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Abstract

We describe a method for using abstraction to reduce
the complexity of temporal logic model checking. The
basis of this method is a way of constructing an ab-
stract model of a program without ever examining the
corresponding unabstracted model. We show how this
abstract model can be used to verify properties of the
original program. We have implemented a system based
on these techniques, and we demonstrate their practi-
cality using a number of examples, including a pipelined
ALU circuit with over 101390 gtates.

1 Introduction

Complicated finite state programs arise in many ap-
plications of computing—particularly in the design
of hardware controllers and communication protocols.
When the number of states is large, it may be very dif-
ficult to determine if such a program is correct. Tem-
poral logic model checking [5, 15, 16, 17] is a method
for automatically deciding if a finite state program sat-
isfies its specification. A model checking algorithm for
the propositional branching time temporal logic CTL
was presented at the 1983 POPL conference [6]. The
algorithm was linear in both the size of the transition
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system (or model) determined by the program and in
the length of its specification. In the paper, it was used
to verify a simple version of the alternating bit protocol
with 20 states.

In the nine years that have passed since that paper
was published, the size of the programs that can be ver-
ified by this means has increased dramatically. By de-
veloping special programming languages for describing
transition systems, it became possible to check exam-
ples with several thousand states. This was sufficient
to find subtle errors in a number of nontrivial, although
relatively small, protocols and circuit designs [1]. Use
of boolean decision diagrams (BDDs) [2] led to an even
greater increase in size. Representing transition rela-
tions implicitly using BDDs made it possible to verify
examples that would have required 1020 states with the
original version algorithm [4]. Refinements of the BDD-
based techniques [3] have pushed the state count up over
10190 states. In this paper, we show that by combining
model checking with abstraction, we are able to handle
even larger systems. In one example, we are able to
verify a pipelined ALU circuit with 64 registers, each
64 bits wide, and more than 10'3% reachable states.

Our paper consists of three main parts. In the first,
we propose a method for obtaining abstract models of
a program. In the second, we show how these abstract
models can be used to verify properties of the program.
Finally, we suggest a number of useful abstractions, and
we illustrate them via a series of examples.

We model programs as transition systems in which
the states are nm-tuples of values. Each component of
a state represents the value of some variable. If the
ith component ranges over the set D;, then the set of
all program states is Dy x --- x D,. Abstractions will
be formed by giving surjections hq, ..., h, which map
each D; onto a set D} of abstract values. The surjec-
tion A = (hy,..., h,) then maps each program state to
a corresponding abstract state. This mapping may be
applied in a natural way to the initial states and the
transitions of the program. The result is a transition
system which we refer to as the canonical abstraction



of the original program. If it is possible to construct
this abstraction, we can use it to verify properties of
the program. However, if the state space of the tran-
sition system is infinite or very large, this may not be
feasible. In the finite state case, it may be possible to
represent the system using BDD-based methods, but
the computational complexity of building the canonical
abstraction may still be very high. To circumvent these
problems, we show how to derive an approzimation to
the canonical abstraction. The approximation may be
constructed directly from the text of the program with-
out first building the original transition system. We
show how this can be accomplished by symbolic execu-
tion of the program over the abstract state space.

The specification language that we use is a proposi-
tional temporal logic called CTL* [7]. This logic com-
bines both branching time operators and linear time
operators and is very expressive. Formulas are formed
using the standard operators of linear temporal logic
and two path quantifiers, V and 3. The formula V(¢)
is true at a state whenever ¢ holds on all computa-
tion paths starting at the state. The formula 3(¢) is
true whenever ¢ holds for some computation path. The
atomic state formulas in the logic are used to specify
that a program variable has a particular abstract value.
Because of this, formulas of the logic may be interpreted
with respect to either the original transition system or
its abstraction. Our goal is to check the truth value of
a formula in the abstract system, and conclude that it
has the same truth value in the original system. We
prove that this approach is conservative if we restrict
to a subset of the logic called VCTL* [12] in which only
the V path quantifier is allowed. If a formula is true in
the abstract system, we can conclude that the formula
is also true in the original system. However, if a for-
mula is false in the abstract system, it may or may not
be false in the original system. In addition, we show
that if the equivalence relations induced by the h; are
congruences with respect to the operations used in the
program, then the method is ezact for full CTL*. That
1s, a formula is true in the abstract system if and only
if it is true of the original system.

We suggest several different abstractions that are use-
ful for reasoning about programs. These abstractions
include

1. congruence modulo an integer, for dealing with
arithmetic operations;

2. single bit abstractions, for dealing with bitwise log-
ical operations;

3. product abstractions, for combining abstractions
such as the above; and

4. symbolic abstractions. This is a powerful type of
abstraction that allows us to verify an entire class
of formulas simultaneously.
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We demonstrate the practicality of our methods by
considering a number of examples, some of which are
too complex to be handled by the BDD-based methods
alone. These examples include a 16 bit by 16 bit hard-
ware multiplier and a pipelined ALU circuit with over
4000 state variables.

Numerous other authors have considered the prob-
lem of reducing the complexity of verification by us-
ing equivalences, preorders, etc. For example, Graf
and Steffen [11] describe a method for generating a
reduced version of the global state space given a de-
scription of how the system is structured and specifica-
tions of how the components interact. Clarke, Long and
McMillan [8] describe a related attempt. Grumberg and
Long [12] propose a framework for compositional verifi-
cation based on YCTL*. Dill [10] has developed a trace
theory for compositional design of asynchronous circuit.
But, these methods are mainly useful for abstracting
away details of the control part of a system.

