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We describe a method for using abstraction to reduce

the complexity of temporal logic model checking. The

basis of this method is a way of constructing an ab-

stract model of a program without ever examining the

corresponding unabstracted model. We show how this

abstract model can be used to verify properties of the

original program. We have implemented a system based

on these techniques, and we demonstrate their practi-

cality using a number of examples, including a pipelined

ALU circuit with over 101300 states.

1 Introduction

Complicated finite state programs arise in many ap-

plications of computing—particularly in the design

of hardware controllers and communication protocols.

When the number of states is large, it may be very dif-

ficult to determine if such a program is correct. Tem-

poral logic model checking [5, 15, 16, 17] is a method

for automatically deciding if a finite state program sat-

isfies its specification. A model checking algorithm for

the propositional branching time temporal logic CTL

was presented at the 1983 POPL conference [6]. The

algorithm was linear in both the size of the transition
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system (or model) determined by the program and in

the length of its specification. In the paper, it was used

to verify a simple version of the alternating bit protocol

with 20 states.

In the nine years that have passed since that paper

was published, the size of the programs that can be ver-

ified by this means has increased dramatically. By de-

veloping special programming languages for describing

transition systems, it became possible to check exam-

ples with several thousand states. This was sufficient

to find subtle errors in a number of nontrivial, although

relatively small, protocols and circuit designs [1]. Use

of boolean decision diagrams (BDDs) [2] led to an even

greater increase in size. Representing transition rela-

tions implicitly using BDDs made it possible to verify

examples that would have required 1020 states with the

original version algorithm [4]. Refinements of the BDD-

based techniques [3] have pushed the state count up over

10100 states. In this paper, we show that by combining

model checking with abstraction, we are able to handle

even larger systems. In one example, we are able to

verify a pipelined ALU circuit with 64 registers, each

64 bits wide, and more than 101300 reachable states.

Our paper consists of three main parts. In the first,

we propose a method for obtaining abstract models of

a program. In the second, we show how these abstract

models can be used to verify properties of the program.

Finally, we suggest a number of useful abstractions, and

we illustrate them via a series of examples.

We model programs as transition systems in which

the states are n-tuples of values. Each component of

a state represents the value of some variable. If the

ith component ranges over the set Di, then the set of

all program states is D1 x . . . x Dn. Abstractions will

be formed by giving subjections hl, . . . . hn which map

each Di onto a set D: of abstract values. The surjec-

tionh=(hl,.. ., h.) then maps each program state to

a corresponding abstract state. This mapping may be

applied in a natural way to the initial states and the

transitions of the program. The result is a transition

system which we refer to as the canonical abstraction
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of the original program. If it is possible to construct

this abstraction, we can use it to verify properties of

the program. However, if the state space of the tran-

sition system is infinite or very large, this may not be

feasible. In the finite state case, it may be possible to

represent the system using BDD-based methods, but

the computational complexity of building the canonical

abstraction may still be very high. To circumvent these

problems, we show how to derive an approximation to

the canonical abstraction. The approximation may be

constructed directly from the text of the program with-

out first building the original transition system. We

show how this can be accomplished by symbolic execu-

tion of the program over the abstract state space.

The specification language that we use is a proposi-

tional temporal logic called CTL* [7]. This logic com-

bines both branching time operators and linear time

operators and is very expressive. Formulas are formed

using the standard operators of linear temporal logic

and two path quantifiers, V and 3. The formula V(+)

is true at a state whenever # holds on all computa-

tion paths starting at the state. The formula 3(4) is

true whenever 1#1holds for some computation path. The

atomic state formulas in the logic are used to specify

that a program variable has a particular abstract value.

Because of this, formulas of the logic maybe interpreted

with respect to either the original transition system or

its abstraction. Our goal is to check the truth value of

a formula in the abstract system, and conclude that it

has the same truth value in the original system. We

prove that this approach is conservative if we restrict

to a subset of the logic called VCTL* [12] in which only

the V path quantifier is allowed. If a formula is true in

the abstract system, we can conclude that the formula

is also true in the original system. However, if a for-

mula is false in the abstract system, it may or may not

be false in the original system. In addition, we show

that if the equivalence relations induced by the hi are

congruences with respect to the operations used in the

program, then the method is exact for full CTL*. That

is, a formula is true in the abstract system if and only

if it is true of the original system.

We suggest several different abstractions that are use-

ful for reasoning about programs. These abstractions

include

1

2

3.

4.

congruence modulo an integer, for dealing with

arithmetic operations;

single bit abstractions, for dealing with bitwise log-

ical operations;

product abstractions, for combining abstractions

such as the above; and

symbolic abstractions. This is a powerful type of

abstraction that allows us to verify an entire class

of formulas simultaneously.

We demonstrate the practicality of our methods by

considering a number of examples, some of which are

too complex to be handled by the BDD-based methods

alone. These examples include a 16 bit by 16 bit hard-

ware multiplier and a pipelined ALU circuit with over

4000 state variables.

Numerous other authors have considered the prob-

lem of reducing the complexity of verification by us-

ing equivalences, preorders, etc. For example, Graf

and Steffen [11] describe a method for generating a

reduced version of the global state space given a de-

scription of how the system is structured and specifica-

tions of how the components interact. Clarke, Long and

McMillan [8] describe a related attempt. Grumberg and

Long [12] propose a framework for compositional verifi-

cation based on VCTL*. Dill [10] has developed a trace

theory for compositional design of asynchronous circuit.

