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Abstract

We describe a parallel resolution theorem prover, called Parthenon, that handles full first order logic.
Although there has been much work on parallel implementations of logic programming languages, our
system is apparently the first general purpose theorem prover to be developed for a multiprocessor. The
system implements a variant of Loveland’s model elimination procedure within the framework of Warren'’s
SRI model for or-parallelism. It has been evaluated on various shared memory multiprocessors including
a 16-processor Encore Multimax, producing both impressive absolute run times and near-linear speedup
curves.

In this paper we discuss the implementation of the theorem prover and give execution statistics for
a number of examples. We believe that our program demonstrates the applicability of or-parallel Prolog
technology to full first order theorem proving. Our experience in solving a large number of well known
problems shows that a high degree of parallelism is available in these problems. In particular, the
branching factors that we observe are typically much higher than those of Prolog programs. As a result,
we believe that or-parallel theorem proving is likely to be feasible regardless of whether this tums out
to be the case for Prolog programs. Moreover, our results lead us to believe that such problems have
sufficient parallelism to make effective use of the much larger scale machines currently being developed.

This research was partially supported by NSF grant CCR-87-226-33. The third author holds an NSF graduate fellowship.



1. Introduction

Parthenon is a parallel resolution theorem prover that has been implemented on several shared memory
multiprocessors, including a 16 processor Encore Multimax. It handles arbitrary first order formulas in
clause form (both Homn and non-Hom clauses). Although there has been much research on parallel im-
plementations of logic programming languages, Parthenon is apparently the first general purpose theorem
prover to be implemented and tested on a multiprocessor. The project addresses a number of issues
including the selection of an appropriate resolution proof procedure, the partitioning of the search so as to
minimize synchronization overhead, and the efficient representation of the search space. In particular, we
are attempting to use technology that has been developed for both sequential and parallel Prolog imple-
mentations to achieve high inference rates. The results that we have obtained indicate that parallelism is
likely to play an important role in general theorem proving: On many examples our program has exhibited
linear (and sometimes superlinear) speedup with respect to the number of processors used. This paper
describes the impiementation of Parthenon and gives experimental results to support our conclusions.

The first major decision of our project was the selection of the inference mechanism for the theorem
prover. We chose to use the model elimination procedure of Loveland [6] because it is an input procedure
and is complete without the need for factoring. In addition, model elimination is readily amenable to the
use of Prolog implementation techniques, which we consider essential for achieving high inference rates.
Stickel’s Prolog Technology Theorem Prover [9] also uses model elimination and has heavily influenced
our work. Although we expect the reader to be familiar with the basic ideas of resolution theorem proving,
we do not assume any previous knowledge of the model elimination procedure.

The model elimination procedure is inherently parallel, since alternative branches of the search tree
can be explored independently. This method of exploring the tree is called or-parallel search. The
straightforward way of implementing this type of search would be to allocate a separate processor for
each node in the search tree. However, since the number of processors is always limited, this scheme
cannot be used in practice. There are a large number of altemative approaches that might be used to
allocate jobs to processors. We discuss two approaches that we have tried, along with some of their
advantages and disadvantages.

Our first implementation employed a very simple strategy for allocating work to processors. A global
priority queue was used for maintaining resolvents. The resolvents were ordered in the queue according
to a heuristic value. Each processor withdrew the best clause for resolution from the queue and inserted
the resolvents back into the queue. This procedure was repeated until some processor derived the empty
clause. Although this approach worked well on small examples, it had some obvious disadvantages.
The implementation of the priority queue required global locking. The context switch that was required
when a processor finished determining the resolvents of its current clause also seemed more costly than
was necessary. However, the most severe problem was the amount of memory required by the global
priority queue. This problem prevented us from handling some first order formulas of reasonable size,
but indicated that a high degree of parallelism could be obtained if enough processors and shared memory
were available.

Our current implementation overcomes all three of these problems while maintaining the same degree
of parallelism. We use a modification of the scheme proposed by D. H. D. Warren in his SRI model for
or-parallelism [11]. His approach allows constant time access to variable bindings and avoids the use of
global locks. Although it was originally developed for Hom clause logic programming, we show that
it can be also be modified to handle general first order clauses with the model climination procedure,
In our adaptation of Warren's scheme each processor performs a depth-first search of a subtree of the
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model elimination proof tree. When a processor has completely explored its current subtree, it must find
another subtree to explore. This may involve stealing an unexplored subtree from some other processor.
The procedure for finding new work is simpler and potentially more efficient than the schemes originally
proposed by Warren. We give a detailed description of the procedure and of how to handle the extension
and reduction operations of the model elimination procedure within the framework of the SRI model. We
believe that our experience with the SRI model is of interest to researchers in logic programming as well
as in automatic theorem proving.

The Encore Multimax that we use has 16 processors and 32 megabytes of shared memory. Each
processor is a National Semiconductor 32332 and is rated at roughly 2 MIPS. The Multimax is suitable
for medium and coarse grained parallel applications with a synchronization interval of 20 to 2000 in-
structions [8]. Parthenon is implemented in C and uses the C-Threads package [3], which allows parallel
programming under the MACH operating system [1]. Interlocks are used for process synchronization
instead of general semaphores in order to avoid the expense associated with system calls. Contention for
access to shared memory is light, so the time required for an individual lock operation is a few tens of
microseconds. Since each model elimination inference takes much longer, the overhead for synchroniza-
tion is not excessive. In the near future, we plan to run the system on several larger multiprocessors,
including IBM’s RP3 and larger versions of the Encore.

We have tested our new implementation on a large number of examples originally collected by Stickel.
Our experimental results are discussed in detail in a later section of the paper. Although the two systems
are perhaps not directly comparable, on some examples Parthenon is an order of magnitude faster than
the sequential Prolog Technology Theorem Prover. It is also much more space efficient than our original
implementation. On almost all examples we observe significant speedup as the number of processors
is increased. One reason for this speedup is the large branching factor in many of the examples. We
conjecture, in fact, that typical theorems will have a much larger branching factor than is observed in

logic programs.