There has been relatively little work on applying
model checking to systems which manipulate data in
a nontrivial way. Wolper [18] demonstrates how to
do model checking for programs which are data inde-
pendent. This class of programs, however, is fairly
small. Our approach makes it possible to handle pro-
grams which have some data dependent behavior. More
recently, BDD-based model checking techniques [4, 9]
have been used to handle circuits with data paths.
These methods, while much more powerful than explicit
state enumeration, are still unable to deal with some
systems of realistic complexity. Some examples in sec-
tion 9, for instance, could not be handled directly with
these approaches. Our method works well in conjunc-
tion with these techniques, however.

Of the work on using abstraction to verify finite state
systems, the approach described by Kurshan [14] is most
closely related to ours. This approach has been auto-
mated in the COSPAN system [13]. The basic notion of
correctness is w-language containment. The user may
give abstract models of the system and specification in
order to reduce the complexity of the test for contain-
ment. To ensure soundness, the user specifies homo-
morphisms between the actual and abstract processes.
These homomorphisms are checked automatically. Qur
work differs from Kurshan’s in several important re-
spects.

1. Our specifications are given in the temporal logic
CTL* which can express both branching time and
linear time properties. Moreover, we are able to
identify precisely a large class of temporal formu-
las for which our verification methodology is sound.
Not all properties are preserved in going from the
reduced system to the original, so this is quite im-
portant.

2. Our abstractions correspond to language homo-



morphisms induced by boolean algebra homomor-
phisms in Kurshan’s work. For this type of abstrac-
tion, we show how to derive automatically an ap-
prozimation to the abstracted state machine. This
approximation is constructed directly from the pro-
gram, so that it is unnecessary to ezamine the state
space of the unabstracted machine. There is no
need to check for a homomorphism between the ab-
stract and unabstracted systems, and it is possible
to apply our technique to construct approximations
for systems with infinite state spaces.

3. The particular abstraction mappings that we use
also appear to be new. We demonstrate that these
abstractions are powerful enough and that the cor-
responding approximations are accurate enough to
allow us to verify interesting properties of complex
systems.

Our paper is organized as follows: the next section
is a brief introduction to BDDs and symbolic model
checking. This is followed by a discussion of transition
systems, homomorphisms, and the notion of abstraction
that we use. Section 4 discusses the compilation of pro-
grams into transition systems. In the following section,
we show how to construct the approximation directly
from a program without first building the original tran-
sition system. The conditions required for exactness
are discussed in section 6. Section 7 is the heart of our
paper; we relate the theory developed in the previous
sections to the temporal logic that we use for specifica-
tions. In particular, we prove that our method is con-
servative in the case of YCTL* formulas. We also show
that if the approximation is exact, then all CTL* formu-
las are preserved. Section 8 describes the programming
language that is used for specifying finite state systems.
Section 9 explains some of the abstractions that we have
developed for reasoning about complex systems and il-
lustrates their use with examples. The paper concludes
with a discussion of some directions for future research.

2 Boolean decision diagrams

Boolean decision diagrams (BDDs) are a canonical
form representation for boolean formulas described by
Bryant [2]. They are often substantially more compact
than traditional normal forms such as conjunctive nor-
mal form and disjunctive normal form, and they can
be manipulated very efficiently. A BDD is similar to
a boolean decision tree, except that its structure is a
directed acyclic graph rather than a tree, and there is a
strict total order placed on the occurrence of variables as
one traverses the graph from root to leaf. Consider, for
example, the BDD of figure 1. It represents the formula
(aAb)V(cAd), using the variable ordering a < b < ¢ < d.
Given an assignment of boolean values to the variables
a, b, ¢ and d, one can decide whether the assignment
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Figure 1: A BDD representing (a Ab) V (¢ A d)

makes the formula true by traversing the graph begin-
ning at the root and branching at each node based on
the value assigned to the variable that labels the node.
For example, the valuation {a=1,b=0,c=1,d=1}
leads to a leaf node labeled 1, hence the formula is true
for this assignment.

Bryant showed that given a variable ordering, there
is a canonical BDD for every formula. He also gives al-
gorithms of linear complexity for computing the BDD
representations of —f and f V g given the BDDs for
formulas f and g. Quantification over boolean vari-
ables and substitution of a variable by a formula are
also straightforward using this representation.

Given a finite state program, let V be its set of
boolean state variables. We identify a boolean formula
over V with the set of valuations which make the for-
mula true. A valuation of the variables corresponds in
a natural way to a state of the program; hence the for-
mula may be thought of as representing a set of program
states. The BDD for the formula is in practice a concise
representation for this set of states. In addition to rep-
resenting sets of states of a program, we must represent
the transitions that the program can make. To do this,
we use a second set of variables V’. A valuation for the
variables in V and V' can be viewed as designating a
pair of states of the program. Such a pair can be viewed
as corresponding to a transition between the states of
the pair. Thus, we can represent sets of transitions us-
ing BDDs in much the same way as we represent sets of
states. Many verification algorithms such as temporal
logic model checking and state machine comparison can
make effective use of this representation.



