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Abstract—We consider the problem of learning a non-
deterministic probabilistic system consistent with a given finite
set of positive and negative tree samples. Consistency is defined
with respect to strong simulation conformance. We propose
learning algorithms that use traditional and a new stochastic
state-space partitioning, the latter resulting in the minimum
number of states. We then use them to solve the problem of active
learning, that uses a knowledgeable teacher to generate samples
as counterexamples to simulation equivalence queries. We show
that the problem is undecidable in general, but that it becomes
decidable under a suitable condition on the teacher which
comes naturally from the way samples are generated from failed
simulation checks. The latter problem is shown to be undecidable
if we impose an additional condition on the learner to always
conjecture a minimum state hypothesis. We therefore propose a
semi-algorithm using stochastic partitions. Finally, we apply the
proposed (semi-) algorithms to infer intermediate assumptions
in an automated assume-guarantee verification framework for
probabilistic systems.

Index Terms—probability, transition, system, simulation, con-
formance, active learning, tree, partition, assume-guarantee

I. INTRODUCTION

We study the problem of learning an unknown non-
deterministic Labeled Probabilistic Transition System (LPTS)
from tree samples. The motivation for this work was to in-
vestigate learning techniques for automating assume-guarantee
style [25] compositional verification of strong simulation con-
formance [28] between LPTSes. Strong simulation for LPTSes
is decidable in polynomial time [4] and yields stochastic tree
counterexamples when it fails [19]. Stochastic trees are tree-
shaped LPTSes (see Section II) with probabilities appearing
on the transitions.

Compositional verification [11] is a promising approach for
alleviating the state explosion problem in model checking [12].
Learning from trace [2], [23] and tree [9] counterexamples has
been successfully applied before for automating the approach
in a non-probabilistic setting, for checking trace inclusion [26],
[10] and simulation conformance [9], respectively. The most
closely related work [9] reduces simulation conformance to
tree language inclusion and uses learning for deterministic tree
automata to automatically generate the assumptions used in
compositional reasoning. In the probabilistic setting, existing
literature has dealt with learning from samples consisting of
trees with information regarding the probability of accep-
tance [7], but learning from stochastic trees has not been
considered before. Moreover, there is no existing probabilis-
tic variant of a tree automaton to recognize stochastic tree

languages. This motivated us to consider learning an LPTS
directly, without working with tree languages or tree automata.

We consider first the problem of learning a non-
deterministic LPTS that is consistent with respect to a set of
positive and negative stochastic tree samples, where consis-
tency is defined in terms of strong simulation conformance.
For the purpose of verification, we want the learnt models to
be minimal or at least to have a good upper bound on their
size. We describe two algorithms, each using a different way of
partitioning the state-space of the positive samples. One algo-
rithm uses traditional state-space partitioning (Section III-A)
resulting in the least number of partitions, while the other uses
a new stochastic partitioning (Section III-B) resulting in the
least number of states.

We then apply the above algorithms to solve the problem of
learning an unknown target in Section IV. This is done in the
framework of active learning with the help of a knowledgeable
teacher. Typically active learning algorithms assume a teacher
that answers two types of queries - membership (of a sample in
the unknown target) and equivalence (between the conjectured
model and the unknown target) [2]. However we observe
that membership queries are not straightforward to create in
our case as the learner would need to guess the transition
probabilities, along with the tree-structure. Therefore, we only
assume the teacher can answer equivalence queries – the
teacher checks simulation equivalence (two-way simulation
conformance) between a conjectured LPTS and the target
LPTS and returns positive or negative stochastic trees when
the check fails.

We show that active learning for LPTSes is undecidable
in general. We then propose a learning algorithm that works
under an assumption on the teacher which comes naturally
from the way the tree counterexamples are generated from
failed simulation checks. As we are interested in learning an
LPTS of the least number of states, we also consider imposing
a restriction on the learner to always conjecture a minimum
state hypothesis. Learning with this restriction also turns out
to be undecidable and we propose a semi-algorithm using
stochastic partitions.