Our paper is organized as follows: Section 2 describes the model elimination procedure. Section 3
discusses various implementations of or-parallelism on shared memory multiprocessors. An overview
of our system is given in Section 4, and the following two sections describe key procedures in greater
detail. Section 5 describes our parallel implementation of the model elimination procedure. We show
how the additional operations of the model elimination procedure can be implemented within the same
basic framework that is used for logic programming languages. Section 6 focuses on the algorithm that
a processor uses to find work when the subtree that it has been searching is completely explored. This
algorithm is the heart of our system, and we outline a proof that the procedure is correct. Section 7
discusses the performance of our theorem prover on a number of standard examples collected by Stickel.
The paper concludes in Section 8 with some observations on the role of parallelism in automatic theorem
proving and some directions for future research.

2. The Model Elimination Proof Procedure

The model elimination proof procedure was first introduced by D. Loveland [6] in 1968. Our implemen-
tation is based on a simpler format for the procedure that was also developed by Loveland [7]. There
have been several successful sequential implementations of the procedure. The most recent was the
Prolog Technology Theorem Prover developed by Stickel [9]. By using techniques originally developed
for sequential implementations of Prolog, Stickel was able to obtain very high inference rates. Our own
project has been heavily influenced by Stickel’s work. In this section we describe the model elimination
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procedure and indicate why it is useful in first order theorem proving. We will assume that the reader is
familiar with the basic definitions of resolution theorem proving as described in [2] or [5].

To motivate our discussion of the model elimination procedure we first consider a simple example
from propositional logic:
NvP
-PVN
-NVvP
NAP

To obtain a resolution proof that the conclusion follows from the three premises, we negate the conclusion
and add it to the list of premises.

1. NV P

2. Nv =P
3. -NVP
4, ~NV P

These four clauses are called the input clauses. Note that the first clause is not a Horn clause since two
literals occur positively. In this simple example we can easily use the resolution rule to derive the empty
clause and obtain a refutation proof.

5. =N resolving 4 and 3
6. P resolving 5 and 1
7. N resolving 6 and 2
8.  [] (the empty clause) resolving 7 and 5

In each step but the last, one of the two clauses being resolved was from the original set of clauses.
However, in the last step we resolved two clauses that were previously obtained by resolution. In fact,
any resolution proof for this example must resolve two resolvents. To see why this is true, first observe
that resolving any two clauses of the original set will result in a single literal clause involving N or P.
Next, observe that resolving any such single literal clause with one of the original clauses with give
another single literal clause. The possibility of having to resolve two resolvents is a major disadvantage
of the resolution procedure, since it means that the branching factor of the search tree will increase as
the depth of the tree increases and resolvents accumulate. In logic programming where all of the clauses
are Hom clauses, this problem does not arise. One clause in each resolution step will be an input clause
and the branching factor in the search tree will be bounded by the number of input clauses. A proof
procedure for first order formulas in clause form that has this property is called an input procedure. The
above example shows that simple input resolution is not complete.

A second disadvantage of conventional resolution is the need for factoring. Consider the set of clauses
C = {P(x) V P(y), ~P(x) vV =P(y)}. If conventional resolution is applied to C, it is impossible to obtain
a clause with fewer than two literals even though C is unsatisfiable. We can obtain the empty clause
in two steps, however, if we collapse the first clause to P(x) by the substitution y/x. This procedure is
called factoring, and P(x) is said to be a factor of P(x) V P(y). Factoring is so basic in conventional
resolution theorem proving that it is ofien combined in a single step with the binary resolution operation.
The problem with factoring is that it is completely undirected. When it is not needed for completeness,
factoring can result in a significant increase in the branching factor of the search.



The model elimination procedure is an input procedure that is complete without the need for factoring.
It uses a type of generalized clause called a chain. A chain is an ordered sequence of two types of literals:
framed literals and unframed literals. Unframed literals behave very much like the literals in conventional
resolution theorem proving. We will indicate that the literal L is framed by enclosing it in a box (e.g.
[L]). We will say that two literals (framed or unframed) match if they have opposite signs and if there is
a substitution that makes their atoms identical. The matching substitution will be the most general unifier
of the two atoms.

The procedure begins in much the same way as conventional input resolution. Suppose that we want
to test the set of clauses S for satisfiability. We pick some clause C in S to start the procedure. In a
refutation proof of some theorem B from the axioms A,,...,A,, C will usually be obtained from the
clause form of the negation of the conclusion B. We will regard C as a chain with all literals unframed
and call it the center chain. There are three types of operations on chains: extension, reduction, and
contraction. The first operation takes as input a chain and some side clause in S and produces another
chain. The other two operations are used to simplify chains—each takes a chain as input and produces a
chain as output. The procedure will terminate successfully when the empty chain is obtained.

The extension rule is like the standard resolution operation applied to the rightmost literal of the center
clause and a matching literal of some side clause in S. Instead of discarding the last literal in the center
clause, it is converted to a framed literal. Any clause in S, including C itself, can act as a side clause
in this step provided that it contains a literal that matches the rightmost literal in the center chain. More
formally, the extension operation takes as input a chain C) and a side clause C; and produces a chain C,
provided that there exists a matching substitution § for the rightmost literal in C; and some literal of C,7,
where 77 is a substitution that renames the variables of C; so that it has no variables in common with C;.
To form C3, the rightmost literal of C10 becomes framed. The matching literal in C270 is deleted and
the remainder of C,7né is attached to the right of C;6. For example, if C1 = P(f(x), g(»)) V Q(f(x)) and
C2 = R(x,y) V ~Q0), then Can = R(s,v) v ~Q(v) and C3 = P(f(x), 0N V v R(u, f(x)).

