see that {true} § {false}/¢
holds iff S diverges for the initial values of its global variables. By the

lemma above, we conclude that the set of programs S such that F=I{true} S

{false}/¢ holds is not recursively enumerable. On the other hand since
F=i{true} S'{false}/¢<=>}~H cltrue} S {false}/¢,
H
We can enumerate those programs S such that F=i{true} S {false}/¢ holds (simply

enumerate all possible proofs and use the decision procedure for T to check

applications of the rule of consequence), This, however, is a contradiction.



4.1 Completeness Results

A major source of complexity in languages which allow Procedure para-

meters is sedf-application €.8. calls of the form "eall PlowPosno)™,

If self-application is allowed, the lambda calculus may be directly
simulated by parameter passing. The reader will note, however, that the

incompleteness result of section 3 holds even if self-application is

not allowed., 1In restricting the pProgramming language so that a sound

and complete axiom System may be obtained, we will disallow self-applica-

dures with no pProcedure formal parameters.

A second source of complexity associated with parameter passing is
sharing, Sharing occurs when some variable in a Program may be referenced
by two different names, (A formal ‘treatment of sharing is given in [6]). The
incompleteness result of section 3 may also be obtained if sharing is not
allowed. We will assume in the remainder of the paper that sharing is not
allowed; we will require that whenever a Procedure call of the form
"eall q(a:P)" is executed in enviromment e, all of the variables in & are
distinct and no parameter in a is global to the declaration of q or to any
Procedure in e which may be activated indirectly by the call on q.

Once sharing and self~application have been disallowed a "good" axiom
system may be obtained by modifying any one of the five features of theorem
3.1. These results are sumarized in figure 3. In order to establish the
completeness results of figure 3, sound and complete axiom systems must be

~ given for languages (2)-(6). Due to space limitations, we‘will only consider



language 5 in this paper. Languages 2 and 3 are treated in [2]. Good
axiom systems for languages 4 and 6 are similar to the axiom system

-described in section 4.3 and will not be discussed here.

4.2 The Range of a Statement

Consider the following program segment:

proc F(y:p);

If y>1

then begin y:=y-2; call p(y:F) end
else y:=0

end F;

proc G(w:q); z:=ztw; call q(w:G) end G
call F(x:G);

Observe that the only procedure calls which can occur during the execution
of the program segment are "call F(x:G)" and "call G(x:F)". In general,
with respect

let S0 be a statement and e an environmentj the range of S

0 0

to is the set of pairs <call qi(azf), e;> for which there is a valid

&4

computation sequence of the form:
(So,eo,so),..,,(call qi(gzﬁ),ei,si),...

If static scope of identifiers is used, the range of a statement SO with

respect to environment e, may be infinite. This is because of the renaming

¢}
at block entry which occurs in clauses (1) and (2) in the definition of M.
If, however, dynamic scope is used, then Ehe range of a statement (with res-
pect to a particular environment) must be finite; in fact, there is a simple
algorithm for computing the range of a statement, The range of S with res-
pect environment e is given’by RANGE (S,e,¢) where the definition of
RANGE(S,e,n) is given by cases on S:

(1) S=begin new x; A end"~~> RANGE(begin A end,e,m)

(2) S="begin proc q(y:r); L end; A end"--+ RANGE(begin A end, e',m)

where e' = ADD(e, proc q(y:r); L end)



(3) S="begin Al; Az end 'mms RANGE (begin A2 end, e, RANGE(Al,e,n))
(4) S="begin end"~—-r
(5) S="z;=gWemsry

(6) S="b--+Al,A2"——éRANGE(A2,e,RANGECAl,e,ﬂ))

(7)  5="bXA"-—RANGE(A, e, )

r
T ' if <call q(a:P), e>en.

(8) ="call q(a:P)"~—s <:RANGE(K<5,§>,e,w') where w'=1 U {<cal1l q(a:P),e>}

and "proc q(x:p); K<§,5>end”£e,

, otherwise,

(dynamic scope of identifiers) may be grouped into three classes: axioms for
block structure B1-B3, axioms for Tecursive procedures with pProcedure para-
meters R1-R6, and standard axioms for assignment, conditional, while, and

consequence H1-H4,

Axioms for Block Structure:

(B1) {u gi Ax=a0} begin A end'{V‘Ei}/e
x x
{u} begin new x; A end {V}/e

where i is the index of the first program identifier not appearing in A, e,

U, or v,



(B2a) {U} begin A end‘{V}/QU{proc qQ(x:p); K end}
{U} begin proc q(X:p); K end; A end {V}/e

(B2b) . {U} A {v}/e;
Uy A {VY/e,

provided thatelge2 and e, does not contain the declaration of two different

procedures with the same name.