But, these methods are mainly useful for abstracting

away details of the control part of a system.

There has been relatively little work on applying

model checking to systems which manipulate data in

a nontrivial way. Wolper [18] demonstrates how to

do model checking for programs which are data inde-

pendent. This class of programs, however, is fairly

small. Our approach makes it possible to handle pro-

grams which have some data dependent behavior. More

recently, BDD-based model checking techniques [4, 9]

have been used to handle circuits with data paths.

These methods, while much more powerful than explicit

state enumeration, are still unable to deal with some

systems of realistic complexity. Some examples in sec-

tion 9, for instance, could not be handled directly with

these approaches. Our method works well in conjunc-

tion with these techniques, however.

Of the work on using abstraction to verify finite state

systems, the approach described by Kurshan [14] is most

closely related to ours. This approach has been auto-

mated in the COSPAN system [13]. The basic notion of

correctness is u-language cent ainment. The user may

give abstract models of the system and specification in

order to reduce the complexity of the test for contain-

ment. To ensure soundness, the user specifies homo-

morphisms between the actual and abstract processes.

These homomorphisms are checked automatically. Our

work differs from Kurshan’s in several important re-

spects.

1.

2.

Our specifications are given in the temporal logic

CTL* which can express both branching time and

linear time properties, Moreover, we are able to

identify precisely a large class of temporal formu-

las for which our verification methodology is sound.

Not all properties are preserved in going from the

reduced system to the original, so this is quite im-

portant.

Our abstractions correspond to language homo-
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morphisms induced by boolean algebra homomor-

phisms in Kurshan’s work. For this type of abstrac-

tion, we show how to derive automatically an ap-

proximation to the abstracted state machine. This

approximation is constructed directly from the pro-

gram, so that it is unnecessary to examine the state

space of the unabstracted machine. There is no

need to check for a homomorphism between the ab-

stract and unabstracted systems, and it is possible

to apply our technique to construct approximations

for systems with infinite state spaces.

3. The particular abstraction mappings that we use

also appear to be new. We demonstrate that these

abstractions are powerful enough and that the cor-

responding approximations are accurate enough to

allow us to verify interesting properties of complex

systems.

Our paper is organized as follows: the next section

is a brief introduction to BDDs and symbolic model

checking. This is followed by a discussion of transition

systems, homomorphisms, and the notion of abstraction

that we use. Section 4 discusses the compilation of pro-

grams into transition systems. In the following section,

we show how to construct the approximation directly

from a program without first building the original tran-

sition system. The conditions required for exactness

are discussed in section 6. Section 7 is the heart of our

paper; we relate the theory developed in the previous

sections to the temporal logic that we use for specifica-

tions. In particular, we prove that our method is con-

servat ive in the case of VCTL* formulas. We also show

that if the approximation is exact, then all CTL* formu-

las are preserved. Section 8 describes the programming

language that is used for specifying finite state systems.

Section 9 explains some of the abstractions that we have

developed for reasoning about complex systems and il-

lustrates their use with examples. The paper concludes

wit h a discussion of some directions for future research.

2 Boolean decision diagrams

Boolean decision diagrams (BDDs) are a canonical

form representation for boolean formulas described by

Bryant [2]. They are often substantially more compact

than traditional normal forms such as conjunctive nor-

mal form and disjunct ive normal form, and they can

be manipulated very efficiently. A BDD is similar to

a boolean decision tree, except that its structure is a

directed acyclic graph rather than a tree, and there is a

strict total order placed on the occurrence of variables as

one traverses the graph from root to leaf. Consider, for

example, the BDD of figure 1. It represents the formula

(aAb)V(cAd), using the variable ordering a < b < c < d.

Given an assignment of boolean values to the variables

a, b, c and d, one can decide whether the assignment

\

o

0 1

Figure 1: A BDD representing (a A b) V (c A d)

makes the formula true by traversing the graph begin-

ning at the root and branching at each node based on

the value assigned to the variable that labels the node.

For example, the valuation { a = 1, b = O, c = 1, d = 1}

leads to a leaf node labeled 1, hence the formula is true

for this assignment.

Bryant showed that given a variable ordering, there

is a canonical BDD for every formula. He also gives al-

gorithms of linear complexity for computing the BDD

represent ations of =~ and f V g given the BDDs for

formulas f and g. Quantification over boolean vari-

ables and substitution of a variable by a formula are

also straightforward using this represent ation.

Given a finite state program, let V be its set of

boolean state variables. We identify a boolean formula

over V with the set of valuations which make the for-

mula true. A valuation of the variables corresp ends in

a natural way to a state of the program; hence the for-

mula may be thought of as representing a set of program

stat es. The BDD for the formula is in practice a concise

representation for this set of states. In addition to rep-

resenting sets of st ates of a program, we must represent

the transitions that the program can make. To do this,

we use a second set of variables V’. A valuation for the

variables in V and V’ can be viewed as designating a

pair of states of the program. Such a pair can be viewed

as corresponding to a transition between the states of

the pair. Thus, we can represent sets of transitions us-

ing BDDs in much the same way as we represent sets of

states. Many verification algorithms such as temporal

logic model checking and state machine comparison can

make effective use of this representation.
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3 Transition systems and abstractions

We consider programs with a finite set of variables

VI, ‘7)2, . . . . vn. If each variable vi ranges over a set Di

of possible values, then the set of all possible program

states is D1 x DZ x . . . x Dn, which we denote by D. We

represent the possible behaviors of the program with a

set oft ransitions between states. This notion is formal-

ized in the following definition.

