PROGRAMMING DISTRIBUTED
APPLICATIONS IN ADA:
A FIRST APPROACHIL

Stephen A. Schuman
Massachusetts Computer Associates, Inc.

Wakefield, Mass.

01880

and

Edmund M. Clarke, Jr.
Christos N. Nikolaou
Center for Research in Computing Technology
Harvard University

Abstract -~ fThis Paper addresses the problem
of programming distributed systems within the
framework of the Ada language, which provides
primitives for interprocess communication based
upon the model of Communicating Sequential Proc-
We first discuss our basie assumptions
concerning the underlying target configuration,
the physical communication medium which is to sup-
port that application and pattern of the logical
communication within the application proper. We
then develop a first approach for constructing
such applications using the separate compilation
facilities of Ada. Finally, we consider two pos-
sible protocols Ffor implementing the requisite
distributed interprocess communication, referred
to as the Remote Entry Call and the Remote Proce-
dure Call, respectively.

esgses.

1. }ntroductioq

This paper addresses the problem of program-
ming distributed applications within the framework
of the Ada language [3,2,5]. Our ambitions here
are confined to outlining a first approach in this
area, whence a number of significant issues asso-
ciated with the construction of such software arc,
of necessity, deferred. We begin in Section 2 by
setting forth the basic assumptions which underly
the overall approach described herein. Section 3
is concerned with establishing an appropriate com-
pile-time framework, within which the programming
of an application destined for a multi-processor
target configuration can be carried out in much
the same way as one intended for a uni-processor
target. In the final section, we turn to the
development of protocols to support the requisite
"interprocessor procedure call" capability, so
that the applications of interest can then be

At Massachusetts Computer Associates, Inc., this
research was supported in part by the U.S. Army
CORADCOM, through the Scientific Services Program
under Delivery Order No. 1704 from Battelle Colum-
bus Laboratories.

At Harvard University, this research was supported
in part by NSF Grant MCS5~7908365 and by Contract
NO0039078-G-0020 with the Naval Electronics Systems
Command .

0180-3918/81/0000/0038$00.75 © 1981 IEER

Programmed without further regard to the distribuy-
ted nature of the underlying target configuration.
Two successive versions of such a protocol are
defined. These are referred to as the Remote Entry
Call and Remote Procedure call, respectively.

2. Basic Assumptions
e R

This section outlines our basic assumptions
concerning the nature of the distributed applica-
tion systems to be pProgrammed in Ada. Abstractly,
we wish to conceive of some given target configur-
ation, onto which a certain application is ulti-
mately to be mapped, as a network of communicating
"Ada Virtual Machines" (AVMs) . Every such config-
uration may therefore be characterized in first
instance by an undirected graph, as depicted for
example in Fig. 2-1:

PS5

FIGURE 2-1: A network of communicating Ada Virtual Machinas.

The individual nodes of a particular network
correspond to fully independent (autonomous) proc-
essors, each of which is capable of executing a
complete Ada program. Accordingly, as Ada Virtual
Machine is to be viewed as an idealized single-
pProcessor environment that directly implements the
run-time facilities required to support the seman-
tics of the full Ada language. Thus the concept
of an AVM embodies an abstract object machine for
which Ada source progqrams might conventionally be
compiled (but disregarding all dependencies upon
a specific hardware architecture and/or host oper-
ating system); concretely, it may be thought of as
providing its own address space, scheduler and
real-time clock, together with a certain set of

external interrupts, low~level device interfaces,
etc. We refer to this environment as a "virtual"
(rather than "actual") machine S0 as to also eli-
minate considerations arising from the fact that
several such machines might sometimes be multipro-
grammed on the same physical processor (e.g., in
the context of an underlying time~-sharing system) .

The connecting edges appearing in a given
network represent possible paths of bidirectional
communication between distinct processor nodes.
(Non-connecting edges, like those shown in Fig.
2-1, are meant to suggest additional paths of com-
munication, for instance with various devices
attached to the individual virtual machines; how-
ever, interactions with purely local resources of
this sort are of no direct interest here, and so
will not be further discussed.) The connectivity
of such a network is assumed to be sufficient for
supporting the intended pattern of interprocessor
communication, meaning that each edge corresponds
to a path whereby both the requisite data ang any
appropriate control signals can be physically
transmitted between Lhe two connected nodes; more-
over, the bandwidth of these connections is pre-
sumed to be adequate for the application at hand.

We shall assume that the target configuration
for any specific application is always statically
defiued—-i.e., that the number of virtual (and
even actual) processors is established once and
for all, and that the necessary paths of communi-
cation exist from the outset. The primary stipu-
lation which we impose is that all interactions
between separate nodes of the network therecby
defined must be achieved by explicit communication
across these more or less "thin wire" connections.
In other words, we preclude interactions based
upon the existence of shared memory or any form
of centralized control. This implies that the
application in question must be formulated from
the beginning as a distributed system. The issue
we wish to address is how one might go about pro-
gramming such applications in Ada, so as to be
able to effectively map those bPrograms onto the
given multiprocessor configuration.