3 Transition systems and abstractions

We consider programs with a finite set of variables
vy, V2, ..., Un. If each variable v; ranges over a set D;
of possible values, then the set of all possible program
states is Dy X Dy X - - X Dy, which we denote by D. We
represent the possible behaviors of the program with a
set of transitions between states. This notion is formal-
ized in the following definition.

Definition 1 A transition system over D is a triple
M = {S,I, R) where

1. S =D is a set of states,

2. 1 C S is a set of initial states; and

3. RC S x S is a transition relation.

Abstractions will be formed by letting the program
variables range over sets Dj of abstract values. We will
give mappings to specify the correspondence between
unabstracted and abstracted values. Formally, we let
hi, h2, ..., hy be sugjections, with h;:D; — D] for
each 7. These mappings induce a surjection h: D — D’
defined by

h((d, ... dn)) = (R1(d1), - ., hn(dn))-

Alternatively, the relation between unabstracted and
abstracted values can be specified by means of a set of
equivalence relations. In particular, each h; corresponds
to the equivalence relation ~; C D; x D; defined by

h,;(di) = hi(ei).

The mapping h induces an equivalence relation ~ C
D x D in the same manner: (di,...,dn) ~ (e1,...,€n)
if and only if dy ~1 €A« ‘Adp ~,, €,. We will sometimes
specify abstractions by mappings and sometimes specify
them by equivalence relations. The two methods are
entirely equivalent.

Fix a transition system M over D) and a surjec-
tion h:D — D’. By applying h to the components
of M, we obtain an abstract version of M.

di ~; e; if and only if

Definition 2 The canonical abstraction of M induced
by h 1is the transition system Maps over D' defined as
Sfollows.

1. Saps = D'.
2. Lns(d") if and only if 3d (h(d) = d’ A I(d)).
3. Rans(d',e') if and only if
3d3e (h(d) = d’' A h(e) = ¢’ A R(d,e)).
Definition 3 A homomorphism from a transition sys-

tem M over D to a transition system M' over D' is a
surjection h: D — D' such that:

1. I(d) implies I' (h(d)); and
2. R(d,e) implies R (h(d), h(e)).

Proposition 1 The mapping h from M to Mys s a
homomorphism.
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As we will show in section 7, an abstract transition
system such as Myps may be used to deduce properties
of M. Moreover, using an abstract transition system
instead of M may greatly reduce the complexity of au-
tomatically verifying these properties. Unfortunately, it
is often expensive or impossible to construct Mg di-
rectly because we must have a representation of M to
do the abstraction. We may not be able to obtain such
a representation if D is infinite or simply too large for
our system to handle. In BDD-based systems, even if
we are able to represent M, the complexity of comput-
ing the relational products in the definition of M,ps is
often extremely high. In section 5, we discuss a method
for circumventing these problems. The basic idea will
be to take advantage of structure in the transition sys-
tem M. Such structure arises because M is typically
given by a relatively concise program. We show how to
compute an approximation to Mays that can be derived
directly from the program text. Hence, it is never nec-
essary to construct a representation of M. In addition,
the approximation is often accurate enough to allow us
to verify interesting properties of the program.

4 Compilation

The approximation to Mg, will be constructed by
performing an “abstract compilation” of the program.
Hence we begin by considering how programs are com-
piled into transition systems. At a conceptual level, the
compilation may be viewed as a two step process. First,
predicate logic formulas R and J are constructed to rep-
resent the program’s actions and initial states. These
formulas are built from a set of primitive relations that
represent the operations such as addition and compari-
son used in the program. Second, the formulas are inter-
preted to derive the actual transition system. By think-
ing of the process at this level, we can avoid low-level
details which would tie the discussion to a particular
programming language. Below, we illustrate how for-
mulas representing the actions and initial states might
be derived. The construction is similar to that used to
give the relational semantics of an imperative program-
ming language or to derive verification conditions in the
inductive assertions method.

First note that a precondition-postcondition seman-
tics is not sufficient for our purposes since we are in-
terested in the temporal behavior of programs. For this
reason, there must be some convention about when time
passes during the execution of the program. We assume
that there are a finite set of control points in the pro-
gram (typically chosen by the user) and that executing a
sequence of statements between two consecutive control
points requires exactly one time unit. To avoid having
infinite sequences of statements take a finite amount of
time, we assume that every path through a loop body



must contain at least one control point. Hence it is not
necessary to deal with loops explicitly; they are implicit
in the sequencing of transitions between control points.
We will assume that the intervals between consecutive
control points are sequences of assignment statements
and boolean conditions that are derived from the con-
ditional statements in the program. To begin, we ex-
amine how formulas representing these intervals can be
derived.

Consider an assignment statement, say v; 1= v;. The
formula T'(vy,...,vn,v},...,v,) for such a statement
contains two parts. The first specifies that the value
of v; after the statement (referred to as v}) is equal to
the value of v; before the statement. The second spec-
ifies that no other variables change. For this particular
example, we obtain

vé:vj/\/\vi,::vk.
ki
When the statement is more complex, we introduce ad-
ditional temporary variables to hold intermediate re-
sults. For example, v; := v; 4+ (v; — vx) would be repre-
sented by the formula

3t (P_(vj,ve,t) A Py(vi,t,v))) A /\ v = vy,
1#i
where P_ and P, are primitive relations representing
subtraction and addition, respectively.