(B3a) {u} A {V}/e
{U} begin A end {V}/e

(B3b) {uU} Ay {V}/e, {V} begin A, end {W}/e
{U} begin Al; A, end {W}/e

Axioms for Recursive Procedures with Procedure Parameters:

The first axiom Rl is an induction axiom which allows proofs to be constructed

using induction on depth of recursion.
(R1) {Uo}call FO(XO:PO){VO}/eO,...,{Un} call Fn(xn:Pn){Vn}/en

P 1003R<Re> (Vg egs o, (U YK <B 50V }/e_

{Uj}eall FO(xO:PO){VO}/eO,...,{Un}call FoGe iP )V e
t s ln 0 T n o +
where “proc Fi(xi'pi)’ Ki<pi> end" ¢ ey for O<izn,
Axioms R2-R6 enable an induction hypothesis to be adapted to a specific

procedure call, Before stating these axioms we define what it means for a

variable to be inactive with respect to a procedure call
e ————



4.3.1 Definition; Let procedure q have declaration "proc q(é:ﬁ);
kﬂ§,5>end". A variable vy is'actiﬁe with-respect to “call q(a;P)" in
environment e if y is either global to K<a,P> or is active with
respect to a call on a procedure in e from within K<5,§>. If vy is
not active with respect to "call q(a:P)" ihen y 1is said to be inactive
(with respect to the particular call), Similarly a term of the assertion
language is inactive if it contains only inactive variables. A substitu-
tion.c‘ is inactive with respect to "call q(a:P)" provided that it is a

substitution of inactive terms for inactive wvariables,

(R2) {U} call q(a:P){V}/e
{Uc} call q(a:P) {vo} /Je

provided o is inactive with respect to "call q(a:P)" and e.

(R3) {U(ro)} call q(;:E) {V(ro)} /e

{‘HrO U(ro)} call q(a:P) {Hro V(rg)} e

provided that Ty 1s inactive with respect to "call q(a:P)" and e.

(R4) {U} call q(a:P) {Vv}/e
{U A T} call q(a:P){V:A T}/e

provided that no variable which occurs free in T is active in “eall q(a:P)".

(R5) {U} call q(x:F) {V}/e
{ualeall q(a:B) {val/e

X X

- provided that no variable free in U or V occurs in a but not in the corres-—
ponding position of X, (X is the list of formal parameters of q. This axionm

will not be sound if sharing is allowed,)



in a procedure call with the wrong number of actual parameters, If
dynamic scope of identifiers is used, this eventuality may be handled by

the following axiom:
(36) frrue} call q(gzﬁ)'{false} / {proc q(x:p); K end}
provided that length(a) # length(x) or length(P) # lengti(p).

Standard Axioms for Assignment, Conditional, While and Consequence. These

axioms (H1-H4) are widely discussed in the literature and will not be stated
here.

We dllustrate the use of the above axioms by two examples. The first
example illusgrates dynamic scope of identifiers. The second example shows

how procedure pParameters may be handled.
Example 1: We prove

{true}
begin new x;

Proc 45 z:=x end;

Xi=1;

begin new x; Xi=2; call q end
end;

{z=2}/¢

Let e be the enviroment {proc q; zi=x end}y

(1) {x=2 A y=1} z:=x r{z=2}/¢ H1

(2) {%=2 A y=1} call q {z=2}}e R1

3) {y=1} begin x;=2; cal] q end'{z=é}/e‘ H1, B3

(4) Ix==1} begin new x; x:=2; call q end {z=2}/e B1



(5) {truel
begin x:=1;
begin new x; x:=2; call q end
~end '
{z=2}/e - H1, B3

(6) {true}
begin new x;
proc q; =zi=x end;
xi=1; )
begin new x; x:=2; call q end
~end "
{z=2}/¢ Bl, B2

Note that if static scope were used instead of dynamic scope, the correct

postcondition would be {z=1}7

Example 2: We prove

'{x=2x0+1 A z=0}

proc F(y:p);
If y>1
then begin yi=y-2; call p(y:F) end
else y:=0 :
end F; ‘
proc G(w:q); z:=ztw; call q(w:G) end G;
‘calle(x:G)
{z=x}/¢