Ada provides an adequate basis for Program-
ming systems of communicating sequential Processes
[1), and for supporting synchronous communication
between these brocesses. Once some desired pat-
tern of logical communication has been established
(for example, that depicted in Fig. 2-2), there
is no particular difficulty involved in formula-
ting the specifications andg subsequent definitions
for the vorresponding caller and server processes
(or subsystems) , Insofar as the resultant pro-
gram is destined to be executed on a single Proc-
essor configuration (as represented by the Ada
Virtual Machine considered here), the job is
effectively done once all of the separate compi-
lation units comprised by that program have been
successfully compiled (since an AVM is assumed to
be capable of directly executing any complete Ada
program, regardless of its textual decomposition) .

when the target configuration is a
2"3) r
The

However,
network of interconnected AVMs (e.g., Fig.
then it is far less cbhvious how to Proceed.

39

I

FIGURE 2-2: Example Application, in terms of Communicating Sequential Processas

Ay Avm,

FIGUSE 2-3: Example Tacget Conflguration, in Orma of intarcomnected Ada Virtwal Machines

effect that we should like to achieve is to be able
to essentially "superimpose" the intended pattern
of communication upon the underlying network (as
suggested by Fig. 2-4), thereby pPreserving the
overall logical structure of the application.

While the ability to do so pPresupposes that the
application in question was formulated as a distri-
buted system in the first place (i.e., based solely
upon communicating sequential Processes), it

should then be Possible to map that structure onto
any appropriate target configuration, whether cen-
tralized or distributed. Thig is the premise of
the approach outlined in the Present paper.

3. oOverall Framework

In this section, we shall outline a basic ap-
proach to constructing a distributed application,
such as that depicted in Fig. 2-4, by making exten-~
sive use of the separate compilation facilities in
Ada (and also of the related capabilities for
generic program units). The framework to be devel-
oped here must be regarded as simply a first
approach to the problem whence many practical
aspects associated with building distributed soft-
ware will have to be glossed over (or neglected
entirely) in the present context. (In particular,
we shall be concerned solely with constructing a
definition for the steady-state operation of a
given application, even though it is well known
that the issues involved in startup and shutdown
of a distributed system are far more difficult to
address.) This approach nonetheless provides a
number of important insights into the nature of
the problem itself.

The package declaration
in skeleton form, an initial
application as a whole:

that follows shows,
specification for the

package Config is

type NODE is (NNS1, WNSZ, & oy NNS$n) ;
-= Node Names
type NSET is array (NODE) of BOOLEAN;

Set of Nodes

package Node$l is ... end;

package Node$h is

type OPER is (OP$1, oP$2, .oy OPSK);
= Op Codes for Remote Services
-- other type definitions ...

Host: constant NODE ;= NNS$h;

Conn: constant NSET := (.,.=> True,
others => False);

-- other constant declarations .

generic
Site: in NODE;
package Service is
procedure PS$S1 (...);
Procedure PS$k
end Service;

gu—

end NodeSh;

.

package Node$n is ... end;

end Config;

in order to formulate such definitions, we have
adopted the (purely lexical) convention of writing
names with an embedded dollar sign, so as to be
able to refer to unique identifiers as if they were
elements of a set distinguished by means of sub=~
scripts. For instance, the declaration of the enu-
meration type NODE is meant to suggest a range of

40

values NNl, NNZ, - NNH, whereas in practice the
individual values would correspond to application-
specific mnemonic names (e.qg., NNy, might be writ-
ten as the Ada identifier "FileServer"). Also,
PS$1, -+ PSk denote the particular procedural
services which that individual node provides.

This first specification consists primarily of
package specifications for the constituent nodes
of the overall configuration. The logical inter-
face of each separate node comprises, in addition
to various type and constant declarations, the
declaration for a generie package Service, which
will ultimately be instantiated within the defi-
nition of other (caller) nodes.

The associated body for the package Config,
shown below, serves to establish the overall con-
ventions which are common to all nodes. As such,
it is primarily concerned with defining the under-
lying communications interface, by which informa-
tion will be physically interchanged between dis-
tinct (virtual) machines within the confiquration.
These conventions are embodied firstly in a series
of data type definitions, including:

- XREC, corresponding to a "transaction record"
that contains at least an indication of the
respective source and destination nodes for
each transmission, as well as an encodement
of the particular "operation code" for that
particular transmission;

~ XMIT, corresponding to a complete transmis-
sion, as delivered to or received from a
local communications interface, which
includes both an XREC component and an asso-
ciated buffer (whereby argument or result
data may be forwarded).

Two different types of transmission are dis-
tinguished at the communications level, namely
Transmit Call (XC) and Transmit Response (XR),
and the corresponding subtypes of XMIT are also
defined (CALL and RESP, respectively).

Finally, the actual communications interface
is specified in the form of two distinct generic
packages, ChnDriver and ChnServer. Each of these
have a number of generic parameters, in particular,
an operation Request and an operation Deliver
which will be bound in the context of their sub-
sequent instantiations in order to carry out the
hecessary acquisition and disposition of trans-
missions over the underlying medium. This inter-
face is assumed to take full responsibility for
setting and using the Orig and Dest Fields of the
transaction record part of such transmissions.
The details of these interfaces will not be fur-
ther specified here.

with Medium;
package body Config is

function Card(N:in NSET) return INTEGER range
0. .NODE'POS (NODE'LAST) +1...;

subtype OPID is INTEGER range O..... H
== Max Op Code

type HKREC is record
Orig, Dest: NODE;