For boolean conditions, such as v; > v;, T again con-
tains two parts. The first specifies that the condition
evaluates to the boolean value true (represented by the
primitive relation Pyy.). The second specifies that no
variables change. For this example, we obtain

3t (Porue(t) A Ps(vi,v5,8)) A A\ vh = vy
k

To find the formula representing a sequence S;; Sa,
we first find the formulas 7) representing S; and T3
representing Sz. The formula for the sequence is formed
by taking a relational product:

Joy' ... 3, (Ti(vs, . ..
A Tg(l}i’, . e

n "
yUn, 01 s. oo, 00)

i) ’U:.l)) *

The logical formula for the entire program is formed
by combining the formulas for its intervals. We intro-
duce an additional program variable p that ranges over
the set of the program’s control points. We also assume
that there are primitive relations representing each of
the individual control points. The formula for the entire
program is a disjunction with one disjunct per interval.
Each of these disjuncts is of the form

Ci(®) A Tja(vs, - 5 R) ACL(P),

where C; is the relation for control point j, Cy is the
relation for control point k, and Tj; is the formula for
the interval between control points j and k.

"o
s Upy Vyy et

/
3 VYn, Yy, ..
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In an actual implementation, it is possible to avoid
enumerating all intervals by treating the program graph
as a DAG rather than a tree. In addition, formulas rep-
resenting the transition relation and initial states of the
program will not actually be constructed; instead, the
program is “symbolically executed” to derive the cor-
responding transition system. Starting from the initial
states of the program, we simulate the execution of the
program from each state. As we do the simulation, we
record which states transitioned to which other states.
A key point is that this simulation is driven by knowing
how the operations in the program behave, i.e., how the
primitive relations are interpreted.

5 Computing approximations

In the previous section, we mentioned that the initial
states and transition relation of a transition system M
could be represented by formulas J and R. Now we
examine the relationship between these formmulas and
similar formulas Japs and Raps for Maps. By applying
a certain transformation to these latter formulas, we
obtain formulas Jap, and Rapp describing an approxi-
mation Mapp t0 Maps. Throughout this section and the
next, we assume that ¢ and ¢ are relations built up
from the primitive relations representing the operations
in the program.

Recall that building M,y requires evaluating two re-
lational products, both involving existential quantifica-
tion over the elements of D. For conciseness, we will
denote this kind of existential abstraction using an op-
erator []. That is [¢(z1,...,2m)] is an abbreviation
for

Jyr ... Jym (h(yl) =1 A "’/\h(ym) =Tm

A ¢(y1) LR :ym))
Note that [¢(z1,...,2m)] has the same free variables
as ¢(21,...,2m). In the latter, the variables range over

elements in the D;, while in the former they range over
elements in the D,. Based on the definition of Mgy, we
observe that if J and R are the formulas representing
I and R, then Jops = [J] and Raps = [R] are formulas
representing s and Raps.

We now define a transformation T on formulas [4].
The idea of T will be to simplify the formulas to which
[] is applied. We assume that ¢ is given in negation
normal form, i.e., negations are applied only to primitive
relations.

1. If P is a primitive relation
T([P(z1,-. - 2m)]) = [P(z1,.. ., Zm)]
T([~P(x1,...,2m)]) = [~P@1,...,%m)]
2. 7(1¢ A ) = T([6]) A T([¥])-
3. 7([e v ¥)) = T([¢]) v T([%))-



4. ‘J’([Ex ¢]) =3z T([¢])
5. T(IVe ¢]) = Va2 7([¢]).

In other words, T pushes the existential abstractions
inwards.

We note that applying T to a formula results in a
formula which is true more often. This is an impor-
tant point since, as will be seen in section 7, it ensures
that our methodology will be conservative. Formally,
we have the following result.

Theorem 1 [¢] — ‘T([d’])

We will let Mapp be the transition system over D’
whose initial states and transition relation are repre-
sented by the formulas Jaopp = T(Jabs) and Rapp =
T(Rabs) respectively.

Proposition 2 The following relationships hold be-
tween the components of Myus and the components

of Mapp.-

1. Saps = Sapp;
2. Iabs C Iapp; and
3. Rabs g Rapp'

Observe that Japp and Rapp have essentially the same
structure as J and R. The only difference is at the low-
est level; the latter formulas have primitive relations and
their negations, while the former have abstract versions
of these same relations. Thus, just as we can derive
M by symbolically executing the program using the in-
terpretations of the primitive relations, we can derive
Mpp by symbolically executing the program using the
abstracted interpretations of the primitive relations.

We now consider the relation between M and Mapp.
Recall that the mapping h is a homomorphism from M
to Mapbs. We also have the following property of homo-
morphisms.

Proposition 3 Let h be a homomorphism from M to
M, and let M" be a transition system such that

1. 8= 8";

9. I'C 1" and

3. RFRCR".

Then h is @ homomorphism from M to M".

Using the above properties, we can conclude that h is
also a homomorphism from M to Map,. We will discuss
the properties implied by this fact in section 7. The
relationship between M, Mays and Moy, is summarized
by the following diagram; here P is a program.
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compilation
P » M
abstract h
.- h
compilation
Y Y
M app > Mans

6 Exact approximations

In the previous sections, we demonstrated the exis-
tence of homomorphisms from M to Maps and Mypp.
These results will be used to show that our verifica-
tion methodology is conservative. In this section, we
consider additional properties which suffice to make the
method exact. Recall that each h; induces an equiva-
lence relation ~; on D;.