'Let e be the enviroment containing the declarations of F and G. . Let K

l<p>

and K2<q> be the bodies of procedures F and G respectively. Since the

range of "call F(x;G)" with respect to e consists of <call G(x:F), e>

and

<call F(xiG), e> it is sufficient to determine the effects of "call G(x;F)"

and "call F(x:G)" when executed in environment e,

We assume:
" 2
@) {y=2ygtl A z=2p) call F(yiQ) {z=zqty "} /e

and



(2) '{w=2w0+1 A z=zb} call G(wiF) {z=zo+(w0+l)2}/e.

Using these assumptions it is straighforward to prove:
- - e 2

- {3) {y~2yo+1_ A z-—zo} K1<G> {z-zo+yo }e .

and

(4) ‘{w=2Wb+l A z=zo} K2<F>'{z=zo+(wo+1)2}/e

By axiom R1, we obtain

. - N Lorm 2

) F {y—2y0+l A z—zo} call F(y:G) {z—zo+y0 e

and

©) b {w=2ugtl A 2=z} call G(u:F) {z=z+ G +1) )} /e.
By axioms R5 and line 5

(7) F {x=2YO+1 A z=zo} call F(x:G) {z=zo+y02}/e

By axiom R2 with the inactive substitution of 0 for

2

(8) ,— {x=2xo+l A z=0} call F(x:G) {z=x0

e

z, and XO for YO, we ge

Line 8 together with two applications of B2 gives the desired result.

5. Soundness

In this section we outline a proof that the axiom system DS for programs

with dynamic scope of identifiers is sound. We argue that if T is a sound

proof system for the true formulas of the assertion language L, then

A

}“Bs’i{P} A {Q}/e implies ]%i{P} A {Q}/e,



The argument uses induction on the structure of proofs; we show that each
instance of an axiom is true and that if all of the hypothesis of a rule
of inference are true, the.conclusion will be true also.

The only difficult case is rule of inference R1 for pfocedure calls,

We assume that the hypothesis
{Ugeall FO(QO:Fb){VO}/eO,..;{Un}call F G P )V ey
F—’{UO}K0<§0>{VO}/ed...;{Uﬁ}Kn <§n${vn}/en
of R1 is true and prove that
F=I{Ui} call F(Eizﬁi){Vi}/ei
must hold for O<is<n. Without loss of generality we also assume that the
proof used térobtain
‘{UO} KO<§O>{VO}/eO,...,{UR} Kn<§n>{vn}/en
from

{Uo}call FO(EO:ﬁo){vo}/eo,.;,{Un}call FH(QH:FH){vn}/en

does not involve any additional applications of the axiom for procedure calls.

To simplify the proof we introduce a modified meaning function M ; M [S](e,s)

is defined in exactly the same nmanner as M[S](e,s) if S is not a procedure call.

For procedure calls we have M [call F(a: P)](e s)—M l[K<5,§>](e,s) if 3= o,

“proc F(x:p); K<x,p> end”se, length (x) =length (a), and length (P) = length (p).

Mj[call F(a:P)](e,s) is undefined otherwise, Thus Mj agrees with M on state-

ments for which the maximum depth of procedure call does not exceed j-~-1,

We also extend the definition of partial correctness given in Section 2.



We write f Jipy S {Q}/e iff Vs,st[seP A Mﬁ[s;(e,s)=s'+s'gQ]
In the following lemma we state without proof some of the properties of Mj.

5.1 Lemma: (Properties of M,)

J
@ F °{0) call FG:F){V}/e for a1l U; Py ¥, e,
(b) Suppose that T F- A where ' and A are sets of partial correctness
formulas of the form {P} A {Q}/e and the formulas of A are obtained from
those in T without use of axiom R1. Then F . implies f Ia
() If E vy K<a,P> {V}/e holds and the procedure with declaration

"proc F(x,p); K<x,p> end" is in e, then F=J+l {U} call F(a:P) {V}/e must

hold also.

(d) 1f M[S](e?s)=s' then there is a k>0 such that jzk implies Mj[S](e,s)=s'.
The proofs of (a), (¢), and (d) follow directly from the definitions
of Mj. The proof of (b) is straightforward, since use of axiom Rl for

procedure calls has been disallowed.