Code: OPID;
end record;

type BUFF is ... ;
type XTYP is (XC, XR);
type XMIT(T: XTYP) is record
X: XREC;
B: BUFF;
end record;

subtype CALL is XMIT(XC);
subtype RESP is XMIT(XR);

generic
From, To: in NODE;
with procedure Request(C:
with procedure Deliver(R:
package ChnDriver;

out CALL) ;
RESP) ;

in
in

generic
From: in NSET;
To in NODE;
with procedure Request (R:
with procedure Deliver (C:
package ChnServer;

in out RESP);
in CALL);

package body ChnDriver is ... use Medium;
... end;

package body ChnServer is use Medium;
« e oend;

package body Node$l is separate;

package body Node$n is separate;

end Config;

We now introduce analogous definitions for
each separate node of our distributed configura-
tion (the outline for that representing the NedeS$h
is shown below). In this instance, however, such
a step no longer constitutes an "extra" level of
abstraction; rather, it is essential -- for this
is the first place in which we permit actual in-
stantiations (of code or data), since we have only
how reached a level that corresponds to some phy-
sical machine environment.

The definition of such a shell serves to
establish what might be construed as an "Applica-
tion Virtual Machine," in terms of which the con-
stituent subsystems of the actual application
(e.g., the modules ASI...ASm) may then be pro-
grammed without further regard to the distributed
nature of the underlying target configuration.
This definition serves to provide:

41

- An indication of the target environment for
this particular node (pragma SYSTEM);

- The specification of the application modules
to be hosted within this node (the package
declarations for AS$l...ASm);

- A mapping of the remotely callable services
provided by this node onto the operations
defined by those modules (e.g., renaming of
P$i);

- Definition of both sides of the higher-level
protocol required to support such remote
calls, namely the driver side (the body of
the generic package Service) and the server
side (the body of the non-generic package
Support) ;

- Finally, instantiations of the remote serv-
ices needed to implement the application
modules of this node (package Node$u,
NodeSv, etc.).

separate (Config)
package body Nodes$h is

pragma SYSTEM(...);
-- Specify local application modules:

package A$l is
procedure Q$1(...);
procedure Q$£ (..
end AS1

« 1

package ASm is

procedure Q$1(...);
procedure 03g(...);
end AS$m;

~= Local (re)definition of services:
procedure P$i(...) renames A$a.QSb;

—= Support services called remotely:

package Support;
package body Support is -- Server side of Protocol

end Support;

package body Service is -- Driver side of Protocol

end Service;
== Provide services needed locally:

package Node$u is new Config.NodeS$u.Service
(Site => Host);

package Node$v is new Config.NodeSv.Service
(Site => Host);

package kbody A$l is separate;

package body A$m is separate;
end NodeSh;

Within the framework of this shell, the appli-
cation modules would again be defined as separately
compiled subunits:

separate (Config.Nodesh)
package body AS$l is

vo. NodeSu.PSi(...) ...

end AS1;

separate (Config.Node$h)
package body AS$m is

++. Node$v.PSi(...}) ...
end ASm;

The approach outlined above effectively makes
use of the Ada “Program Library" to establish the
context in which individual components of a distri-
buted application may be defined in terms of a
purely procedural interface to services which are
nonetheless hosted on different nodes of a distri-
buted target configuration. The possible proto-
cols by which such an "interprocessor procedure
call" capability might be realized are the subject
of Section 4 of this paper.

It must be pointed out, however, that the
usage of the Ada separate compilation facilities
described above, while legitimate in every respect
may nonetheless cause a potential problem in the
context of overly "naive" implementations of those
facilities. Specifically, the issue arises in
conjunction with circular dependencies (wherein
Node; calls Nodej, and so must instantiate its
Service package which is defined in the body of
Node,, and vice versa). Whereas this, too, could
be "programmed around" (at the cost of considerable
effort and obscurity), in this instance it would

seem preferable to wait for more mature implemen—
tations.

I

4. Possible Protocols

In this section, we shall be concerned with
possible protocols by which the desired interproc-
€Ssor procedure call capability might be implemen-
ted for a particular distributed application.

Thus, at this point, we shall elaborate upon actual
definitions for the driver side (which serves to
map such calls onto the communications interface)
and the server side (which acts to carry out such
calls on behalf of any remote caller); these imple-
mentations correspond to the bodies of the packages
Ser?ice and Support, respectively, which are
defined within the body for the node wherein those
remotely callable services are to be hosted.

42

For purposes of exposition, we shall consider
only one instance of such a definition, that asso-
ciated with the virtual machine Nodes$h (which
makes available the operations P$l...PSk) and,
moreover, we shall sketch out the detailed imple-
mentation for only one of the operations in ques-—
tion, identified throughout as P$i. This involves
no loss of generality, since the structure for all
other operations and nodes isg essentially the
same. Accordingly, the overall goal for the imple~
mentations that will be described here is to pro-
vide the capability suggested by Fig. 4-1, namely
to permit application processes such as A,, A,
B...C, residing on separate (virtual) machines, to
invoke the operation P; hosted by Nodey, (corre-
sponding to yet another such virtual machine) as
though by a simple (local) procedure call.

r
L.) ry
lhhl
k}
’-———-—- Mdule groviding
e
G‘\] 1
e,] _.(_),
. -~
o
Ty s)\#//
g IS
) Y
PIGRE 4-1i Oretviow of the Repired Cajbility, to Barort Amote Calls on the opecstion 7y