Definition 4 Let P(xy,...,2m,) be a relation with z;
ranging over D;;. The equivalence relations ~;; are a
congruence with respect to P if

Vdiey...dmeny, (d1 ~ip et AN Adp ~i em
—(P(dy,...,dn) & P(el,...,em))).

Theorem 2 If the ~; are congruences with respect to
the primitive relations and o = T*([¢]), then ¢ & [¢].

Corollary 1 If the ~; are congruences with respect to
the primitive relations, then Maps = Mapp.

Definition 5 An ezact homomorphism from a transi-
tion system M to a transition system M' is a homo-
morphism h from M to M’ with the following additional
properties.

1. I'(h(d)) implies I(d); and
2. R'(h(d),h(e)) implies R(d,e).

Theorem 3 If the ~; are congruences with respect to
the primitive relations, then h is an ezact homomor-
phism from M to Mans (and hence to Mapp).

7 Temporal logic

The logics that we will use for specifying properties will
be subsets of the logic CTL*. CTL* is a powerful tem-
poral logic that can express both branching time and
linear time properties. For convenience when defining
subsets of the logic, we will assume that all formulas are
given in negation normal form. That is, negations only
appear in atomic state formulas.



Definition 6 The logic CTL* [7] is the set of state for-
mulas given by the following inductive definition.

1. true and false are atomic state formulas. If v; s

a program varieble and d} € D}, then v; = d and

v; # d} are atomic state formulas.

If ¢ and 1 are state formulas, then A+ and ¢V

are state formulas.

. If ¢ is a path formula, then ¥(¢) and 3(@) are state
formulas.

. If ¢ is a state formula, then ¢ is a path formula.

. If ¢ and v are path formulas, then so are 9 Ay and
PV Y.

. If ¢ and v are path formulas, then so are X ¢, ¢ U
¥, and ¢ 'V .

We also use the following abbreviations: F ¢ and G ¢,

where ¢ is a path formula, denote (trueU¢) and (falseV

@) respectively.

CTL is the subset of CTL* that is obtained by elim-
inating rules 3 through 6 above and adding the rule.

3. If ¢ and ¢ are state formulas, then so are VX ¢,
X ¢,Y(¢ U%), A(¢UY), V(¢ V¢), and I($ V).
CTL is of interest because there is a very efficient model
checking algorithm for it [7]. VCTL* and VCTL [12]
are restricted subsets of CTL* and CTL respectively in
which the only path quantifier allowed is V. These two
logics are sufficient to express many of the properties
that arise when verifying programs. As we will see,
these logics will also be used when the conditions needed
for exactness do not hold.

We now define the semantics of CTL* for transition
systems M over D or D’. The atomic state formulas will
be interpreted slightly different depending on whether
the state set is abstract or not.

Definition 7 A path in M is an infinite sequence of
states 508182 ... such that for every i € N,
R(si,si+1).

The notation 7™ will denote the suffix of # which
begins at s,.

Definition 8 Satisfaction of a state formula ¢ by a
state s (s = ¢) and of a path formula ¥ by a path «
(7 = 4) is defined inductively as follows.

1. s = true, and s [~ false. If s = (e1,...,en) € D,
then s = (v; = d}) if and only if hi(e;) = d}. If
s = (e),...,ep) € D', then s = (v; = d)) if and
only if e = dj. In either case, s |= (v; Z d}) if and
only if it is not the case that s | (v; = dj).
sEONY ifandonlyifsk=d ands =Y. s E VY
tf and only if s = ¢ or s = 9.

s |= Y(é) if and only if for every path w starting
at s, m |= ¢. s |= (@) if and only if there exists a
path w starting at s such that = = ¢.
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7w k= ¢, where ¢ is a state formula, if and only if
the first state of m satisfies the state formula.

TE¢AYifandonlyifrEdandni=. 7k
oV ifand onlyifrl=¢ or = 4.
.mEXdifand onlyif rl = ¢. 7= ¢ U if and
only if there exists n € N such that 7™ = ¢ and for
alli<n, 7t ¢. 7 |E ¢V if and only if for all
n €N, if 1t = ¢ for alli < n, then 7" |= 9.

The notation M = ¢ indicates that every initial state
of M satisfies the formula .

We now turn to the main theorems. These results tell
us when it is sound to use abstraction to verify proper-
ties of a program.

Theorem 4 Suppose h be a homomorphism from M
to M’ and ¢ is a VCTL* formula. Then M’ &= ¢ implies

ME ¢.

Theorem 5 Suppose h is an eract homomorphism

from M to M' and ¢ is a CTL* formula. Then M = ¢
if and only if M' |= ¢.

8 A simple language

In this section, we briefly describe a language for spec-
ifying reactive programs. We will use this language in
the examples that follow. The language is procedural
and contains structured programming constructs, such
as while loops and non-recursive procedures. It is also
finite state: the user must specify a fixed number of bits
for each input and output in a program. The model of
computation is a synchronous one. At the start of each
time step, inputs to the program are obtained from the
environment. All computation in a program is viewed
as instantaneous. There is one special statement, wait,
which is used to indicate the passage of time. When
a wait statement is encountered, changes to the pro-
gram’s outputs become visible to the environment, and
a new time step is initiated. Thus, computation pro-
ceeds as follows: obtain inputs, compute until a wait is
encountered, make output changes visible, obtain new
inputs, etc. Aside from the wait statement, most of the
language features are self-explanatory.