We return to the soundness proof for Rl. By part (a) of the lemma

0 .= .3 .
F{u,} cann Fi (iR ){V, Ve, osisn

By the hypothesis of R1 and part (b) of the lemma, we see that
J - .
k {U,} cal1 Fj (g 3P0V, }e,, Osizn
implies
J e .
k= {Ui} Ki$P1>{Vi}/ei, O<i<n,
By part (c) of the lemma,
k) = OB ;
kE {Ui} call Fi(xi'Pi){vi}/ei’ 0sis<n
implies

j+1 - .
k {U,} call Fi(xi-Pi).{Vi}/ei, 0<i<n.



Hence, by induction we have for all j=0

Fj{Ui} call Fi(;i:;’i){vi}/ei, 0<i<n,
Let san and suppose that s'=M[ecall FiCEizﬁi)J(e,s) then there is a k>0 such
that j>k iﬁpligs Mﬁ[call Fi(Eizﬁi)](e.s)=§’. Since f j{Ui} call

Fi(Ei:ﬁi)'{Vi}/e, we conclude that s‘sVi.

' X.:P : <i<
Thus }=I{Ui} call Fi(xi.Pi){Vi}/ei holds for 0.<i<n and the proof of
soundness is complete for Rl. We leave the proof of soundness for the

other axioms and rules of inference to the interested reader,

6. Completeness.

In this section we outline a proof that the axiom system DS is complete in

the sense of Cook, Let T be a complete proof system for the true formulas

of the assertion language LA‘ Assume also that the assertion language‘LA
is expressive with respect to the expression language LE and interpretation

I. Ve prove that

F;{U)} s {V}/e implies Fse p{U} 8 {V}/e.

The proof uses induction on the Structure of the statement § and is
generalization of the completeness proof for recursive procedures without
Procedure parameters given in [7]. Due to.the length of the proof we will
only consider the case where S is a procedure call; other cases will be left
to the reader,

Assume that {UO} call Fo(gozﬁo)'{Vb}/eo is true. We show.that {UO} céll
FO(EO:?O){VO}/eO is provable, Let "call Fi(atP )" 000, a1 Fo@ :P )" be
- the procedure calls in the range of "eall FO(EO:FO)" and let e; be the

environment corresponding to "eall Fi(gi:ﬁi)". We assume that Fi has



. n i Rl - - " T . ¥
declaration "'proc Fi(xi.pi), Ki<xi,pi> end", that r, is the list o
variables which are active in “call Fi(Ei:ﬁi)", and that Ei'is the list
of variables which are active in “call Fi(gizﬁi)". We also choose Ei
‘to be a list of new variables which are inactive in "call Fi(Eizﬁi)"

]  .D "
and "call Fi(ai'Pi)

To shorten notation, let

W. = SP(call Fi(xi:Pi), e Ri)
t= - o" ot
Wi = 8P(call Fi(ai'Pi)’ e Ri )

L 28 %0

Recall that SP(S,e,U) is the Strongest postcondition corresponding to state-

ment S and precondition U in environment e. Since LA is expressive, it
follows that Wi and Wi' may be represented by formulas of LA for O<izn.
We will show that
'{Ri} call Fi(z'?.i:?i) W, }e, ' (7.1)
is provable for all i, Osisn. From this result it follows that {UO} call
FO(EO:FO) {VO}/eO is also provable. To see that this last part of the argu-

ment is correct, observe that

r |‘ - - .y 1 . r._:
(@) | (Ry'} call FolagiPy) (W, }/ ey by 7.5 and axiom R5 since Ry Ry

N'lc?’

o

(-
and WO = WO

MIICFI

o



(b) F—— {RO‘LA L} call Fb(go:ﬁo)f{wo‘ A L}/e0 by axioms R4.
(c) |- {ac, [Ry' A L]} call FO(EO:ﬁo){ScO[wo' A L1}/e, by axiom R3.