To simplify the presentation, we shall assume
that the operation of interest has the following
specification:

procedure P$i (Al:in TAl;...;Ax:in TAX;
Rl:out TR1;...;Ry:out TRy); where Aj stands out
for the jth input argument (of type TAj) and Rk
stands for the kth output result (of type TRk);
formal parameters of mode "in out" are thus pre-
sumed to have been decomposed into separate input
and output objects. We note that some restric-
tions must be iwposed upon the types of parameters
in the present context. Specifically, it must be
possible to copy the associated objects from one
machine to another, which apparently precludes
the passage of task or "limited private" types
(for which assignment is not defined). Similarly,
it must be possible to meaningfully rafer to such
objects both locally and remotely, which precludes
the passage of access types (except when declared
as "private").

In the subsections which follow, we shall
develop two alternative definitions for the
desired protocol, referred toas the Remoie Entry
Call and the Remote Procedure Call, respectively.

In the first (and simpler) version, we impose
the property that, from each distinct caller node,
there is at most one remote call to any given
operation in progress at a time. Such an imple-
mentation would be appropriate, for example, in
cases where the operations to be invoked are known
to be entries (i.e., serviced in a purely

sequential fashion), whence there is no advantage
to be gained by forwarding more than one poten-
tially concurrent call from some particular node
(since these would then have either to be buffered
within the communications medium or enqueued by
the corresponding server node) .

The second version relaxes this restriction,
allowing a (bounded) number of calls on the same
operation to proceed concurrently from within each
separate caller node. This somewhat more compli-
cated strategy might be adopted in situations
where there is some optimization to be achieved
(on the server side) by recognizing new calls
before all previous ones have been completely serv-
iced (as for instance in the context of a disk
scheduler) .

It must be stressed that there is no semantic
distinction between these alternative implementa—
tion strategies. The choice affects only system
throughput and thus the overall performance of the
application in question; it should therefore be
made on that basis alone.

We shall now proceed to develop Ada defini-
tions for these two alternative pProtocols,
expressed primarily in terms of the synchronous
communication primitives embodied in the tasking
facilities of that language. EBach of the imple-
mentaticns to be described consists of the driver
side (the body of the generic package Service,
which is to be instantiated within one or more
remote caller nodes), and the corresponding server
side (the body of the package Support, which
resides within the Ada Virtual Machine that hosts
the operations in question).

4.1 The Remote Entry Call

As stated above, the first strategy is based
on the property that no more than one remote call
on each operation is in progress from the same node
at any given time, so as to avoid saturation of
the communications medium or overloading of the
corresponding server node. As such, this property
is necessarily established on the driver side of
the protocol defined below.

4.1.1. Zriver side. The overall structure
and associated data-flow for the driver side are
depicted in Fig. 4-2. callg on the operation psi,
originating from application tasks Ta...Tz are
fielded by an Agent which is specific to that oper-
ation (AGTL); this latter acts to acquire the input
arguments for each individual call (AL...Ax) and to
subsequently deliver the corresponding output
results (Rl...Ry). These two separate transactions
for every operation hosted by Nodey, (P$S1...P$k) are
dispatched via distinct processes, the Driver call
Handler (DCH) and the Driver Response Handler (DRH),
which respectively act to forward calls and
retrieve responses from the Local Channel Driver
(LCD) for Nodep. These handlers are formulated as
independent (concurrent) Processes so that the
order in which LCD requests calls or delivers
responses will not be unnecessarily constrained by
this protocol.

43

I |

N o

-
[';;' =S

S R
; [_1#&_ o
5 - Resp Handler)

FIGRE 421 Gvarall Structure and Deta-Flow on the e fver 5lde for tha Amvots Entry Call Protooo),

The outline of (generic) package body for tha
driver side is shown below:

package body Service is
== Driver Side, defined in Config.Nodes$h:

task DCH is

entry ReqCall(C: in out CALL) ;

entry DCS1(...);

entry DCS$1 (Al:

entry DCS$k(...);
end;

in TAl; ...; Ax: in TAx) ;

task DRH is
entry DelResp(R: in RESP) ;
entry RR$1(...);
entry RR$i($1: out Trl; ..
entry RR$k(...);

end;

-i Ry: out TRy);

package LCD is new ChnDriver (
From => Site, To => Host,
Request => DCH.ReqCall,
Deliver => DRH.DelResp) ;
package DS1 is ... end;
package D$i is
procedure P(Al: in TAl;...;Ax: in TAx;
Rl: out TRL;...;Ry: out TRy) ;
procedure PutArg(B: in out BUFF;
Al: in TAl: ...; Ax: in TAX) ;
bProcedure GetRes (B: in BUFF; Rl: out TR1;
+-+; Ry: out TRy);
end D$i;
package D$k is .. end;
procedure P§1 (...) renames D$1.Pp;

procedure P$k (...) renames DSk.P;

-+- + bodies of DCH, DRH, DS, DSk

U
end Service;
The handler processes DCH and DRH are directly

specified in terms of aAda tasks, with entries to
be called by the channel driver and by the agents

for the remote operations to he invoked. 1cp is
obtained by instantiation or the generic defini-
tion associated with the overall configuration,
For each operation, there ig then a corresponding
Driver Ppackage, D$1...Dpsk, which provides an oper-
ation P to be called by an application Process