The reduction rule takes as input a chain C; and produces as output a chain C; provided that there
is a matching substitution # for the rightmost literal of C; and some framed literal that occurs earlier in
Ci. C, is C0 with the rightmost literal deleted. For example, if Cy =|P(f(x),y) |V R(x,y) VvV =P(f(a), b),

then C; =|P(f(a),b) |V R(a, b).

The contraction rule is the simplest of the three rules; it takes as input a chain C; that ends on the
right with at least one framed literal and produces a chain C; as output by deleting all of the framed
literals to the right of the rightmost unframed literal. For example, if C = P(x,f(x)) VIO |V then
Cy = P(x,f(x)). For simplicity, we will combine contraction with extension and reduction and assume
that it is performed whenever possible after the other two operations.

The propositional example at the beginning of this section illustrates all three operators. We assume
that the first four clauses are exactly the same as before and start numbering model elimination steps at
five.

5. ANV [2P]V =N extension by 3
6. NV [=P]V[=N]v P extension by 1
7. -N v [=P]v [=N] reduction

8. -N contraction

9. [=N|V P extension by 1
10. [=N]v[P]VvN extension by 2




11.  [=N]v reduction

12 contraction

One final warning: Model elimination refutations may have disjunctive solutions if some of the clauses
are not Hom clauses. Suppose, for example, we want to prove that the conclusion 3x P(x) follows from
the hypothesis P(a) v P(b). When we translate this problem into clause form we obtain two clauses:

1. ~P(x)
2. P(a)v P(b)

Note that ~P(x) serves as both the initial center clause and as a side clause. Although there is no single
value of x that satisfies 3xP(x), a model elimination refutation is still easily obtained:

3. Vv P(b) extending 1 by 2 with x=a
4. Vv |P(b) extending 3 by 1 with x=b
5. O contraction

Instead of giving a single substitution for goal variables as in Prolog, the model elimination procedure
gives the disjunction x = a vV x = b where each individual disjunct corresponds to one use of goal clause
-P(x) in the proof.

3. Or-Parallel Execution

Each node in a model elimination search tree can be viewed as a 4-tuple (C,L, A, B), where C is the
center clause for the node, L is the selected literal, A is a list of unexplored alternatives, and B is a set of
variable bindings. The center clause is the clause to be solved at this node, and the selected literal is the
literal within the clause that will be solved first. The list of alternatives contains all possible extensions
and reductions that may be used in solving the selected literal. The set of bindings gives the variable
substitutions defined by unification at this point in the search.

The initial or root node in the search tree has C equal to the goal clause, L equal to the first literal
within the goal clause, A equal to the set of extensions for L, and B equal to the empty set. The children
of a node are formed by applying the extension and reduction altenatives A to C and L. In the process,
new bindings are created during unification of an alternative with C and L. If (C',L’, A’, B’) is one of the
children, then C’ and L’ are obtained from C, L, and the appropriate element of A by an application of
one of the rules of Section 2. A’ is deduced from L' and C’, and B’ is B with the new bindings added.

The root of the search tree is at the “top” of the tree, and the leaf nodes are at the “bottom.” A node
is dead if its list of alternative clauses is empty. Otherwise, it is open or live, and we say that there is
work available at the node. A fork node has more than one arc below it. A branchpoint is a node that is
either a fork or is live (and hence is a potential fork).

In an or-parallel search, the descendents of each node can be explored simultaneously by a number
of processes or workers. The central issue in such a search is how the descendants of a node can share
bindings for variables. We say that a variable is created at a given node if it appears for the first time
in the center clause of that node. A binding to a variable is unconditional if there are no branchpoints

5



between the nodes where the variable was created and where the binding was made. Observe that all
the descendants of the node where the variable was created must agree on the binding for that variable.
Consequently, such a binding can be represented by a variable-value cell in the node where the variable
was created. This technique is similar to that used for all variables in conventional Prolog implementations,
except that the Prolog stack becomes a cactus stack. A binding is conditional if there is a branchpoint
above the node where the binding is made and at or below the node where the variable was created. The
descendents of the node where the variable was created may have conflicting bindings for the variable.

Several alternative schemes have been proposed for handling conditional bindings [10]. We discuss
the Argonne and SRI models for or-parallelism, since most of the other models proposed are very closely
related to these two. Central to all the major or-parallelism models is the idea that there are only as many
leaf nodes in a tree as there are workers. As a result, keeping conditional bindings for each path to a leaf
is exactly the problem of keeping conditional bindings for a worker. When a worker moves from one
position in a tree to another such that only some (possibly empty) initial segment of the paths to the two
leaf nodes is common, it will have to change some of these conditional bindings.

The Argonne model handles conditional bindings by associating with each arc in the tree a hash table
that stores bindings made to conditional variables when creating the node beneath that arc. In addition,
the Argonne model splits conditional bindings into favored and unfavored bindings in an attempt to reduce
the number of bindings that have to be stored in these hash tables. A conditional binding is favored if it
is made by the worker that originally created the variable. Whenever another worker makes a conditional
binding to that variable, the binding is unfavored. Favored bindings are treated much like unconditional
ones, except that more bookkeeping is needed, and they are also entered into the hash tables. The major
criticism of this scheme is that the access time for an unfavored conditional binding is not bounded.
Moreover, in practice it seems that few conditional bindings are favored [4]. Other criticisms involve
the overheads of creating and maintaining the hash tables. In an early implementation of Parthenon, we
experimented with a scheme for maintaining variable bindings in hash tables as in the Argonne model,
but without favored bindings. The scheme did not perform well in our implementation. Since our proof
trees tend to be relatively shallow, the overhead of maintaining the hash tables was simply too high.