A program in the language may be compiled into a
Moore machine for verification. Since the Moore ma-
chine for a program may have a large number of states
(even after abstraction), it is important not to gener-
ate an explicit-state representation of this machine. In-
stead, our compiler directly produces a BDD that rep-
resents the Moore machine. This BDD is used as the in-
put to a BDD-based model checking program. When a
program is compiled, the user may specify abstractions
for some of the inputs or outputs. By using the tech-
niques described earlier, the compiler directly generates
an (approximate) abstract Moore machine. There are a



input set[1]

input start[8]
output count{8] := 0
output alarm[l] :=1

loop
if set =1
count := start
else if count >0
count := count — 1
endif
if count =0
alarm =1
else
alarm := 0
endif
wait
endloop

Figure 2: An example program

number of abstractions built into the compiler, and the
user may define new abstractions by supplying proce-
dures to build the BDDs representing them. Abstract
versions of the primitive relations are computed auto-
matically.

Figure 2 is a small example program: a settable
countdown timer. The timer has two inputs, set and
start, which are one and eight bits wide respectively.
There are also two outputs: count, which is eight bits
wide and is initially zero; and alarm, which is one bit
and initially one. At each time step, the operation of
the counter is as follows. If set is one, then the counter
is set to the value of start. Otherwise, if the counter is
not zero, it is decremented. The alarm output is set to
one when count is zero, and to zero if count is nonzero.

9 Example abstractions

In this section, we discuss some abstractions which have
proved useful in practice. Each is illustrated with a
small example. The temporal logic formulas in this sec-
tion are written with some syntactic sugaring of the
atomic propositions in order to make them easier to
read.

9.1 Congruence modulo an integer

For verifying programs involving arithmetic operations,
a useful abstraction is congruence modulo a specified
integer m:

h(%) = i mod m.
This abstraction is motivated by the following proper-
ties of arithmetic modulo m.
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((i mod m) + (j mod m)) modm=i+j (mod m)
((i mod m) — (j mod m)) modm=i—j (mod m)
((i mod m)(j mod m)) mod m =4j (mod m)

In other words, we can determine the value modulo m of
an expression involving addition, subtraction and mul-
tiplication by working with the values modulo m of the
subexpressions.

The abstraction may also be used to verify more com-
plex relationships by applying the following result from
elementary number theory.

Theorem 6 (Chinese remainder theorem) If my,
ma, ..., My are positive integers which are pairwise rel-
atively prime, m = mymy...m,, and b, i1, s, ..., iy
are integers, then there is a unique integer 1 such that
for1<j<n,

b<i<b+m and 1=1;
Suppose that we are able to verify that at a certain
point in the execution of a program, the value of the
nonnegative integer variable z is equal to ; modulo m;
for each of the relatively prime integers my, ms, ..., m,.
Further, suppose that the value of z is constrained to
be less than mims ... m,. Then using the above result,
we can conclude that the value of z at that point in the
program is uniquely determined.

We illustrate this abstraction using a 16 bit by 16 bit
unsigned multiplier (see figure 3). The program has
inputs req, in! and in2. The last two inputs provide
the factors to operate on, and the first is a request sig-
nal which starts the multiplication. Some number of
time units later, the output ack will be set to true. At
that point, either oufput gives the 16 bit result of the
multiplication, or overflow is one if the multiplication
overflowed. The multiplier then waits for req to become
zero before starting another cycle. The multiplication
itself is done with a series of shift-and-add steps. At
each step, the low order bit of the first factor is exam-
ined; if it is one, then the second factor is added to
the accumulating result. The first factor is then shifted
right and the result is shifted left in preparation for the
next step.!

The specification we used for the multiplier was a
series of formulas of the form?

VG (ready A reg A (in1 mod m = ) A (in2 mod m = 7)

(mod m;).

10ne feature of the language which the program uses is the
ability to extend an operand to a specified number of bits. For
example, z:5 extends « to be 5 bits wide by adding leading 0 bits.
This facility is used to extend output and factor2 when adding
and shifting so that overflow can be detected. The statement
(overflow, output) := (output:17) + factor? sets output to the
16 bit sum of output and factor2, and overflow to the carry from
this sum. Also, # € 1 is « shifted left by one bit. Right shifts
are indicated using ». The break statement is used to exit the
innermost loop.

2This specification admits the possibility that the multiplier
always signals an overflow. We will verify that this is not the case
using a different abstraction (see subsection 9.2).



input inl[16)

input n2[16]

input req

output factor?[16] :=0
output factor2[16] := 0
output output[16]:= 0
output overflow := 0
output ack :=0

procedure waitfor(e)
while —e
wait
endwhile
endproc

loop
1: waitfor(req)
factorl := inl
factor2 = in2
output := 0
overflow := 0
walt
loop
if (factorl = 0) V (overflow = 1)
break
endif
if factor1{0} =1
(overflow, output) :=
(output:17) + factor?
endif
factorl := factor! > 1
wait
if (factorl = 0) V (overflow = 1)
break
endif
(overflow, factor2) := (factor2:17) < 1
wait
endloop
ack :=1
wait
wailfor(—req)
ack :=0
endloop

Figure 3: A 16 bit multiplier

— VY(=ack U ack A ok))
where
ok = (overflow V (output mod m = ij mod m)).