Definition 1 A transition system over D is a triple

M = (S, I, R) where

1. S = D is a set of states;

2. I G S is a set of initial states; and

3. R c S x S is a transition relation.

Abstractions will be formed by letting the program

variables range over sets D; of abstract values. We will

give mappings to specify the correspondence between

unabstracted and abstracted values. Formally, we let

hl, hz, ..., hn be subjections, with hi: Di ~ D{ for

each i. These mappings induce a subjection h: D - D{

defined by

h((dl,... ,dn)) = (hl(dl),..., hn(dn)).

Alternatively, the relation between unabstracted and

abstracted values can be specified by means of a set of

equivalence relations. In particular, each hi corresponds

to the equivalence relation Wi c Di x Di defined by

di W~ e~ if and only if h~(d~) = h;(e~).

The mapping h induces an equivalence relation * ~

D x D in the same manner: (all, . . ..cln) w (cl,...,en)

if and only if dl -1 elA. . .Adn Nn en, We will sometimes

specify abstractions by mappings and sometimes specify

them by equivalence relations. The two methods are

entirely equivalent.

Fix a transition system M over D and a subjec-

tion h:D -+ D’. By applying h to the components

of M, we obtain an abstract version of M.

Definition 2 The canonical abstraction of M induced

by h is the transition system Mab, over D’ defined as

follows.

1. Sab~ = D’.

2. Iab,(d’) if and only if 3d (h(d) = d’ A I(d)).

3, R~b,(d’, e’) if and only if

3d3e (h(d) = d’ A h(e) = e’ A R(d, e)).

Definition 3 A homomorphism from a transition sys-

tem M over D to a transition system M’ over D’ is a

subjection h: D --+ D’ such that:

1. I(d) implies I’ (h(d)); and

2. l?(d, e) imp~ies R’ (h(d), h(e)).

Proposition 1 The mapping h from M to Mab, is a

homomorphism.

As we will show in section 7, an abstract transition

system such as Mab~ may be used to deduce properties

of M. Moreover, using an abstract transition system

instead of M may greatly reduce the complexity of au-

tomatically verifying these properties. Unfortunately, it

is often expensive or impossible to construct Mab, di-

rectly because we must have a representation of M to

do the abstraction. We may not be able to obtain such

a representation if D is infinite or simply too large for

our system to handle. In BDD-based systems, even if

we are able to represent M, the complexity of comput-

ing the relational products in the definition of Mab~ is

often extremely high. In section 5, we discuss a method

for circumventing these problems. The basic idea will

be to take advantage of structure in the transition sys-

tem ikl. Such structure arises because M is typically

given by a relatively concise program. We show how to

compute an approximation to Mab~ that can be derived

directly from the program text. Hence, it is never nec-

essary to construct a representation of M. In addition,

the approximation is often accurate enough to allow us

to verify interesting properties of the program.

4 Compilation

The approximation to kfabs will be constructed by

performing an “abstract compilation” of the program,

Hence we begin by considering how programs are com-

piled into transition systems. At a conceptual level, the

compilation may be viewed as a two step process. First,

predicate logic formulaa 92 and 9 are constructed to rep-

resent the program’s actions and initial states. These

formulas are built from a set of primitive relations that

represent the operations such as addition and compari-

son used in the program. Second, the formulas are inter-

preted to derive the actual transition system, By think-

ing of the process at this level, we can avoid low-level

details which would tie the discussion to a particular

programming language. Below, we illustrate how for-

mulas representing the actions and initial states might

be derived. The construction is similar to that used to

give the relational semantics of an imperative program-

ming language or to derive verification conditions in the

inductive assertions method.

First note that a precondition-postcondition seman-

tics is not sufficient for our purposes since we are in-

terested in the temporal behavior of programs. For this

reason, there must be some convention about when time

passes during the execution of the program. We assume

that there are a finite set of control points in the pro-

gram (typically chosen by the user) and that executing a

sequence of statements between two consecutive control

points requires exactly one time unit. To avoid having

infinite sequences of statements take a finite amount of

time, we assume that every path through a loop body
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must cent ain at least one control point. Hence it is not

necessary to deal with loops explicitly; they are implicit

in the sequencing of transitions between control points.

We will assume that the intervals between consecutive

control points are sequences of assignment statements

and boolean conditions that are derived from the con-

ditional statements in the program. TO begin, we ex-

amine how formulas representing these intervals can be

derived.

Consider an assignment statement, say vi := Vj. The

formula ‘i”(vl,. ... vn, v~,.. ., v: ) for such a statement

contains two parts. The first specifies that the value

of vi after the statement (referred to as vj) is equal to

the value of vj before the statement. The second spec-

ifies that no other variables change. For this particular

example, we obtain

V~=Vjll Avk=vk.
k+i

When the statement is more complex, we introduce ad-

ditional temporary variables to hold intermediate re-

sults. For example, vi := vi + (Vj – ‘Vk ) would be repre-

sented by the formula

3t(P-(vj, vk, t) AP+(vi, t,w[))A~v{=vt,

l#i

where P– and P+ are primitive relations representing

subtraction and addition, respectively.