In the SRI model, conditional bindings are placed in a private binding array belonging to the worker
that is making the binding. Each variable-value cell is initialized with an integer such that the variables
on each path from the root to a leaf are numbered uniquely. An unconditional binding simply replaces
this integer, while a conditional binding uses it as an offset into the worker’s binding array. Bindings
made to the binding array are trailed, except that the trail is augmented with the actual value of the
binding in addition to the array location. This is needed so that the binding array can be suitably adjusted
when a worker moves from one part of the tree to another in order to find work. The major strength
of this model is that variable operations such as binding and lookup are bounded and not too expensive.
The major criticism is that the need to update binding arrays results in a considerable overhead being
incurred in task switching. This problem can be alleviated somewhat by trying to minimize the tree
distance covered in moving from one job to another. Since the advantages of the SRI model appear to
outweigh the disadvantages, we decided to use a modification of this scheme as the basis for our current
implementation of the model elimination procedure.

4. Overview of Parthenon

In this/section we describe the current version of Parthenon. The system has been implemented in C with
synchronization primitives provided by the C-Threads package [3] and has been evaluated on both the
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VAX-11/784 and Encore Multimax multiprocessors running MACH. The use of parallelism is intended
to be completely transparent to the user: no special annotations are needed to make the system consider
altenative inferences in parallel, as every branch point is potentially a parallel one, We felt that an
annotation system would be too difficult to use effectively. This is partly because the user is likely to
have less of an operational understanding of a set of axioms to be used for proving a theorem than of a
Prolog program, and partly because non-Hom clauses do not lend themselves anywhere near as readily
to a procedural reading as do the Hom or near-Hom clauses of Prolog.

Parthenon is an interpreter based on the SRI model for or-parallelism, using a scheduling algorithm that
does not require a global queue. We considered the non-constant lookup time for bindings in the Argonne
model to be incompatible with our long-term aim of being able to prove more substantial theorems.
Moreover, we felt that the hash tables of the Argonne scheme to be t0o wasteful of space. The contents
of individual nodes and the mechanism for keeping variable bindings are described in some detail in
Section 5. The environment is based on a structure-sharing scheme much like that commonly used in
Prolog interpreters.

After reading and parsing the clauses, some preprocessing is done to build a table of the positive
and negative instances of each predicate letter. This as an obvious extension of the table built by a
Prolog interpreter, since in general extensions can be carried out on both positive and negative literals.
Additionally, any given side clause may be used in several ways to solve one literal. Thus, in effect,
a clause with » literals may be viewed as n different “rules,” each with a different literal, positive or
negative, as its “head.” There is also local processing for each clause. As in Prolog, the variables are
numbered left to right according to their first occurrence in the clause. In addition, for each occurrence
of a variable in a literal, we note whether it is the first occurrence in that literal. This is needed both
to optimize the use of the occur check and to speed up variable binding in certain cases. The final
preprocessing step involves generating the root of the search tree.

The structure of nodes in the search tree was described in the previous section. When a node is created
the list of alternatives is initialized to point to all the appropriate reduction alternatives and all the clauses
with an atom of the same predicate symbol and opposite sign. This list does not remain static throughout
a computation—as the various alternative inferences are exhausted, the list is changed to reflect this. The
job of the scheduling algorithm is to find a node in the tree where the list of alternatives is non-empty and
present this node to the inference algorithm. The inference algorithm then chooses one of the alternatives
to perform, removes it, and tries to carry out the inference. If the inference is successful, the process
moves 10 the resulting node without reconsulting the scheduling algorithm. If the inference failed, the
bindings made during the unsuccessful unification are undone and the scheduler is called to find more
work.

We use iterative deepening to guarantee completeness. In conjunction with this strategy, it may be
possible to prune the search tree during each iteration. For example, if we are about to extend by a
nonunit clause, the length of the proof along that path will be increased by at least one less than the
number of literals in the side clause. If this number added to the number of unboxed literals remaining
in the center clause exceeds the number of steps we have remaining in this iteration, we need not try the
unification for this extension. We have also implemented a flexible deepening strategy that adjusts the
amount by which the search is decpened at each iteration according to information gathered during the
search.

A number of considerations are helpful in cutting down the size of the search tree. We consider three
that were proposed and implemented by Stickel [9] in a sequential setting, and discuss their appropriateness
in a parallel environment:



o Whenever a reduction can be made without specxahzmg the current center clause, no alternative
inferences need be considered. This is easy to implement and not very expensive. It is useful in a
few cases.

o If aliteral is identical to one of its ancestors, this path may be eliminated. This is easy to implement
but has cost proportional to the depth of the node at which it is applied. It often has a dramatic
effect on the size of a proof tree—reducing the number of infereaces for some of the examples
considered in Section 7 by up to an order of magnitude.

o If an extension against a unit clause can be made without specializing any variables in the center
clause, no other alternatives need to be considered. This is not difficult to implement but is not
as useful as onc might expect. There is a much more useful case which is considerably more
troublesome: If an atom in the center clause can be solved by some number of steps without
specializing the other variables in the clause then no other means of solving that atom need be
considered. Stickel has found this to be extremely helpful in certain cases. It has not yet been
incorporated into Parthenon.

It should be noted that the first and third points above are weakened somewhat by parallel execution,
since by the time it is determined that the optimizations may be applied, some other processor may already
have begun (or even finished) considering those alternatives. For this reason all we can hope to do is
prune those alternate branches that have not yet “sprouted.” Also note that some of the Prolog tricks such
as tail-recursion optimization cannot be blindly applied in this setting because extra information needs to
be kept for reduction.

One optimization which speeds up the actual inference rate is our special treatment of variables
appearing for the first ime in a literal that we are extending against in a side clause. When we unify
such an occurrence of a variable with some term, we save time by not carrying out the occur check. In
addition, the unification will be a direct assignment and will result in an unconditional binding.