(as Psi) along with operations for moving argu-
ments into ang results out of the actual transmis-
sion buffers,

The definition of the Driver Call Handler is
' as follows: .

task body pcy isg

begin
loop
accept ReqCall (C: in out CALL) do
select
accept DC$1(...) do «.. end;
or
accept DCS$i(Aal:in TAlz. ooy Ax:din TAx) do
C.X.Code ;= OPER'POS (OPSi) ;
Dsi.PutArg(C.B, Al,..., Ax);
end DCSi;
or

accept DCSk(...) do ... end;
end select;
end RegCall;
end loop;
end DCH;

Local Channel Driver for Nodeh:

task body prH is
begin
loop
accept DelResp(R: in RESP) do
case OPER'VAL(R.X.Code) is
when OP$] => —

when OPS$i =>
accept RR$i(R1: out TR1,...,
Ry: out TRy) do
BSi.GetReS(R.B, Ri,..., Ry);
end RRSi;

when OPSk =
end case;
end DelResp;
end loop;
end DRH;

Each time rcp delivers a response (entry DelResp),
DRH decodes the Opcode appearing in the transaction
record of that RESP and then accepts the Pending
response request from the agent for that operation
(entry RR$i), transferring the corresponding result
data.

The outline of the body for a Driver Package
is shown below:

package body psi is

task AGT ig
entry Exec(Al: in TAL;...;Ax: in TAx;
R1l: out TRLi...; Ry: out TRy) ;
end;

bProcedure P(aAl: ip TALl;...;Ax: in TAx;
Rl: out TRY;...; Ry:
renames AGT.Exec;

out TRy)

Procedure PutArg(...) is «+. end;
Procedure GetRes(..,) is ««. end;

+ body of agr
end DSi;

The (sole) Agent for the operation p$i jig simply
defined as a task having an entry Exec {(with the
same signature), and the operation ig renamed to
be a call to this entry (which is sufficient to
ehsure the desired Property~-that calls from the
application tasks of each node wil] be serviceq
Sequentially)., In addition, the low-level opera-—
Lions PutArg and GetRes are defined herein (pre-
sumably in terms of representation specifications
and/or untyped conversions) .

Finally the body of the agent task for psj is
defined as follows:

task body AGT ig

begin
loop
accept Exec(Al:in TAL:...;Ax:in TAx;
Rl:out TRL;...;Ry:out TRy) do
DCH.DCSi{Al,..., Ax) ;
DRH.RR$i(Rl,4.., Ry);
end Exec;
end loop;
end AGT;

copied once (via the operations PutArg and GetRes)

The server side of
the Remote Entry cali Protocol is essentially sym-
metric to the driver side. The overall structure
and associated data-flow for this side are shown
in Fig. 4-3, The Local Channel Server (LCS) for-
wards incoming calig from connected nodes to the
Server Call Handler (SCH), and transmits the cor-
responding responses as dispatched by the Server
Response Handler (SRH) ., ag before, these handlers

underlying communications medium) and Play a purely
intermediary role. The actual calls to a locally
Supported operation P$i are performed by one of a

N Gi)" [2}
ﬂﬂl) T — : - -

] c n l KRy .
o Ry _.”'

2 fcall Handler) J
-~ V

on f /
- 4 ’?fl - &
L
FIORE 4-) Overall Struciure and Data-Flow on the Secver Side for tha Resute Entry

Call Protanl.

nuiber of Surrogate processes (SGTi), which act as
stand-ins for the original calling processes within
some other node. fThus, there exist multiple surro-
gates for each remotely callable operation, which
serve both to "buffer” incoming calls and outgoing
responses (along with their associated transaction
records) as well as to invoke the actual operation
in guestion (as provided by one of the application
modules Al...Am supported by Nodey,) .

The implementation of the server side for
Node, is defined in the (non-generic) package body
Support, shown in outline form below:

package body Support is)
-- Server Side, defined in Config.Node$h;

task SCH is
entry DelCall(C: in CALL);
entry RCS1(...);
éntry RCS1 (XR: out XREC; Al: out TAL;: vy
Ax: out TAx);
éﬁ&ry RCSk(...);
end;
task SR is
entry ReqResp(R: in out RESP);
entry DR$1(...);
entry DRSi(XR: in XREC; Rl: in TRL;...;
Ry: in TRy);
entry DRSk(...);
end;

package ILCS is new ChnServer (
From => Conn, To => Host,
Deliver => SCH.DelcCall,
Request => SRH.ReqgResp);

package S$1 is ... end;

ééékage 8%i is
procedure GetArg(B: in BUFF; Al: out BALs e g
AX: out TAx);
procedure PutRes (B: in out BUFF;)
} Rl: in TRL;...; Ry: in TRy);
end S§i;
package S$k is ... end;
+ bodies of SCH, SRH, S$1, ..., SS$k

end Support;

The handler processes are again directly spec;:.fied
as Ada tasks (SCH and SRH) and the communications

45

interface is obtained by generic instantiation of
the definition ChnServer for the overall configur-
ation. As on the driver side, separate Server
packages S$1...5%k are introduced here for each
individual operation PSl...PS$k that can be called
remotely.