For boolean conditions, such as vi > vj, T again con-

tains two parts, The first specifies that the condition

evaluates to the boolean value true (represented by the

primitive relation P~rUe). The second specifies that no

variables change. For this example, we obtain

3t (P~TUe(f) A P>(vi, Vj , t)) A ~ V~ = V~ .

k

To find the formula representing a sequence S1; S2,

we first find the formulas T1 representing S1 and T2

representing S2. The formula for the sequence is formed

by taking a relational product:

3V; . . .3v; (T1(vl,. ... vn, vf, v:), v:)

AT2(vy, . . ..v., v~, v~)),~)),

The logical formula for the entire program is formed

by combining the formulas for its intervals. We intro-

duce an additional program variable p that ranges over

the set of the program’s control points. We also assume

that there are primitive relations representing each of

the individual control points. The formula for the entire

program is a disjunction with one disjunct per interval.

Each of these disjuncts is of the form

Cj(p)ATj~(W,,..., Wm,W~, -.-, vi) A Ck(p’),

where Cj is the relation for control point j, ck is the

relation for control point k, and Tj k is the formula for

the interval between control points j and k.

In an actual implementation, it is possible to avoid

enumerating all intervals by treating the program graph

as a DAG rather than a tree. In addition, formulas rep-

resenting the transition relation and initial states of the

program will not actually be constructed; instead, the

program is %yrnbolically executed)’ to derive the cor-

responding transition system. Starting from the initial

states of the program, we simulate the execution of the

program from each state. As we do the simulation, we

record which states transitioned to which other states.

A key point is that this simulation is driven by knowing

how the operations in the program behave, i.e., how the

primitive relations are interpreted.

5 Computing approximations

In the previous section, we mentioned that the initial

states and transition relation of a transition system M

could be represented by formulas 9 and X. Now we

examine the relationship between these formulas and

similar formulas gabs and ~~b~ for ~ab~. By applying

a certain transformation to these latter formulas, we

obtain formulas 9aPp and XaPP describing an approxi-

mation kfaPP to h’f~b~. Throughout this section and the

next, we assume that # and ~ are relations built up

from the primitive relations representing the operations

in the program.

Recall that building ~aba requires evaluating two re-

lational products, both involving existential quantifica-

tion over the elements of D. For conciseness, we will

denote this kind of existential abstraction using an op-

erator [.]. That is [#(x l,. . . . am)] is an abbreviation

for

3yl . . .~ym (h(gl) = xl A . .. Ah(ym) = Zm

Aq$(yl,. . . )Ym)).

Note that [~(zl,. . . , Zm)] has the same free variables

Sscj(xl, ..., Zm). In the latter, the variables range over

elements in the Di, while in the former they range over

elements in the D;. Based on the definition of Mab~, we

observe that if 9 and X are the formulas representing

1 and R, then g~b~ = [9] and ~ab~ = [X] are formulas

representing lab~ and Rab~.

We now define a transformation T on formulas [~].

The idea of T will be to simplify the formulas to which

[.] is applied. We assume that ~ is given in negation

normal form, i.e., negations are applied only to primitive

relations.

1. If P is a primitive relation

T([P($l,..., %)]) = [P(xl,..., zm)]

T([+’(z?l,...,%m)])= [+’(q, ...,$m)]

2. T([4A 0])= T([#l) A T([@l) .

3. T([4 v $]) = T(M) v ml]) o
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4. T([% +]) = 3ZT([+]).

5. T(W% 4]) = VZ T([#]).

In other words, T pushes the existential abstractions

inwards.

We note that applying T to a formula results in a

formula which is true more often. This is an impor-

tant point since, as will be seen in section 7, it ensures

that our methodology will be conservative. Formally,

we have the following result.

Theorem 1 [~] ~ T([#]).

We will let MaPP be the transition system over D’

whose initial states and transition relation are repre-

sented by the formulas JaPP = ~(gab~) and ~aPP =

T(&,) respectively.

Proposition 2 The following relationships hold be-

tween the components of Mab. and the components

of Mapp .

I. s~h, = Sapp ;

2. Iab, ~ Iapp; and

3. Ra~s C R.PP .

Observe that japp and %pp have essentiaHY the same
structure as 9 and R. The only difference is at the low-

est level; the latter formulas have primitive relations and

their negations, while the former have abstract versions

of these same relations. Thus, just as we can derive

M by symbolically executing the program using the in-

terpretations of the primitive relations, we can derive

.PP by symbolically executing the program using theM

abstracted interpretations of the primitive relations.

We now consider the relation between M and Mapp.

Recall that the mapping h is a homomorphism from M

to &fab$. We also have the following property of homo-

morphisms.

Proposition 3 Let h be a homomorphism from

M’, and let M“ be z transition system such that

1. s’ = s“;

9. I’ < 1“; and—

3. R’ G R“.

Then h is a homomorphism from M to M“.

M to

Using the above properties, we can conclude that h is

also a homomorphism from M to M,Pp. We will discuss

the properties implied by this fact in section 7. The

relationship between M, kfah~ and MaPP is summarized

by the following diagram; here T is a program.

compilation

‘.P~

abstract

1/

h

compilation

M

I

h

6 Exact approximations

In the previous sections, we demonstrated the exis-

tence of homomorphisms from M to kf~b, and M~pp.

These results will be used to show that our verifica-

tion methodology is conservative. In this sectionj we

consider additional properties which suffice to make the

method exact. Recall that each hi induces an equiva-

lence relation -i on Di.