Because we are dealing with general clauses, the goal clause may also be used as a side clause in
the computation. Hence, there may be more than one instance of substitutions for the variables in the
goal. It is not sufficient for the theorem prover to return the bindings of variables in the original center
clause as an answer: it must aiso return those bindings made whenever the goal is used as a side clause.
The binding to the center clause variables, and each of the subsequent side clause bindings result in a
substitution &, such that at least one of these gives the resulting counterexample for variables in the goal
clause. This raises the problem of finding the relevant bindings. In the Homn clause case this just involves
looking up the variables at the base of the cactus stack, but in general it is necessary for each node to
have a flag indicating whether the clause used for extension was the goal. Then when the computation
has been completed, the path from the leaf node to the root is searched for the answer substitutions.

5. The Inference Mechanism

In this section we outline our implementation of the model elimination inference mechanism. We focus
on how the inference loop is used to grow the search tree. We briefly describe the nodes in the search
tree, and by concentrating on certain important fields in the nodes, will show how a new node is created
in the cases of reduction, unit extension, and nonunit extension.

Each node in the tree must have the following details:
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¢ enough information to reconstruct the entire center clause including boxed literals

¢ information about where to find bindings for the required unifications

¢ pointers needed to find children and siblings of this node, as well as the predecessor

¢ stack maintenance information

¢ information to reconstruct the proof and goal variable bindings once the proof has been found
¢ information needed for iterative deepening (e.g., depth)

e a lock for mutual exclusion, the active worker count, and the garbage collection status

o the next variable number for initializing uninstantiated variable value cells below this node

Space does not permit us to discuss all of the fields within a node. Instead, we will only describe the
fields of particular interest for the inference loop.

nowdo This field holds a list of the literals remaining to be solved from the most recent nonunit side
clause. The head of this list indicates the literal to be solved at this node.

unify_frame_ptr The unify_frame_ptr indicates the node where the most recent nonunit extension was
performed. This node contains the environment for the variables in the nowdpo list. This pointer is
also used to find the altematives for reduction.

calling_frame This corresponds to the “caller’s environment” in Prolog.

retpt This indicates the next literal to be solved in the nowdo field of the node immediately above this
one in the search tree.

The heart of each process is a loop which repeatedly calls the scheduling routine to find a job, then
attempts to perform a single inference. When an inference results in the creation of a new node, the
process immediately moves to the new node without calling the scheduler. The basic structure of the
body of the inference loop is shown in Figure 1.

There are three cases: reduction (lines- 3 through 14), extension by a nonunit clause (lines 19 through
25), and extension by a unit clause (lines 26 through 34). The actions taken after reduction and unit
extension cases are almost identical; hence we combine the discussions where appropriate.

The nowdo and unify_frame_ptr field determine the literal to be solved at the new node. In the nonunit
extension case, the nowdo field is simply the remainder of the side clause. The unify.frame_ptr in this
case will just be the new node. For the reduction and the unit extension cases, the situation is more
complex. It is necessary to follow the chain of calling_frame pointers up the tree beginning with the new
node, until we reach a node with a non-null retpt. This retpt will indicate the next literal L to be solved,
and the node in which it occurs will give the unify_frame_ptr for L. These two values are installed in the
nowdo and unify_frame_ptr field for the new node. If a non-null retpt is not found, the empty clause has
been derived. The calling_frame for the new node is always simply the unify frame_ptr for the parent
node in the tree, and the rezpt is the tail of the nowdo field for the parent node in the tree.

To find possible reduction alternatives for the literal to be solved in the new node, we must look at
the framed literals for all prior nonunit extensions. Only framed literals which have the same predicate
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if (node is at depth bound)
cutoff and find more work;
if (a reduction altemative exists)
if (umification successful)
new.node — retpt := node — nowdo — next;
new_node — calling_frame := node — unify_frame_ptr;
(new.nowdo, new_frame) := next literal to solve and its environment;
if (empty clause derived)
signal proof found;
new.node — nowdo := new_nowdo;
new_node — unify_frame_ptr ;= new_frame;
node := new_node;
else
reset bindings made during unsuccessful unification;
else ‘
if (extension cannot result in proof within depth bound)
cutoff and find more work;
if (unification successful)
if (nonunit extension)
nowdo := remainder of clause;
new.node — nowdo := nowdo;
new.node — retpt := node — nowdo — next;
new.node — calling_frame := node — unify_frame _ptr;
new.node — unify_frame_ptr := new_node;
node := new_node;
else if (unit extension)
new_node — retpt := node — nowdo — next;
new.node — calling frame := node — unify_frame ptr;
(new_nowdo, new_frame) := next literal to solve and its environment;
if (empty clause derived)
signal proof found;
new_node — nowdo := new_nowdo;
new.node — unify_frame_ptr := new_frame;
node = new_node;
else
reset bindings made during unsuccessful unification;

Figure 1: Procedure Inference_Step
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symbol but opposite sign are actually considered as candidates for reduction. To find the first possible
alternative, we begin by following the unify_frame_ptr for the new node to a node N. The framed literal
to be checked comes from the parent node of N in the search tree. The remaining framed literals can
be found by following the chain of calling_frame pointers beginning with N, and checking the parent of
each node in the chain.

6. Backtracking and Scheduling

This section describes the backtracking procedure used to find a choice point with open alternatives.
Since the choice point records are logically arranged as a tree, the algorithm is essentially a tree traversal.
Management of the choice point, trail, and environment stacks is related to backtracking and will also be
briefly discussed within this section. A high level description of the procedure is given, followed by a
bottom up presentation of the various support functions needed to implement it. We also sketch a proof
of several key properties of the algorithm. Programs are described in a notation similar to C.

Warren proposes two basic scheduling strategies in his paper on the SRI model (11]. Both schemes
involve maintaining information about available work and idle workers at each node in the tree. In the
first scheme, the amount of information required at each node grows with the number of processors used.
Moreover, a global data structure is needed to record nodes where work is available. The second strategy
involves propagating information to ancestor nodes as work is created and consumed. The first scheme
is probably not scalable to large numbers of processors. In the second case, the cost of propagating
information grows with the depth of the tree. The method we propose has the following advantages:

¢ No global structures are needed.
e The strategy is independent of the number of processors.
¢ No additional information is required at the nodes, so the cost of information propagation is avoided.