The definition of the Server Call Handler is
as follows:

task body SCH is
begin
loop
accept DelCall(C: in CALL) do
case OPER'VAL(C.X.Code) is
when OP31 = |,

accept RC31(XR:out XREC; Al:out TALl;...;
Ax:out TAx) do
XR := C.X;
5%i.PutArg(C.B, Al, ..., Ax);
end RC$i;
when OP$k = ,,.;
end case; '
end DelCall;
end loop;
end SCH;

Upon delivery of a new call from LCS (entry Del-
Call), SCH switches on the OpCode and accepts a
request for a call to the specified operation
(entry RC$i)} from the next of the (possibly many)
Surrogates which are queued up on the corresponding
entry. This dispatching consists simply of copy-
ing the transaction record contained within this
particular CALL and transferring the associated
arguments (via the operation PutArg provided by
S$8i).

The definition of the Server Response Handler
is like that of the Call Handler on the driver
side:;

task body SRH is

begin
loop
accept ReqResp(R: in out RESP) do
select
accept DR$1(...) do...end;
or
accept DR$i(XR: in XREC; R1: in TR1l;...;
Ry: in TRy) do
R.X := XR;
PutRes (R.B, RL,..., Ry);
end DRS$i;
or
accept DR$k(...) do...end;

end select;
end RegResp;
end loop;
end SRH;

Each time LCg requests a new response (entry

ReqResp), SRH makes an arbitrary choice among pen-
ding responses ready to be delivered for any oper-
ation (entries DR$1...DRSk), whereupon the original

e

SRS

e,

Hesnn

transaction record and corresponding output results
are copied into the RESP, to be transmitted back
to the node from which that particular call ori-
ginated,

The definition of a Server package S3i has
the following form;

package body S$i is
subtype SID is NATURAL range 1..Card(Conn);
task type sGrT;
ST: array (SID) of 5GT; -- surrogate tasks

pProcedure GetArg(...) is -
procedure PutRes(...) ig

end;
end;

<. + body of sgp
end S$i;

The Surrogates for the operation P$i are introduced
as an array of tasks, the range of which is set

to the cardinality of the incoming connections
(which would be the maximum number needed if

every connected node did indeed call the operation
The operations GetArg and PutRes
are presumably the inverses of PutArg ang GetResg,
were present on the driver side,

Finally, each individual surrogate for P$i is
defined as follows:

task body sGT is
XR: XREC;
Al: TAl
AX:
R1:
Ry:
begin
loop
SCH.RC$1 (XR, Al,..., Ax);
Node$h.P$i(Al,..., Ax, RL,..., Ry);
SRH.DR$1 (XR, Rl,..., Ry);
end loop;
end SGT;

TAX;
TR1;

TRy ;

In a cyclic fashion they simply request a call
from ScH, invoke the local operation provided by
Nodey, and deliver the corresponding response
(along with the original transaction record) to be
dispatched by SRH. oOnce again, because the dis-
patching is handled within a rendezvous, informa-
tion is copied directly between the individual
Surrogates and an incoming CALL or outgoing RESP,

It should be noted that no special Precautions
are taken on the server side to ensure the basic
Property of the Remote Entry Call protocol (at most
one call in bProgress to each operation from any
given node); this is solely a concern on the driver
side. The servers simply invoke the local opera-—
tions in question. If thege have been specified
as entries, then those calls will indeed be serv-
iced sequentially; otherwise they will proceed con-
currently.

46

What is of
however, is the

significance on the serve:
fact that there are exactly as

many Surrogates for each operation as there are
Agents in total (distributed among the possible
caller nodes). fThis broperty, referred to as load
balancing, is fundamental to the solutions devel-
oped here, in that it ensures that this protocol
does not require any additional storage capacity
within the underlying communications medium nor
any other form of buffering than that provided by
the Surrogates themselves. Thig same property alao
guarantees that the communications interface will
never be unduly tied up (since there will always
be an available Surrogate ready to Proceed) ,

side,

4.2 Remo Procedure Call
In this section, we develop an alternative to
the Remate Entry call protocol, wherein we allow
a (bounded) number of calls to the same operation
to be in progress concurrently within a given
caller node (while stil]l maintaining the overall
load balancing that characterized our first solu-
tion). This somewhat more general strategy is
described as a modification to the approach devel-
oped initially.

The point of departure for this strategy isg
to slightly extend the initial specification for
the application as a whole:

Package Config is

type NODE is (NN$1, NNS2, NN$n) ;
type NSET is array (NODE) of BOOLEAN ;
subtype CONC is INTEGER range 0..,.,;
-~ Max Concurrency

package Node$l is ... end;

package Node$h is

type OPER is (oP$1, ops2, OPsk) ;
type MPLX is array (OPER) of CONC;
—- other type definitions .

saay

Host:
Conn:

constant NODE
constant NSET True, others

=> False);
Load: constant MPLX := ...;

-—- other constant declarations ...

generic
Site: in NODE;
Usag. in MPLX;
Package Service

is
brocedure P$i (

-
Procedure pgk
end Service;

{-.:);

end Nodes$h;

package Node$n is ... end;

end Config;

The changes are wholly concerned with this added
(potential) concurrency:

~ A subtype CONC is introduced, whereby the
maximum degree of concurrency anywhere
within the system is specified;

= Within the rackage specifying each Nodey, a
type MPLX is defined, values of which indi-
cate a dugree of concurrency on an opera-
tion-by-cperation basis;

- A constant load (cf type MPLX) is defined
for each Nodey, whereby the limits on the
overall concurrency {(from all callers) are
2stablished for every such node;

= An additional generic parameter Usag (of
type MPLX) is introcduced for the Service
package, so thal the degree of concurrency
for individual caller nodes may be set upon
subsequent instantiation.