Definition 4 Let P(z1, . . . . Xm) be a relation with xj

ranging over Dij. The equivalence relations ~ij are a

congruence with respect to P if

‘v’dle l... dmem (dl ~il el A . ..Adm ~im em

+(qdl, . . . , dm) @ P(el ,.. ., em))).

Theorem 2 If the -i are congruences with respect to

the primitive reiations and ~ = T ([~]), then ~ ~ [~].

Corollary 1 If the -i are congruences with respect to

the primitive relations, then Mabs = MapP.

Definition 5 An exact homomorphism from a transi-

tion system M to a transition system Ml is a homo-

morphism h from M to M’ with the following additional

properties.

1. I’(h(d)) implies I(d); and

2. R’ (h(d), h(e)) implies R(d, e).

Theorem 3 If the ~i are congruences with respect to

the primitive relations, then h is an exact homomor-

phism from M to Mab, (and hence to MaPP).

7 Temporal logic

The logics that we will use for specifying properties will

be subsets of the logic CTL*. CTL* is a powerful tem-

poral logic that can express both branching time and

linear time properties. For convenience when defining

subsets of the logic, we will assume that all formulas are

given in negation normal form. That is, negations only

appear in atomic state formulas.
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Definition 6 The logic CTL * [7] is the set of state for-

mulas given by the following inductive de$nition.

1.

2.

3.

4.
5.

6.

We

true and false are atomic state formulas. If vi is

a program variable and d; G D:, then vi z d; and

Vi $ dj are atomic state formulas.

If ~ and @ are state formulas, then ~ A * and q$V @

are state formulas.

If 4 is a path formula, then Q(q5) and 3($) are state

formulas.

If ~ is a state formula, then 4 is a path formula.

If 4 and @ are path formulas, then so are q5A~ and

#v@.
If ~ and ~ are path formulas, then so are x 4, ~ U

$, and q5VIJ.

also use the following abbreviations: F ~ and G ~,

where 4 is a path formula; denote (trueKJ4) and (faiseV

4) respectively.

CTL is the subset of CTL* that is obtained by elim-

inating rules 3 through 6 above and adding the rule.

3’. If 4 and ~ are state formulas, then so are VX ~,

3X4, V(~U@), 3(4U@), V(4V@), and 3(4V@).

CTL is of interest because there is a very efficient model

checking algorithm for it [7]. VCTL* and VCTL [12]

are restricted subsets of CTL* and CTL respectively in

which the only path quantifier allowed is V. These two

logics are sufficient to express many of the properties

that arise when verifying programs. As we will see,

these logics will also be used when the conditions needed

for exactness do not hold.

We now define the semantics of CTL* for transition

systems M over D or D’. The atomic state formulas will

be interpreted slightly different depending on whether

the state set is abstract or not.

Definition 7 A path in M is an infinite sequence of

states r = soslsz . . . such that for every i E N,

R(W, %+1).

The notation irn will denote the suffix of r which

begins at Sn.

Definition 8 Satisfaction of a state formu!a 4 by a

state s (s ~ 4) and of a path formula ~ by a path ir

(ir ~ I/J) is defined inductively as follows.

1.

2.

3.

s \ true, ands ~ false. Ifs= (cl,...,en) c D,

then s \ (vi ~ d;) if and only if ha(e;) = d:. If

s=(e~, . . . ,e~) ~ D’, then s ~ (W - d:) if and

only if e; = d;. In either case, s ~ (vi ~ d;) if and

only if it is not the case that s ~ (IG ~ d~).

s ~ q!IA4 if and only ifs ~ 4 ands 1= $. s ~ 4v+

if and only ifs&@ ors~~.

s 1= y(d) if and only if for euery path ~ starting
at s, iT ~ 4. s ~ 3(4) if and ordy if there erists a

path ~ starting at s such that r ~ 4.

4. T ~ 4, where q!I is a state formuia, if and only if

the first state of r satisfies the state formula.

5.ir~~A ~ifando nlyifr~4and~ ~$.r~

4V~ifandonlyif~~40rr~~.

6. r~X@ifandontyif Trl 1=~. ~~q5U+ifand

only if there exists n 6 N such that N ~ + and for

a!li < n, ~i ~ @. ir ~ ~V~ if and only if for all

n~N, if~i ~dforaili <n, thennn ~~.

The notation M > 4 indicates that every initial state

of M satisfies the formula 4.

We now turn to the main theorems. These results tell

us when it is sound to use abstraction to verify proper-

ties of a program.

Theorem 4 Suppose h be a homomorphism from M

to M’ and ~ is a VCTL * formula. Then Ml ~ $ implies

M~4.

Theorem 5 Suppose h is an exact homomorphism

from M to M’ and 4 is a CTL*formula. Then M >4

if and only if M’ ~ 4.

8 A simple language

In this section, we briefly describe a language for spec-

ifying react ive programs. We will use this language in

the examples that follow. The language is procedural

and cent ains structured programming constructs, such

as while loops and non-recursive procedures. It is also

finite state: the user must specify a fixed number of bits

for each input and output in a program. The model of

computation is a synchronous one. At the start of each

time step, inputs to the program are obtained from the

environment. All computation in a program is viewed

as instantaneous. There is one special statement, wait,

which is used to indicate the passage of time. When

a wait statement is encountered, changes to the pro-

gram’s outputs become visible to the environment, and

a new time step is initiated. Thus, computation pro-

ceeds as follows: obtain inputs, compute until a wait is

encountered, make out put changes visible, obtain new

inputs, etc. Aside from the wait statement, most of the

language features are self-explanatory.