¢ The method allows a high degree of parallelism.

The search procedure used by Parthenon is a generalization of the backtracking process in Prolog.
It is initiated when a process finds no alternatives at the current node. During the search, the process
is in one of two states: moving up or moving down. When moving down, the process first checks for
alternatives at the current node. If none are found, the process moves to the left child (which becomes the
new current node); if there is no left child, the process starts moving up. When a process is moving up,
it looks for altermatives at the ancestor of the current node. If no work is found and the current node has
a right sibling, the process moves to right sibling and begins moving down. If there is no right sibling,
the ancestor becomes the current node, and the process continues moving up. A process may also leave
the tree without having found a job. In this case, the process begins the search again, starting at the root.

The method for maintaining the binding arrays is like the one used in the SRI model. As a process
moves up the tree, the trail is used to remove conditional bindings. The process keeps track of the highest
node reached so far in the tree and bindings are removed only if a node higher than the current highest
is reached. As an optimization, bindings are not added to the binding array as the process moves down
because the process may not find any work during its descent. These added bindings would then again
have to be removed. Bindings are installed only after a node with open altematives has been locked.
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At this point, the trail entries created between the highest node reached and the locked node are used to
install conditional bindings into the binding array of the process.

Unlike the strategies proposed by Warren, our scheduling algorithm depends only on the structure of
the tree. One objection to our scheme is that a process may try to search subtrees which contain no
open altematives. Because of the large branching factor in many examples, we do not feel that this is
significant. Any time lost searching such subtrees is also offset by the time saved by not maintaining
information about where work is available. A potentially more serious problem is that the procedure may
create many small jobs and that processes may spend a large amount of time switching between tasks.
Because of the need to maintain binding arrays, such switches can be costly. Again, we feel that the large
branching factor will minimize this effect.

6.1. Details of the Algorithm

The Exit_Subtree procedure (Figure 2), is executed when a process is moving up the proof tree from
the child node to the parent node. This procedure removes child as a descendent of parent and marks
child for garbage collection if there are no remaining workers at child. If all nodes are exhausted, the
computation_done flag is set. The procedure returns the node where the search is to be continued. The
right sibling of child is returned if child is still linked into the tree. Otherwise, the right_sibling field of
child may be invalid, so the search continues with the leftmost sibling of child (if there is no leftmost
sibling, the process will continue moving up the tree).

1 choice_point *Exit_Subtree (parent, child) /* Parent and child both locked */
2 choice_point *parent, *child;

3

4 choice_point *next := child — right_sibling; /* Where to continue searching */
5 if (child — left_child = NULL) /* No work at this subtree? */
6 if (parent = NULL) /* At root, search finished */
7 computation_done := TRUE;

8 else if (child — free = LINKED) /* Child still linked */
9 Unlink (parent, child); /* Unlink child from tree */
10 else /* Child unlinked already */
11 next := parent — left _child; /* Right_sibling meaningless */
12 child — active_workers := child — active_workers — 1;

13 if (child — active.workers = 0 AND parent ¥ NULL)

14 child — free .= FREED; /* Allow garbage collection */
15 unlock (child);

16 return (next);

Figure 2: Procedure 1, Exit_Subtree

The Search_Once procedure (Figure 3) searches for work starting at the node from and gives up if it
fails to find work in one pass through the tree. It consists of two sections, one for the case when the
process is moving down the tree and one for the case when the process is moving up the tree. The search
begins with the process moving down. Consequently, the subtree rooted at from is searched first; if work
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is found in this subtree, no bindings will have to be undone. The first part of Search_Once handles the
case of moving down. First, from is checked to see if it has any altemnatives. If there are none, the process
tries to move to the left child of from. If there is no left child, no further descent is possible, so the
process begins moving up. Note that when a process begins moving up, there is no work at from. This
property is invariant, so there is no need to check for alternatives at from in the case when the process
is moving up. To perform an upward movement, the immediate parent is checked and returned if it has
work. If there is no work at the parent, the process calls Exit_Subtree and tries to move to the node which
is returned. This will be the right sibling of from unless from has already been unlinked from the tree
(in which case it will be a sibling of from). If a valid node is returned, the process begins moving down
starting at that node. Otherwise, the process moves to the parent of from and continues up. Throughout
the procedure, a record is kept of the highest node reached in the tree. Whenever the process tries to
move up past this node, Reset_Bindings is called to remove the appropriate conditional bindings.

If a single call to Search_Once does not yield a node with alternatives, the search is repeated beginning
at the root of the tree. When an open choice point is found, the binding array is modified appropriately
to reflect the environment as seen from this new node. Note that bindings are only added once a job has
actually been found. As indicated before, this is done so that minimal changes to the binding array are
made. When work is found, garbage collection is performed by removing dead nodes from the top of the
choice point stack. The trail and environment stacks are also modified accordingly.

6.2. Correctness of the Algorithm

We conclude this section with an informal proof of correctness of the tree traversal algorithm. Program
statements are referenced by the pair (Procedure number: line number in procedure).

Proposition For every node in the tree, the activeworkers field at the node indicates the number of
workers within the subtree rooted at the node.

Proof For an existing node, the active_workers field may be altered at lines 1:12, 2:14, 2:32 and in
Find_Work. At each of these points, the node is locked, eliminating the possibility of interference from
other processes. We now show that the proposition is an invariant of the program. Each node is created
with this field initialized to zero. When 1:12 occurs, a process is leaving the subtree represented by the
node. In the second and third cases, a process has just entered the subtree rooted at the node in question.
In the last case, the count at the root is increased when a process enters the tree. Thus, in all cases, the
invariant is maintained. [J

Proposition Within a single worker process, locking and unlocking of a given node occur in strict
alternation.
Proof The following is invariant at line 2:6:

Either going_down is true and from was locked on the previous iteration, or going_down is
false and no nodes are locked.