Here, ¢ and j range from 0 through m — 1, and ready is
an atomic proposition which is true when execution is
at the program statement labeled 1. The input in2 and
the outputs factor? and output were all abstracted mod-
ulo m. The output factor! was not abstracted, since
its entire bit pattern is used to control when factor2
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is added to output. We performed the verification for
m=2>5,7,9, 11 and 32. These numbers are relatively
prime, and their product, 110,880, is sufficient to cover
all 216 possible values of output. The entire verification
required slightly less than 30 minutes of CPU time on
a Sun 4. We also note that because the BDDs needed
to represent multiplication grow exponentially with the
size of the multiplier, it would not have been feasible
to verify the multiplier directly. Further, even check-
ing the above formulas on the unabstracted multiplier
proved to be impractical.

9.2 Representation by logarithm

When only the order of magnitude of a quantity is im-
portant, it is sormetimes useful to represent the quantity
by (a fixed precision approximation of) its logarithm.
For example, suppose ¢ > 0. Define

lgi = [logy(i + 1)1,
ie., lgiis 0if ¢ is 0, and for 7 > 0, Ig¢ is the smallest
number of bits needed to write ¢ in binary. We take
h(%) =lgz.

As an illustration of this abstraction, consider again
the multiplier of figure 3. Recall that a program which
always indicated an overflow would satisfy our previous
specification. We note that if 1gi+lg j < 16, then lgij <
16, and hence the multiplication of ¢ and j should not
overflow. Conversely, if 1gi + 1gj > 18, then lgij > 17,
and the multiplication of ¢ and j will overflow. When
lgi+1gj = 17, we cannot say whether overflow should
occur. These observations lead us to strengthen our
specification to include the following two formulas.

VG (ready A req A (1g inl +1gin2 < 16)
— Y(—ack U ack A =overflow))

VG (ready A req A (Iginl + g in2 > 18)
— Y(=ack U ack A overflow))

We represented all the 16 bit variables in the program
by their logarithms. Compiling the program with this
abstraction and checking the above properties required
less than a minute of CPU time.

9.3 Single bit and product abstractions

For programs involving bitwise logical operations, the
following abstraction is often useful:
h(i) = the jth bit of 7,

where j is some fixed number.
If Ay and h, are abstraction mappings, then

h(s) = (ha(), h2(9))
also defines abstraction mapping. Using this abstrac-

tion, it may be possible to verify properties that it is
not possible to verify with either h; or hy alone.



input in{16]

output parity[l] := 0
output 5{16] :=0
output done[l]:=0

b:=1in

wait

while b# 0
parity := parity & b[0]
b=b>1
wait

endwhile

done =1

Figure 4: A parity computation program

As an example of using these types of abstractions,
consider the program shown in figure 4. This program
reads an initial 16 bit input and computes the parity of
it. The output done is set to one when the computation
is complete; at that point, parity has the result. Let §:
be true if the parity of ¢ is odd. One desired property
of the program is the following.

1. The value assigned to b has the same parity as that
of in; and
2. parity ® {b is invariant from that point onwards.

We can express the above with the following formula.
—fin A VX (~fb AVG ~(parity & §b))
Viin A VX(ﬂb AYG(parity © ﬁb))

To verify this property, we used a combined abstraction
for in and b. Namely, we grouped the possible values
for these variables both by the value of their low order
bit and by their parity. The verification required only
a few seconds.

9.4 Symbolic abstractions

The use of a BDD-based compiler together with model
checker makes it possible to use abstractions which de-
pend on symbolic values. This idea can greatly increase
the power of a particular type of abstraction. For ex-
ample, consider a simple partitioning:

0, ifs ;
h(i):{ , ifi<a;

1, ifi> a.
where a is some fixed value. We might try to use such
an abstraction when the program we are trying to verify
involves comparisons. If two numbers are not equiva-
lent according to this abstraction, we can find the truth
value of a comparison between them. In most cases
however, using only this single abstraction would not
imply much about the unabstracted program’s behav-
ior. Much more information may be obtained by letting
a be a symbolic constant. Using such an abstraction
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allows us to verify that a formula is true for all possible
abstract programs obtainable by varying a. Thus, we
can effectively verify an entire class of properties for the
unabstracted program.?

As an example of using this abstraction, consider the
program of figure 5. This program represents a cell
in a linear sorting array. There is one cell for each
integer to be sorted, and the cells are numbered con-
secutively from right to left. In the array, each cell’s
left and leftsorted inputs are connected to its left neigh-
bor’s y and sorted outputs, and each cell’s right input is
connected to its right neighbor’s z output. The values
to be sorted are the values of the z outputs. The sort
proceeds in cycles. During each cycle, exactly half the
cells (either all the odd numbered cells or all the even
numbered cells) will have their comparing output equal
to one. These cells compare their own z output with
that of their right neighbor. The smaller of these values
1s placed in y. In addition, if the values were swapped,
the cell’s sorted output is set to zero. During the next
clock period, the right neighbor’s z and sorted values
are copied from the first cell’s y and sorted outputs.
When the rightmost cell’s sorted output becomes one,
the sort is complete. In this example, we consider an
array for sorting eight numbers.*

The properties which we verified are:

1. for every a, eventually the values of the = outputs
are such that all numbers which are less than «
come before all numbers which are greater than
or equal to @, and this condition holds invariantly
from that point on; and

2. for every a, the number of the z outputs which are
less than a is invariant except when elements are
being swapped.