Minor modifications are also introduced into
the body of the package Config, wherein the over-

all communications conventions are estabhlished:

with Medium;
package body Config is

subtype OPID is INTEGER range O...,.;
subtype RCID is CONC range l..CONC'LAST;

type XREC is record

Oriy, Dest: NODE;
Code: OPID;
Iden: RCID;

end record;

Lype BUFF is ... ;

type XTYP is (XC, XR)

type XMIT(T: XTYP) is record
X: XREC;
B: BUFF;

end record;
subtype CALL is XMIT(XC);
subtype RESP is XMIT(XR);

generic
From, To: in NODE ;
with procedure Request (C:
with procedure Deliver(R:
package ChnDriver;

in out CALL);
in RESP);

generic
From: in NSET;
To : in NODE;

with procedure Request (R:
with procedure Deliver (C:
package ChnServer;

in out RESP) ;
in CALL);

package body ChnDriver is ... use Medium; ... end;

package body ChnServer is <. use Medivm; ..., end;

package body NodeSl is separate;

package body NodeSn is
end Config;

scparate;

47

The changes are to define an additional subtype
RCID, which will serve to identify a particular
remote call originating from a given node (since
the OpCode alone will no longer be sufficient for
this purpose), and to add a new compor:ent Iden
(of type RCID) to all transaction records.

The only changes within the definitions of the
separate nodes of the application would be to sui-
tably set the generic parameter Usag upon each
instantiation of the package Service:

separate (Config)
package body Node$h is

pragma SYSTEM(...);
——— Specify local application modules:

package ASl is
procedure Q$1(...);
procedure QS$£(...);

end AS1

rackage ASm is
procedure Q$1(...);
procedure QS$q(...);

end A$m;

—= Local (re)definition of services:
procedure P$i{...) renames ASa.Qsb;

-=~ Support services called remotely:

package Support;
package body Support is -- Server side of Protoco]

end Support;

package body Service is -~ Driver side of Protocol

end Service;
== Provide services needed locally:

package Node$u is new Config.Node$u.Service
{Site => Host, Usag => ...);

package NodeS$v is new Config.Node$v.Service
(Site => Host, Usag => _,.);

package body AS1 ig separate;
package body AS$m
end NodeS$h;

42l ; TM:miwrSMe.'MeeMmmmontm
driver side in going from the Remote Entry Call to
the Remote Procedure Call are concerned with keep-
ing track of the identity of calls in progress.

At the first level, this involves adding and addi-
tional ID parameter to the DC$i entries of the
Driver Call Handler (DCH) , and of intreducing a
Post Response procedure (PR) to each of the Dri er
packages D$1...DSk:

is separate;

package body Service is
-- Driver Side, defined in Config.NodeSh:

task DCH is
entry RegCall(C: in out CALL);
entry DCS$SL{...):

entry DC$i(ID: in RCID; Al: in TAL; ...;
Ax: in TAX);
entry DCSk{...):
end;

task DRH is
entry DelResp(R: in RESP);
entry RRS1(...):
entry RRS$i(Rl: out TR1; ot RYE oﬁt TRY) ;
entry RR$k(...);

end;

package LCD is new ChnDriver (
From => Site, To => Host,
Request => DCH.ReqCall,
Deliver => DRH.DelResp);

package DS1 is ... end;

package D$i is
procedure P(Al: in TAL;...;Ax: in TAX;
Rl: out TRl;...;Ry: out TRy)
procedure PutArg(B: in out BUFF;
Al: in TAl: ...; Ax: in TAx);
procedure GetRes(B: in BUFF; Rl: out TRL: ...}
Ry: out TRy);
procedure PR(ID: in RCID)
end D$i;

package D$k is .. end;

procedure P$l (...) renames D$1.P;

procedure P$k (...} renames D$k.P;

... + bodies of DCH, DRH, D$1, ..., DSk

end Service;

The definition of DCH is then modified to store
the identity of each call as part of the transac-
tion record which it forwards:

task body DCH is
begin
loop
accept ReqCall(C: in out CALL) do
select
accept pCcs$l(...) do ... end;
or
accept DC$i(ID:in RCID; Al:in TAl;...;
J Ax:in TAx) do
C.X.Code := OPER'POS(0OP$i);
C.X.Iden := ID;
D$i.PutArg (C.B, Al,..
end DCS$i;

or

.. AX);

438

accept DCSk(...) do ... end;
end select;
end ReqCall;
end loop;
end DCH;

The corresponding modifications to DRH involve
its passing that identity to the appropriate PR
procedure prior to accepting a request to dispose
of each incoming response:

task body DRH is
begin
loop
accept DelResp(R: in RESP) do
case OPER'VAL(R.X.Code) is
when OPS1 => ...}
when OPSi =>
D$i.PR(R.K.Iden);
accept RR$I(R1l: out TRl,...,
Ry: out TRy) do
DS$i.GetRes{R.B, Rl,..., Ry}:
end RRS$i;

when OPSk => ...;
end case;
end DelResp;
end loop;
end DRH;