The above is true initially because the node from is locked in Find_Work. If the process is moving down,
and from has a child, then 2:11 and 2:12 lock the child and unlock from, and from is set to the child. If
there is no left child, 2:16 unlocks from and the process starts moving upwards. In the upward moving
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choice_point *Search_Once (from, ancestor, ba) /* From locked */
choice_point *from, **ancestor;

cell *ba;

boolean going_down := TRUE;
while (TRUE)

if

if

(from — alternatives)
return (from); /* Alternatives exist at from */
(going_down)
if (from — left.child # NULL)
lock (from — left_child); /* Follow left child pointer */
unlock (from);
from := from — left_child;
from — active_workers := from — active_workers + 1;

else : /* No left child */

if

unlock (from); /* Change directions */
going_down := FALSE;
(NOT going_.down)
previous := from — prev;
if (previous # NULL)
lock (previous);
lock (from);
if (from = *ancestor) /* Higher than current highest */
Reset_Bindings (from, previous);
*ancestor ;= previous;
next := Exit_Subtree (previous, from);
if (previous = NULL OR previous — alternatives)

return (previous); /* Work found or no previous */
if (next # NULL)
from := next; /* Start looking at next */

lock (from);
from — active_workers := from — active_workers + 1;
unlock (previous);
going_down := TRUE;
else /* Continue moving upwards */
unlock (previous);
from := previous;

Figure 3: Procedure 2, Search_Once
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phase, 2:22 and 2:26 lock and unlock from respectively. Any previous node is locked at 2:21 and unlocked
at either 2:33 or 2:36, one of which must occur. The direction is again changed at 2:374 at which point
from has been locked. In all cases, we see that the invariant is maintained. The desired property follows
immediately from the invariant. [J

Corollary There are no deadlocks.

Proof Whenever two nodes are locked, the highest one is always locked first. Thus there is a natural
total order followed by workers on the same branch of the tree when locking multiple nodes. [

Proposition The sibling pointers are manipulated correctly.

Proof Sibling pointers at a node and its siblings are changed only when the parent is also locked. The
procedure Unlink is called in line 1:9 after both the node and its parent has been locked at lines 2:21
and 2:22. Furthermore, the process does not change the sibling and child pointers anywhere else in the

program. [J
Corollary When a node is freed, no other references are made to it.

Proof A node is freed only at line 1:14. Both the parent and child nodes are locked at this stage. At
this point, the node has been unlinked from the tree. Since the active_workers field is zero at this point,
there can be no other processes in the subtree rooted at the node. Thus if some other process can ever
refer to the node, the other process must already have a pointer to the node. Such a pointer could only
be obtained at 2:13 or 2:26, but at both of those places, the other process must have either the parent or
the child node locked, which is impossible. Hence no other process can try to refer to the node again.
The process which frees the node does not refer to the node again before moving to some different node,
after which it can never get a pointer to the node again. [

Proposition The descent to a left child and move to a sibling are safe, i.e., the nodes cannot be deleted
before the active_workers field is increased.

Proof These situations occur at lines 2:11 to 2:14 and 2:30 to 2:32. For the first situation to be unsafe,
the child must be deleted as the process moves to the child, but this cannot happen because a deleting
process must lock the child and its parent first. For second case, the process moving right must have
locked the previous node, and a deleting process must lock the same node in order to remove the right
sibling. [

Eventual termination of the search is guaranteed by unlinking each node from the tree as soon as no
more work is possible in the subtree rooted at that node.

7. Performance Analysis

We have tested Parthenon on a large number of examples collected by Stickel [9]. This section presents
speedup figures for some of the problems, and analyzes the performance of the scheduling algorithm
outlined in Section 6. These examples were chosen to illustrate the effects of branching factor and
problem size, and do not necessarily show the best speedups obtained. Even so, for the larger problems,
the execution times show an almost linear speedup with the number of processors. Furthermore, as far as
we have been able to determine, our scheduling algorithm does not deteriorate as the number of processors
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is increased. Whether this will remain true with very large numbers of processes remains to be seen. At
this point, we feel that the results justify our choice of scheduling algorithm.

The first table presents some statistics on the nature of the problems, including measurements of the
average branching factor in the proof tree, the average number of attempted unifications at a choice
point, and the percentage of bindings which are conditional. Though these figures vary between different
executions of the same problem, the differences are minor.

% conditional | Average actual | Average attempted
Problem bindings branching factor | branching factor
apabhp 25.40 2438 7.732
1s36 38.08 2.180 8.432
has-parts2 28.21 1.600 4.098
wosl 48.21 1.970 6.374
wos4 34.43 3.214 8.713
wos10 3544 2.104 7.281
wos21 31.42 2.098 8.183

Table 1: Problem characteristics

To measure the speedup figures, we varied the number of processors from 1 to 15. The results are
summarized in Tables 2 and 3. It is apparent from the tables that there is an almost linear speedup in
the number of attempted inferences per second. Table 3 shows that the execution times for some of the
problems represent superlinear speedups. This results from a proof being found after only a small part
of the tree has been searched (relative to the single processor case).