The first property implies that the array is eventually
sorted. The second one implies that the final values of
the z outputs form a permutation of the initial values.

We performed the verification by abstracting all the
16 bit variables in the program as described above. The
temporal formulas corresponding to the two properties
are

YFVG((z[1] < aVz[2] > a)A-+ A(z[7] < aVz[8] > a))

3In our compiler, non-symbolic abstractions are specified by
giving a relation H(d, d’) which represents A(d) = d’. For a sym-
bolic abstraction, this relation is extended with additional pa-
rameters which are the symbolic constants it depends on. The
BDD representation of the final Moore machine will depend on
these symbolic constants. The model checker simply treats the
symbolic constants as additional state variables.

4In this program, z and y may have any initial values. The
comparing output is set to zero or one depending on the cell's
position in the array. The left and right ends of the sorting array
are dummy cells for which z is 216 — 1 and 0 respectively. The
left cell’s sorted output is also fixed at 1.



input left{16]
input leftsorted[1]
output sorted[1] :=0
output comparing[l] ;=0 or 1
output swap[l] := 0
output z[16]
output y[16]
input right[16]
loop

if comparing =1

swap := (z < right)

wait
if swap =1
y:=z
z = right
sorted := 0
else
y = right
endif
wait
else
wait
wait
z = left
sorted := leftsorted
endif
comparing := —comparing
1: wait
endloop

Figure 5: A sorting cell program

and
(Tiai(elil <) =n)
— VG((E?:I(x[i] <a)=n)V ﬁstable).

Here, the summation denotes the number of formu-
las z[i] < a which are true, and stable is an atomic
proposition which is true when every cell is executing
the statement labeled 1.5 Verifying these properties re-
quired just under five minutes of CPU time. In addition,
checking these properties on the unabstracted program
was not feasible due to space limitations.

We also used symbolic abstractions to verify a simple
pipeline circuit. This circuit is shown in figure 6 and is
described in detail elsewhere [3, 4]. It performs three-
address arithmetic and logical operations on operands
stored in a register file.

We used two independent abstractions to perform
the verification. First, the register addresses were ab-
stracted so that each address was either one of three
symbolic constants (ra, rb or r¢) or some other value.

5We also verified the property VG VF stable to check that the
cells maintain lockstep.
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Figure 6: Pipeline circuit block diagram

This abstraction made it possible to collapse the en-
tire register file down to only three registers, one for
each constant. The second abstraction involved the in-
dividual registers in the system. In order to verify an
operation, say addition, we create symbolic constants
ca and cb and allow each register to be either ca, cb,
ca+ cb or some other value. As part of the specification,
we verified that the circuit’s addition operation works
correctly. This property is expressed by the temporal
formula

VYG((srcl = ra) A (sre2 = rb) A (dest = rc) A —stall
— YXVX((regra = ca) A (regrb = cb)
— VX (regrc = ca + cb))).

This formula states that if the source address registers
are rg¢ and rb, the destination address register is rc, and
the pipeline is not stalled, then the values in registers
ra and rb two cycles from now will sum to the value in
register rc three cycles from now. The reason for using
the values of registers ra and b two cycles in the future
is to account for the latency in the pipeline.

The largest pipeline example we tried had 64 regis-
ters in the register file and each register was 64 bits
wide. This circuit has more than 4,000 state bits and
nearly 1013% reachable states. The verification required
slightly less than six and one half hours of CPU time.
In addition the verification times scale linearly in both
the number of registers and the width of the registers.
For comparison, the largest circuit verified by Burch et
al. [3] had 8 registers, each 32 bits, and the verification
required about four and one half hours of CPU time on
a Sun 4. In addition the verification times there were
growing quadratically in the register width and cubi-
cally in the number of registers.



10 Conclusion

We have described a simple but powerful method for us-
ing abstraction to simplify the problem of model check-
ing. There are two parts to this method. First, we
have shown how to extract abstract finite state ma-
chines directly from finite or infinite state programs.
The construction guarantees that the actual state ma-
chine for the program is a refinement of the extracted
state machine. Second, we have examined when sat-
isfaction of a formula by an abstract machine implies
satisfaction by the actual machine. For formulas given
in the logic YCTL*, this is always the case. We have
also implemented a symbolic verification system based
on these ideas and used it to verify a number of non-
trivial examples. In the process of doing these exam-
ples, we have found a number of useful abstractions.
Our work on generating abstract systems could be used
with other verification methodologies, such as testing
language containment, as well.

There are a number of possible directions for future
work. One problem with using our current approach
with logics like CTL*, which can express the existence
of a path, is in ensuring the strict exactness conditions.
By using a more complex finite state model such as
AND/OR graphs, it should be possible to extend the
techniques and obtain a conservative model checking
algorithm for such logics. We also wish to explore thor-
oughly the problem of generating abstractions for infi-
nite state systems. The important step in doing this
is determining abstract versions of the primitive rela-
tions. Some of the techniques and results from auto-
mated theorem proving, term rewriting, and algebraic
specification of abstract data types should prove useful
for this problem. Similar techniques would be useful
for studying the flow of data in a system. Data items
might be represented as terms in the Herbrand universe
and functional transformations on the data would cor-
respond to building new terms from the input terms.
Given an equivalence relation of finite index on terms,
we would derive abstract primitive relations for the op-
erations and use these to produce an abstract version of
the system.
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