Within a Driver package D$i, tre modifications
consist primarily of introducing a multiplicity
of Agents for the same operation (whereas there
was only one heretofore). As shown on the next
page, this is accomplished by defining an array of
agent tasks (AT), the range of which is esta-
blished by the Usag generic parameters. Thus, the
index in this array (of type AID) will serve to
uniquely identify a particular call-in-progress
for the operation P$i. At the same time, addi-
tional entries have to be provided for the AGT
task: these are Init (whereby an Agent acquires
its own identity) and Done (whereby it may be no-
tified that the response for the call it is car-
rying out has been received). The procedure PR
is essentially a call to this latter entry. A
further task, the Agent Manager (AM) is now needed
to establish the initial correspondence between
the original call (from some application process)
and the particular agent which will perform that
transaction. This correspondence is created by
the procedure P, which is called (concurrently) by
every application process seeking to invoke the
remote operation PSi.

package body DS$i is
subtype AID is RCID range 1..Usaq(OP$i);

task type AGT is
entry Init(A: in AID);
entry Exec(Al: in TAl;...;Ax: in TAx;
Rl: out TRl;...; Ry: out TRy);
entry Done;
end;

AT: array(AID) of AGT;

task AM is
entry Ready(A: cut AID);
entry Avail (ID: in AID);
end;

procedure P(Al: in TAl;...;Ax: in TAx;
Rl: out TR1;...; Ry: out TRy) is
A AID;
begin
AM.Ready (A) ;
AT (A7) .Exec(Dl, ..., Ak, Rl,...,Ry);
end;

procedure Putdrg(...) is ... end;
procedure GetRes({...) is ... end;

procedure PR{ID: in RCID) is
begin

AT(AID; (ID)) .Done;
end;

... t+ bodies of AGT, AM
end D$Si;

The initialization and actual allocation of agents
is handled by the Agent Manager:

task body AM is
begin
for A in AID loop
AT(A).Init(A);
end loop;
~= main cycle:
loog:
accept Ready(A: out AID) do
accept Avail (ID: in AID) do
A := ID;
end;
end;
end loop;
end AM;

Each of the agent tasks of the array AT is then
defined as follows:

task body AGT is

Ihs ATD:
begin
accept Init (A: in AID} do
ID := A;
end;
-- main cycle:
loop

AM.Avail (ID) ;
accept Exec(Al:in TAl;...;Ax:in TAX;
Rl:out TR1l;...;Ry:out TRy) do

DCH.DC$1(ID, Al,..., Ax):
accept Done;
DRH.RR$i(RLl,..., Ry);

end Exec;

end loop;

end MGT;

After initialization an Agent enters its main cycle,
-wherein it first makes itself available to AM prior
to accepting the resultant call via its entry Exec.
Within the corresponding rendezvous, it delivers
its own identity to SCH along with the arguments

for the call in progress, it then awaits notifica-
tion (via the entry Done) that the response for
that particular call has been received before pro-
ceeding to request the results on behalf of the
original caller.

4.2.2. The Server Side. TIn passing from the
Remote Enlry Call to the Remote Procedure Call
protocol, essentially no modifications are
required on the server side (since this latter
already provided for some deqree of concurrency,
insofar as it had to handle incoming calls from
more than one caller node). The only provision
that must be made is to possibly increase the num=-
ber of Surrogates for each operation PS$i, which
would be specified within the corresponding Server
package S$5i as follows:

subtype SID is CONC range 1..Load (OP$i);
thereby fixing the number of elements in the array
of surrogate tasks. This will presumably preserve
the overall load balancing (number of Surrogates =
total number of Agents, for each operation Pi) upon
which both of the protocols developed in this sec-
tion have been based.

6. Conclusion

This paper has addressed the problem of pro-
gramming distributed applications in Ada and out-
lined a first approach in this area. Essentially
two aspects have been considered: the provision
of a suitable compile-time framework for defining
such applications in the first place (which was
achieved by exploiting the possibilities of the
separate compilation facilities in Ada); and the
support of a suitable "interprocessor procedure
call" protocol, whereby the application itself
could then be programmed without further regard to
the distributed nature of the underlying hardware
configuration (a capability which was defined in
terms of the multi-tasking facilities of ada).
Several such protocols were in fact developed here,
beginning with the relatively simple Remote Entry
Call, which was then extended to yield the Remote
Procedure Call strategy. 1In [4] we further exten-
ded this approach so as to take into account the
unreliability of the transmission medium in ques-
tion, while still assuming that the nodes within
the overall configuration were perfectly reliable.

References

[1] Hoare, C.A.R., Communicating Sequential Proc-
esses, CACM, August 1978, Vol. 21, 8.

[2] Ichbiah, J.D. et al., Rationale for the Design
of the ADA Programming Language, SIGPLAN No-
tices, June 1979, Vol. 14, 6, B.

[3] -- Reference Manual for the ADA programming
language, U.S. Dept. of Defense, July 1980.

(4] Schuman, S.A., Clarke, E.M., Mikolaou, C.N.,
Programming Distributed Applications in ADA:
A First Approach, Massachusetts Computer Asso-
ciates, Inc., CADD-8103-3102.

(¥,

Schuman, S.A., Tutorial on ADA Tasking, Vol.I:
Basic Interprocess Communication, Massachusetts
Computer Associates, Inc., CADD-8103-3101.