Attempted inferences per second, speedup
Number of processors

Problem 1 5 10 15
apabhp 1493 | 7159, 4.8 | 13256, 8.9 | 17382, 11.6
1s36 2615 | 13365, 5.1 | 24498, 9.4 | 30936, 11.8
has-parts2 | 2314 | 10129, 4.4 | 14395, 6.2 | 11242, 4.9
wosl 1752 | 7919, 4.5 | 14099, 8.1 | 14163, 8.1
wos4 1537 | 7452, 4.8 | 14147,9.2 | 18467, 12.0
wos10 2730 | 11896, 4.4 | 23645, 8.7 | 29940, 11.0
wos21 1708 | 8453, 5.0 | 16551, 9.7 | 21576, 12.7

Table 2: Inference rates

Table 4 gives percentages of times the processes have to move a certain number of nodes in the proof
tree to find work. A move of distance 0 means that a process is able to find work at the choice point where
it starts its search for open alternatives. The table indicates that these percentages are generally insensitive
to the number of processors used. A noticeable exception to the above observation is has-parts2, which
has a low branching factor. For this example, the average proportion of longer moves increases quite
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Execution time in seconds, speedup
Number of processors

Problem 1 5 10 15
apabhp 8759 | 213.8, 4.1 | 154.1, 5.7 93.3,94
1s36 1735.3 | 268.7, 6.5 | 238.0, 7.3 | 1434, 12.1
has-parts2 13.0 1.8,7.1 14,93 1.6, 8.1
wosl 477 | 144,33 34,140 37,129
wos4 8692.1 | 237.4, 36.6 | 163.3, 53.2 | 1554, 55.9
wos10 129.3 | 33.1,39 109, 11.8 8.2, 15.8
wos21 2164.6 | 371.2,5.8 |332.2,6.5 |2405,90

Table 3: Execution times

significantly as the number of processors is increased from 1 to 15 (though the total percentage of long
moves is still quite low).

8. Conclusions and Directions for Future Research

Parthenon has been successful in using data structures developed for parallel implementations of logic
programming languages like Prolog. Since our present implementation is an interpreter, it is unable to
exploit the structure of terms to minimize the cost of unification, even though this information is known
a priori. Although generating code for a parallel version of the Warren Abstract Machine is likely to be
more complicated in the full first order case than in the Hom clause case, we hope to have a compiler
running by the end of the year. We think this should speed up the system significantly, perhaps even by
another order of magnitude.

In the next few months we also hope to experiment with alternative scheduling algorithms. Since the
scheduling algorithm determines which node of the proof tree to expand next, it is crucial for obtaining
a high inference rate. There are several different ways of implementing this procedure including the one
we describe in Section 6 and the two mentioned by Warren in his paper on the SRI model. While we
believe that our present scheduling algorithm is the most appropriate for large numbers of processors, we
plan to study several different schemes and verify this.

Depth-first iterative deepening clearly works better than best-first search. The problem with our first
implementation using best-first search was the amount of memory required by the priority queue as we
searched deeper in the tree. The depth-first strategy, on the other hand, only uses space proportional to
the product of the search depth and the number of processors while still maintaining completeness. It also
avoids the context switch that was necessary in the earlier scheme when a processor finished computing
the resolvents of the current center clause and had to get a new center clause from the priority queue.

Finally, an important contribution of our project is our demonstration that the proof trees for a large
number of well known examples from resolution theorem proving have high branching factors which can
be exploited by a parallel theorem prover. We conjecture that this is true in general. From the results that
we have obtained so far, it appears that typical theorems will have even higher branching factors than is
common in logic programs. One possible explanation for this is that computational problems which are
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Percentage of moves

Number of Move length
Problem | processors 0 1 2 3 4 5+
apabhp 1 91.030 | 6.864 | 1.553 | 0.406 | 0.108 | 0.039
5 90.169 | 6.830 | 1.542 | 0.394 | 1.029 | 0.037
10 91.162 | 6.828 | 1.489 | 0.383 | 0.100 | 0.039
15 91.169 | 6.781 | 1.512 | 0.390 | 0.010 | 0.048
1s36 1 89.125 | 10.303 | 0.503 | 0.065 | 0.004 | 0.001
5 88.774 | 10.620 | 0.529 | 0.072 | 0.004 | 0.001
10 89.117 | 10.274 | 0.535 | 0.068 | 0.005 | 0.002
15 89.089 | 10.324 | 0.502 | 0.066 | 0.008 | 0.012
has-parts2 1 86.837 | 9.053 | 2.778 | 1.129 | 0.191 | 0.013
5 85.896 | 9.606 | 2.892 | 0.998 | 0.149 | 0.458
10 85.153 | 9.247 | 2.696 | 1.007 | 0.320 | 1.577
15 83.546 | 8.704 | 2.788 | 1.140 | 0.516 | 3.307
wosl 1 82.316 | 16.585 | 0.956 | 0.121 { 0.019 | 0.004
5 82.881 | 15.941 | 1.002 | 0.146 | 0.023 | 0.007
10 82.859 | 15.910 | 1.005 | 0.152 | 0.028 | 0.046
15 82.792 | 16.003 | 0.994 | 0.144 | 0.025 | 0.041
wos4 5 90.756 | 9.059 | 0.167 | 0.013 | 0.003 | 0.001
10 89.936 | 9.849 | 0.197 | 0.015 | 0.003 | 0.001
15 89.566 | 10.201 | 0.207 | 0.019 | 0.005 | 0.003
wos10 1 90.009 [ 9.651 | 0.284 | 0.057 | 0.001 | 0.000
5 88.611 | 10.944 | 0.350 | 0.087 | 0.005 | 0.003
10 80.184 | 10.441 | 0.289 | 0.067 | 0.005 | 0.007
15 89.172 | 10.462 | 0.295 | 0.059 | 0.004 | 0.008
wos21 1 88.886 | 9.832 | 1.067 | 0.185 | 0.026 | 0.004
5 89.066 | 9.529 | 1.167 | 0.203 | 0.031 | 0.005
10 89.129 | 9.452 | 1.176 | 0.206 | 0.032 | 0.005
15 89.154 | 9.421 | 1.178 | 0.208 | 0.033 | 0.006

Table 4: Performance of the scheduling algorithm
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essentially deterministic and therefore have a low branching factor tend to be solved algorithmically and
are not usually formulated as theorem proving problems. If our conjecture is correct, then parallelism is
likely to revolutionize the field of automatic theorem proving,.
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