A program in the language may be compiled into a

Moore machine for verification. Since the Moore ma-

chine for a program may have a large number of states

(even after abstraction), it is important not to gener-

ate an explicit-state representation of this machine. In-

stead, our compiler directly produces a BDD that rep-

resents the Moore machine. This BDD is used as the in-

put to a BDD-based model checking program. When a

program is compiled, the user may specify abstractions

for some of the inputs or outputs. By using the tech-

niques described earlier, the compiler directly generates

an (approximate) abstract Moore machine. There are a
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input set [1]

input start [8]

output count [8] := O

output alamn[l] := 1

loop

if sef = 1

count := start

else if count >0

count := count

end if

if count = O

alarm := 1

else

alarm := O

enclif

wait

endloop

1

Figure 2: An example program

number of abstractions built into the compiler, and the

user may define new abstractions by supplying proce-

dures to build the BDDs representing them. Abstract

versions of the primitive relations are computed auto-

matically.

Figure 2 is a small example program: a settable

countdown timer. The timer has two inputs, set and

start, which are one and eight bits wide respectively.

There are also two outputs: count, which is eight bits

wide and is initially zero; and alarm, which is one bit

and initially one. At each time step, the operation of

the counter is as follows. If set is one, then the counter

is set to the value of start. Otherwise, if the counter is

not zero, it is decremented. The alarm output is set to

one when count is zero, and to zero if count is nonzero.

9 Example abstractions

In this section, we discuss some abstractions which have

proved useful in practice. Each is illustrated with a

small example. The temporal logic formulas in this sec-

tion are written with some syntactic sugaring of the

atomic propositions in order to make them easier to

read.

9.1 Congruence modulo an integer

For verifying programs involving arithmetic operations,

a useful abstraction is congruence modulo a specified

integer m:

h(i) = i mod m.

This abstraction is motivated by the following proper-

ties of arithmetic modulo m.

((i mod m)+ (j mod m)) mod m s i + j (mod m)

((i mod m) -(j mod m)) mod m - i -j (mod m)

((i mod m)(j mod m)) mod m a ij (mod m)

In other words, we can determine the value modulo m of

an expression involving addition, subtraction and mul-

tiplication by working with the values modulo m of the

sub expressions.

The abstraction may also be used to verify more com-

plex relationships by applying the following result from

element ary number theory.

Theorem 6 (Chinese remainder theorem) lf ml,

mz, . . . . mn are positive integers which are pairwise rel-
. .

atively prime, m = m1m2 . . .mn, and b, Z1, Z2, . ., Zn

are integers, then there is a unique integer i such that

forl~j~n,

b~i<b+m and i- ij (mod mj).

Suppose that we are able to verify that at a certain

point in the execution of a program, the value of the

nonnegative integer variable x is equal to ij modulo mj

for each of the relatively prime integers ml, m2, . . . . mn.

Further, suppose that the value of z is constrained to

be less than mlmz . . . mn. Then using the above result,

we can conclude that the value of r at that point in the

program is uniquely determined.

We illustrate this abstraction using a 16 bit by 16 bit

unsigned multiplier (see figure 3). The program has

inputs req, inl and in2. The last two inputs provide

the factors to operate on, and the first is a request sig-

nal which starts the multiplication. Some number of

time units later, the output ack will be set to true. At

that point, either output gives the 16 bit result of the

multiplication, or overfZow is one if the multiplication

overflowed. The multiplier then waits for req to become

zero before start ing snot her cycle. The mult iplicat ion

itself is done with a series of shift-and-add steps. At

each step, the low order bit of the first factor is exam-

ined; if it is one, then the second factor is added to

the accumulating result. The first factor is then shifted

right and the result is shifted left in preparation for the

next step.1

The specification we used for the multiplier was a

series of formulas of the formz

VG(ready A req A (inl mod m = i) A (in2 mod m = j)

10ne feature of the language which the program uses is the
ability to extend an operand to a specified number of bits. For

example, z: 5 extends z to be 5 bits wide by adding leading O bits.

This facility is used to extend output and factor2 when adding

and shifting so that overilow can be detected. The statement

(overflow, output) := (output: 17) + jactor2 sets output to the
16 bit sum of output and factor2, and oveTj70w to the carry from

this sum. Also, z <<1 is x shifted left by one bit. Right shifts

are indicated using >>, The break statement is used to exit the

innermost loop.

2This specification admits the possibility that the multiplier

always signals an overflow. We will verify that this is not the case

using a different abstraction (see subsection 9.2).
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input znl[16]

input zn.2[16]

input req

output jactorl [16] := O

output factor-2[16] := O

output O’@’Ut [16] := O

output overflow := O

output ack := O

procedure waitfor(e)

while Ye

wait

endwhile

enclproc

loop

1: waitfor(req)

factorl := inl

factori? := M

output := o
overflow := O

wait

loop

if (factorl = O) V (overflow = 1)

break

end if

if factorl [0] = 1

(overflow, output) :=

(output: 17) + factor2

endif

factorl := factorl >1

wait

if (factorl = O) V (overflow = 1)

break

endif

(otierflow,factorl?) := (factor2: 17) <1

wait

endloop

ack := 1

wait

waitfor(=req)

ack := O

endloop

Figure 3: A 16 bit multiplier

~ V(lack U ack A ok))

where

ok s (overflow V (output mod m = ij mod m)).