(d) F—- U “—A'HEO [RO' A L] since T is a complete proof system for L, and

i ' -q ~ -h Il s T
(e) F HCO[Wb A L]=—> SP(call LO(aO.PO), s UO). Since L and the variables

¢y are inactive with respect "call F0(50;§O)", we have

1t

- 1 o — '
= Zeg[Wy' A L] Ac,[SP(call FolagiPy), eg, Ro') A L)]

m

e e '
HCO{SP(call Fo(ao.PO), ey Ry AL)]

S _ '
SP(call FO(aO.PO), e HCOIRO A LD

(o)

n

SP(call FO(aO:PO), ey UO)

- ; - = )
(f) F—- q cO[WO A L}— SP(call Fo(aO.PO), ey Uo). This follows from (e)
since T is a complete proof system for LA'

(8) = {Uy} call Fo(agiPy) {SP(call FO(ZD:?O),eO,UO)}/eO by (e),(e), (£)

and the rule of consequence,

(h) }— SP(call FO(QO:ﬁo),.eO, UO) e 3 VO since F;{UO} call FD(EO:ﬁo){VO}/eO

and since SP(call Fo(gozﬁo), € UO) is the strongest postcondition corres-—

: " a P
- ponding to U, and “call FO(aO.PO) ;

0



(1) }——.{UO} call FO(EO:FO)'{VO}/eO by (g),(h), and the rule of con—-

sequence,

It is still necessary to prove 7,1, We will show that

{Rb} call FO(EO:FO) {Wb}/eo’ . {Rn} call Fntgnzﬁn)'{Wh}/en

F—J{RO} K0<§0> {WO}/eO, ,..,'{Rn} call K§§n>'{wh}/en. | (7.2)

The proof of 7.1 will then follow by the axiom R1 for procedure calls, Proof
of 7.2 is by induction on the structure of Ki using an induction hypothesis

which is somewhat more general than what we need to prove,

7.3 Lemma: Let K be a statement and let R and W be predicates such that
F {R} K {W}/e and such that the range of K with respect to e is included in

<call Fo(go:ﬁo),e >,.005<call Fn(gnzﬁn),en>, then

{Ro}call FO(Eozﬁo){wo}/eo,..,{Rn}call_Fn(En:ﬁn){wn}/en F R} K (W}/e

Proof: Proof is by induction on the structure of K. We will only consider

the case where K is a procedure declaration i.e, K="begin proc q(x:p); L end;
s end". If k {R} K {W}/e then we must also have F {R} K' {W}/e' where

K' = "begin S end" and e' = ADD(e, "proc q(x:p); L end"™), Note that the
range of K' with respect to e! is included within the range of K with respect

to e, By the induction hypothesis we have that

' F (% P ' : & o0 | ' t t
{Ro}call FO(XQ.PO) {WO}/eo,,,,{Rn}call Fn(xn'Pn>{wﬁ}/en F {R} R' {W}/et, By
~axiom B2, we see trat {Ro}call FO(XO:PO){WO}/eO,...,{Rn}call Fn(xn:Pn){Wn}/en

F {R} K {w}/e,



Other cases in the proof of lemma 7.3 are left to the interested reader.
Note that once lemma 7.3 has been established, 7.2 follows from the obser—

vation that }='{Ri} Ki<§i_'>{w'i}/ei, 0<isn,

7. Coroutines,

A coroutine has the form .

" . "
Coroutine: Ql, Q2 end",

Ql is the main-routine; execution begins in Qi and also terminates in Ql

(this requirement simplifies the axiom for coroutines). Otherwise Ql and

Q2 behave in identical manners, If an exit statement is encountered in Qs
the next statement to be executed will be the statement following the last
Tesume statement executed in Q2. Similarly, execution of a resume statement
in Q2 causes execution to be restarted following the last exit statement in

Ql' If the exit (resume) statement occurs within a call on a recursive

Procedure, then execution must be restarted in the correct activation of the

procedure. A formal operational specification of the semantics for coroutines
is given in [1].

If recursive procedures are disallowed, a sound and complete axiom system
may be obtained for the programming 1angqage of Section 2 with the addition of
the coroutine construct, Such a system, based on the addition of auxiliary
variables, is described in [2], The axiom for the coroutine statement is
similar to the one used by Clint [3], However, the strategy used to obtain
completeness is different from that advocated by Clint; auxiiiary variables
Tepresent program counters (and therefore have bounded magnitude) rather than

arbitrary stacks,



7.1 Theorem: There is a Hoare axiom system H for the programming

language described abave, including the coroutine construct but requir-
ing that procedures be non-recursive, which is both sound and complete

in the sense of Cook,

8. Coroutines and Recursion,

We show that it is impossible to obtain a sound-complete system of Hoare
axioms for a programming language allowing both coroutines and recursion
provided that we do not assume a stronger type of expressibility than that
defined in Section 2. (We will argue in Section 9 that the notion of ex-
pressibility introduced in Section 2 is the natural one. We will also
examine the consequences of adopting a stronger notion of expressibility.)
Let Lc,r be the programming language with features described in Sections 2
and 7 including both parameterless recursive procedures and the coroutine

statement.