LPTSes are related to probabilistic automata (PA) [27].
Algorithms to learn PAs have only been proposed in restricted
settings of stronger assumptions on a teacher [29] or approxi-
mate learning [13], [21]. Algorithms to learn a multiplicity au-
tomaton, which generalizes a PA by replacing the probabilities
with arbitrary rationals, have also been proposed [5]. Adapting
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these to solve verification problems involving probabilistic
transition systems is difficult and results in non-terminating
algorithms [14]. On the other hand, we show in Section V
that one can readily apply the algorithms we propose to infer
intermediate assumptions in an automated assume-guarantee
style framework for the verification of strong simulation
conformance between LPTSes. This yields the first complete
and fully automated learning framework for compositional
verification of probabilistic systems. Moreover, one can ex-
tend this framework to check logical properties, such as the
fragment weakly safe PCTL [8], which are preserved by the
conformance and also have tree counterexamples.
Other Related Work. Learning for automating compositional
reasoning of probabilistic systems has been proposed be-
fore [15] in the context of checking probabilistic reachability
properties, which are refuted by sets of trace counterexamples.
The approach uses a variant of L* [2], a learning algorithm
for DFAs, to automatically learn deterministic assumptions,
following previous work in the non-probabilistic setting [26].
The approach uses a sound but incomplete rule, and therefore,
it is not guaranteed to terminate (completeness is necessary for
termination). A complete rule for such properties restricted
to systems without non-determinism has been considered
recently [14]. It uses learning with probabilistic trace inclusion
as the conformance relation which is undecidable. Also, the
learning algorithm is not guaranteed to terminate. In contrast,
we use simulation conformance which is decidable in polyno-
mial time and leads to a sound and complete rule (Section V).
We are also able to guarantee termination for the algorithm
proposed in Section V when using classical partitions to infer
a consistent LPTS.

Our work draws inspiration from a previous work [18] that
automates assumption generation by using an algorithm for
learning the minimal separating automaton from positive and
negative trace counterexamples. The counterexamples are pro-
vided via model checking in an assume-guarantee framework.
Similar to our work, they use a partitioning approach, where
the goal is to find a folding of the counterexamples into the
learnt model. A different approach has been proposed to find
the separating automaton based on L* which makes use of
membership queries, in addition to equivalence queries [10].
All these works were done in the context of non-probabilistic
reasoning under trace semantics and thus, are different from
our setting.

Learning a minimum-state automaton from positive and
negative samples is a well studied problem [3], [24], [16] that
is known to be hard [17]. Algorithms have also been proposed
for samples with stochastic information, i.e. the probability of
acceptance of a trace or a tree [6], [7], learning stochastic
finite (tree) automata. As also previously said, we cannot
immediately borrow existing results from the above automata-
theoretic approaches.

II. PRELIMINARIES

Labeled Probabilistic Transition Systems. Let 𝑆 be a non-
empty set. Dist(𝑆) is defined to be the set of discrete proba-
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Fig. 1: Three reactive LPTSes. 𝑝 ∈ (0, 1) for 𝐶𝑝.

bility distributions over 𝑆. We assume that all the probabilities
specified explicitly in a distribution are rationals in [0, 1];
there is no unique representation for all real numbers on a
computer and floating-point numbers are essentially rationals.
For 𝑠 ∈ 𝑆, 𝛿𝑠 is the Dirac distribution on 𝑠, i.e. 𝛿𝑠(𝑠) = 1 and
𝛿𝑠(𝑡) = 0 for all 𝑡 ∕= 𝑠. For 𝜇 ∈ Dist(𝑆), the support of 𝜇,
denoted Supp(𝜇), is defined to be the set {𝑠 ∈ 𝑆∣𝜇(𝑠) > 0}
and for 𝑋 ⊆ 𝑆, 𝜇(𝑋) stands for

∑
𝑠∈𝑋 𝜇(𝑠). The models

we consider, defined below, have both probabilistic and non-
deterministic behavior. Thus, there can be a non-deterministic
choice between two probability distributions, even for the same
action. Such modeling is typically used for underspecification.
Moreover, the theory described does not become any simpler
by disallowing non-deterministic choice for a given action (see
the discussion on counterexamples at the end of this section).