Here, i and j range from O through m – 1, and ready is

an atomic proposition which is true when execution is

at the program statement labeled 1. The input in2 and

the outputs factor2 and output were all abstracted mod-

U1O m. The output factorl was not abstracted, since

its entire bit pattern is used to control when fact orl?

is added to output, We performed the verification for

m = 5, 7, 9, 11 and 32. These numbers are relatively

prime, and their product, 110,880, is sufficient to cover

all 216 possible values of output. The entire verification

required slightly less than 30 minutes of CPU time on

a Sun 4. We also note that because the BDDs needed

to represent multiplication grow exponentially with the

size of the multiplier, it would not have been feasible

to verify the multiplier directly. Further, even check-

ing the above formulas on the unabstracted multiplier

proved to be impractical.

9.2 Representation by logarithm

When only the order of magnitude of a quantity is im-

portant, it is sometimes useful to represent the quantity

by (a fixed precision approximation of) its logarithm.

For example, suppose i ~ O. Define

lgi = [log,(i + 1)1,

i.e., lgi is O if i is O, and for i > 0, lgi is the smallest

number of bits needed to write i in binary. We take

h(i) = lg i.

As an illustration of this abstraction, consider again

the multiplier of figure 3. Recall that a program which

always indicated an overflow would satisfy our previous

specification. We note that if lg i+lg j < 16, then lg ij <

16, and hence the multiplication of i and j should not

overflow. Conversely, if lg i + lg j ~ 18, then lg ij 217,

and the mult iplicat ion of i and j will overflow. When

lg i + lg j = 17, we cannot say whether overflow should

occur. These observations lead us to strengthen our

specification to include the following two formulas.

VG(ready A req A (lg inl + lg in2 < 16)

~ V(lack U ack A Yoverjlow))

VG(ready A req A (lg inl + lg in2 2 18)

~ V(=ack 13 ack A overflow))

We represented all the 16 bit variables in the program

by their logarithms. Compiling the program with this

abstraction and checking the above properties required

less than a minute of CPU time.

9.3 Single bit and product abstractions

For programs involving bitwise logical operations, the

following abstraction is often useful:

h(i) = the jth bit of i,

where j is some fixed number.

If hl and hz are abstraction mappings, then

h(i) = (h,(i), h,(i))

also defines abstraction mapping. Using this abstrac-

tion, it may be possible to verify properties that it is

not possible to verify with either hl or hz alone.
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input in [16]

output pariiy[l] :=0

output b[16] :=0

output done[l] :=0

b := in

wait

While b#O

parity := parity@ b [0]

b:=b>l

wait

endwhile

done :=1

Figure 4: A parity computation program

As an example of using these types of abstractions,

consider the program shown in figure 4. This program

reads an initial 16 bit input and computes the parity of

it. The output done is set to one when the computation

is complete; at that point, parity has the result. Let #z

be true if the parity of i is odd. One desired property

of the program is the following.

1. The value assigned to b has the same parity as that

of in; and

2. parity @ f b is invariant from that point onw”ards.

We can express the above with the following formula.

~#z’n A VX(ljb A VG I(parity @ lb))

V #in A VX(#b A VG(parity @ [b))

To verify this property, we used a combined abstraction

for in and b. Namely, we grouped the possible values

for these variables both by the value of their low order

bit and by their parity. The verification required only

a few seconds.

9.4 Symbolic abstractions

The use of a BDD-based compiler together with model

checker makes it possible to use abstractions which de-

pend on symbolic values. This idea can greatly increase

the power of a particular type of abstraction. For ex-

ample, consider a simple partitioning:

{

O, ifi <a;
h(i) = ~

ifi>a.

where a is some fixed value. We might try to use such

an abstraction when the program we are trying to verify

involves comparisons. If two numbers are not equiva-

lent according to this abstraction, we can find the truth

value of a comparison between them. In most cases

however, using only this single abstraction would not

imply much about the unabstracted program’s behav-

ior. Much more information may be obtained by letting

a be a symbolic constant. Using such an abstraction

allows us to verify that a formula is true for all possible

abstract programs obtainable by varying a. Thus, we

can effectively verify an entire class of properties for the

unabstracted program.3

As an example of using this abstraction, consider the

program of figure 5. This program represents a cell

in a linear sorting array. There is one cell for each

integer to be sorted, and the cells are numbered con-

secutively from right to left. In the array, each cell’s

left and teftsorted inputs are connected to its left neigh-

bor’s y and sorted outputs, and each cell’s right input is

connected to its right neighbor’s z output. The values

to be sorted are the values of the z outputs, The sort

proceeds in cycles. During each cycle, exactly half the

cells (either all the odd numbered cells or all the even

numbered cells) will have their comparing output equal

to one, These cells compare their own z output with

that of their right neighbor. The smaller of these values

is placed in y. In addition, if the values were swapped,

the cell’s sorted output is set to zero. During the next

clock period, the right neighbor’s x and sorted values

are copied from the first cell’s y and sorted outputs.

When the rightmost cell’s sorted output becomes one,

the sort is complete. In this example, we consider an

array for sorting eight numbers.4

The properties which we verified are:

1.

2.

for every a, eventually the values of the z outputs

are such that all numbers which are less than a

come before all numbers which are greater than

or equal to a, and this condition holds invariantly

from that point on; and

for every a, the number of the x outputs which are

less than a is invariant except when elements are

being swapped.