8.1 Lemma: The halting problem for programs in the language L. . is un-
3

decidable for all finite interpretations I with II]22.

Proof: We will show how to simulate a two stack machine by means of a program
in the language Lc,r' Since the Halting problem is undecidable for two stack
machines, the desired result will follow, The simulation program will be a
coroutine with one of its component routines controlling each of the two
stacks, Each stack is represented by the successive activations of a recur-
sive procedure local to one of the routines, Thus, stack entries are main-

tained by a variable "top" local to the recursive procedure, deletion from a

stack is equivalent to a procedure return, and additions to a stack are



accomplished by recursive calls of the procedure, The simulation routine

is given in outline form below:

Prog counter;:=1;
Coroutine
begin
proc stack 1;
new top, progress;
progress:=1;
while progress=1 do
if prog_counter=1 then "INST,'" else
if prog_counter=2 then "INSI," else

L]
*

if prog counter=K then "INSTK“ else NULL
end
end stack 1;
call stack 1
end, -
begin
proc stack 2;
new top, progress;
pProgress:=1;
while progress=1 do
if prog_counter=1 then "INST#" else
if prog counter=2 then "INSTZ" else

if prog counter=K then "INSTQ" else null
end
end stack 2;
call stack 2
end '
end

where "INSTl",..."INSTE" "INSTI",..."INST&” are encodings of the program for the

two stack machine being simulated, Thus, for example, in the procedure

STACK_1 we have the following cases:
(1) If INST 3 is PUSH X ON STACK 1, "INSTj " will be

begin
topi=x;
Prog counter:=prog_counter+l;



call stack 1
end;

(2) 1f INS'I‘j is POP X FROM'STACK_l, WINST 3 * will be

begin
prog_counter:=prog_counter+l;
X:i=top;
progress:=0

end;

(3) -If INSTj is PUSH X ON STACK 2 or POP X FROM STACK 2, "INSTj" will simply be

begin
exit
end;

A similar encoding INST*,...INSTE for the copy of the program within procedure

stack 2 may be given.

8.2 Theorem: It is impossible to obtain a system of Hoare axioms H for the

programming language Lc % which is sound and complete in the sense of Cook.
b

The proof is similar to the proof of Theorem 3.1 and will be omitted.

9. Discussion of Results and Open Problems,

A number of open problems are suggested by the above results, An obvious
question is whether there are other ways of restricting the programming
language of Section 2 so that a sound and complete set of axioms can be
obtained., For example, from Section AIWe know that such an akiom system
could be obtained simply by disallowing global variables, Suppose that
global variables were restricted to be igég_gﬁlz_instead of entirely dis-
allowed, Would it then be possible to obtain a sound and complete axiom

system? Automata theoretic considerations merely show that the type of



incompleteness argument used in this paper is not applicable,

In the case of coroutines and recursion the most important question
Seems to be whether a strongerfform of expressibility might give com~
pleteness, The result of Section 7 seems to require that any such
notion of expressibility be powerful enough to allow assertions about
the status of the runtime stack(s), Clint [3] suggests the use of stack-
valued auxiliary variables to prove properties of coroutines which ;nvolve
recursion. It seems possible that a notion of expressibility which allowed -
such variables would give completeness. However, the use of such auxiliary
variables appears counter to the spirit of high level programming languages.
If a proof of a recursive program can involve the use of stack-valued
variables, why not simply replace the recursive procedures themselves by
stack operatidns? The purpose of recursion in programming languages is to
free the programmer from the details of implementing recursive constructs.

Finally we note that the technique of Sections 6 and § may be applied to
a number of other programming language features including (a) call by name
with functions and global variables, (b) unrestricted pointer variables with
Tetention, (c¢) unrestricted pointer variables with recursion, and (d) label
variables with retention, All these features present difficulties with
respect to program proofs, and (one might argue) should be avoided in the

design of programming languages suitable for program verification,
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" Figure &4

Simulation of two stack machine with program "“push 3
on stack 1; push 4 on stack 2; push 5 on stack 1" by
coroutine with local recursive procedures,