The first property implies that the array is eventually

sorted. The second one implies that the final values of

the z outputs form a permutation of the initial values.

We performed the verification by abstracting all the

16 bit variables in the program as described above. The

temporal formulas corresponding to the two properties

are

VFVG((K[l] < aVz[2] ~ a) A.. A(z[7] < aVz[8] > a))

3 In our compiler, non-symbolic abstractions are specified by

giving a relation Ef(d, d’) which represents h(d) = d’. For a sym-

bolic abstraction, this relation is extended with additional pa-

rameters which are the symbolic constants it depends on. The

BDD representation of the final Moore machine will depend on

these symbolic constants. The model checker simply treats the

symbolic constants as additional state variables.

4 In this program, x and y may have any initial values. The

comparing output is set to zero or one depending on the cell’s

position in the array. The left and right ends of the sorting array

are durnrny cells for which z is 2] 6 — 1 and O respectively. The

left cell’s soTted output is also fixed at 1.
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input /ejl[16]

input lej%orted[l]

output sorted [l] := O

output comparing[l] := O or 1

output swap[l] := O

output z [16]

output y[16]

input right[16]

loop

if comparing = 1

swap := (c < right)

uait

if swap = 1

y:=$

2 := right

sorted := O

else

y :== right

endi-f

Wait

else

wait

wait

c := lefi

sorted := lefts orted

end if

comparing := Tcomparing

1:wait

endloop

Figure 5: A sorting cell program

and

( )~ ‘v’G (x~cl(x[i] < a) = n) v =stable .

Here, the summation denotes the number of formu-

las z [i] < a which are true, and stable is an atomic

proposition which is true when every cell is executing

the statement labeled 1.5 Verifying these properties re-

quired just under five minutes of CPU time. In addition,

checking these properties on the unabstracted program

was not feasible due to space limit at ions.

We also used symbolic abstractions to verify a simple

pipeline circuit. This circuit is shown in figure 6 and is

described in detail elsewhere [3, 4]. It performs three-

address arithmetic and logical operations on operands

stored in a register file.

We used two independent abstractions to perform

the verification. First, the register addresses were ab-

stracted so that each address was either one of three

symbolic constants (ra, rb or rc) or some other value.

5We also verified the property VG VF stab le to check that the

cells maintain loclcstep.

Read ports Write pti

Bypass circuitry

Figure 6: Pipeline circuit block diagram

This abstraction made it possible to collapse the en-

tire register file down to only three registers, one for

each constant. The second abstraction involved the in-

dividual registers in the system. In order to verify an

operation, say addition, we create symbolic constants

ca and cb and allow each register to be either ca, cb,

ca + cb or some other value. As part of the sp ecificat ion,

we verified that the circuit’s addition operation works

correctly. This property is expressed by the temporal

formula

VG((srcl = ra) A (src,2’ = rb) A (dest = rc) A ~stall

-+ ‘dXVX((regra = ca) A (regrb = cb)

-+ VX(regrc = ca + cb))).

This formula states that if the source address registers

are ra and rb, the destination address register is rc, and

the pipeline is not st ailed, then the values in registers

~a and rb two cycles from now will sum to the value in

register rc three cycles from now. The reason for using

the values of registers ra and rb two cycles in the future

is to account for the latency in the pipeline.

The largest pipeline example we tried had 64 regis-

ters in the register file and, each register was 64 bits

wide. This circuit has more than 4,000 state bits and

nearly 101300 reachable states. The verification required

slightly less than six and one half hours of CPU time.

In addition the verification times scale linearly in both

the number of registers and the width of the registers.

For comparison, the largest circuit verified by Burch et

al, [3] had 8 registers, each 32 bits, and the verification

required about four and one half hours of CPU time on

a Sun 4. In addition the verification

growing quadratically in the register

call y in the number of registers.

times there were

width and cubi-
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10 Conclusion

We have described a simple but powerful method for us-

ing abstraction to simplify the problem of model check-

ing. There are two parts to this method. First, we

have shown how to extract abstract finite state ma-

chines directly from finite or infinite state programs.

The construction guarantees that the actual state ma-

chine for the program is a refinement of the extracted

state machine. Second, we have examined when sat-

isfaction of a formula by an abstract machine implies

satisfaction by the actual machine. For formulas given

in the logic VCTL*, this is always the case. We have

also implemented a symbolic verification system based

on these ideas and used it to verify a number of non-

trivial examples. In the process of doing these exam-

ples, we have found a number of useful abstractions.

Our work on generating abstract systems could be used

with other verification methodologies, such as testing

language cent ainment, as well.

There are a number of possible directions for future

work. One problem with using our current approach

with logics like CTL*, which can express the existence

of a path, is in ensuring the strict exactness conditions.

By using a more complex finite state model such as

AND/OR graphs, it should be possible to extend the

techniques and obtain a conservative model checking

algorithm for such logics. We also wish to explore thor-

oughly the problem of generating abstractions for infi-

nite state systems. The important step in doing this

is determining abstract versions of the primitive rela-

tions. Some of the techniques and results from auto-

mated theorem proving, term rewriting, and algebraic

specification of abstract data types should prove useful

for this problem. Similar techniques would be useful

for studying the flow of data in a system. Data items

might be represented as terms in the Herbrand universe

and functional transformations on the data would cor-

respond to building new terms from the input terms.

Given an equivalence relation of finite index on terms,

we would derive abstract primitive relations for the op-

erations and use these to produce an abstract version of

the system.
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