Definition 1 (LPTS). A Labeled Probabilistic Transition Sys-
tem (LPTS) is a tuple ⟨𝑆, 𝑠0, 𝛼, 𝜏⟩ where 𝑆 is a set of states,
𝑠0 ∈ 𝑆 is a distinguished start state, 𝛼 is a set of actions and
𝜏 ⊆ 𝑆×𝛼×Dist(𝑆) is a probabilistic transition relation. For
𝑠 ∈ 𝑆, 𝑎 ∈ 𝛼 and 𝜇 ∈ Dist(𝑆), we denote (𝑠, 𝑎, 𝜇) ∈ 𝜏 by
𝑠
𝑎→ 𝜇 and say that 𝑠 has a transition on 𝑎 to 𝜇.
An LPTS is called reactive if 𝜏 is a partial function from

𝑆×𝛼 to Dist(𝑆) (i.e. at most one transition on a given action
from a given state).

Throughout this paper, we use filled circles to denote start
states in the pictorial representations of LTPSes. For example,
Figure 1 shows three LPTSes. For 𝜇 = {(𝑠1, 1

2 ), (𝑠2,
1
2 )},

𝐿1 has the transition 𝑠1
𝑎→ 𝜇. All the LPTSes in the figure

are reactive as no state has more than one transition on a
given action. In the literature, an LPTS is also called a simple
probabilistic automaton [28]. Similarly, a reactive LPTS is also
called a (Labeled) Markov Decision Process. Also, note that an
LPTS with all the distributions restricted to Dirac distributions
is the classical (non-probabilistic) Labeled Transition System
(LTS); thus a reactive LTS corresponds to the standard notion
of a deterministic LTS. We only consider finite state, finite
alphabet and finitely branching (i.e. finitely many transitions
from any state) LPTSes. We use ⟨𝑆𝑖, 𝑠0𝑖 , 𝛼𝑖, 𝜏𝑖⟩ for an LPTS
𝐿𝑖 and ⟨𝑆𝐿, 𝑠0𝐿, 𝛼𝐿, 𝜏𝐿⟩ for an LPTS 𝐿.

We are also interested in LPTSes with a tree structure, i.e.
the start state is not in the support of any distribution and every
other state is in the support of exactly one distribution. We call
such LPTSes stochastic trees or simply trees. For example, 𝐶𝑝,
𝑝 ∈ (0, 1), in Figure 1 is a tree.
Strong Simulation. In the non-probabilistic case, for two
labeled transition systems (LTSes), a pair of states belonging to
a strong simulation relation depends on whether certain other
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Fig. 2: A simple example where matching probabilities (solid edges) directly
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Fig. 3: An example where probabilities are split (arrows) before matching
(solid edges) to prove 𝜇1 ⊑𝑅 𝜇2.

pairs of successor states also belong to the relation [22]. For
LPTSes, one has successor distributions instead of successor
states; a pair of states belonging to a strong simulation relation
𝑅 should now depend on whether certain other pairs in the
supports of these successor distributions also belong to 𝑅.
We thus need a binary relation between distributions, ⊑𝑅,
which depends on the relation 𝑅 between states. Intuitively,
two distributions can be related if we can pair the states in
their support sets, the pairs contained in 𝑅, matching all the
probabilities under the distributions.

Consider an example with 𝑠𝑅𝑡 and the transitions 𝑠
𝑎→ 𝜇1

and 𝑡
𝑎→ 𝜇2 with 𝜇1 and 𝜇2 as in Figure 2. In this case, one

easy way to match the probabilities is to pair 𝑠1 with 𝑡1 and
𝑠2 with 𝑡2. This is sufficient if 𝑠1𝑅𝑡1 and 𝑠2𝑅𝑡2 also hold,
in which case, we say that 𝜇1 ⊑𝑅 𝜇2. However, such a direct
matching may not be possible in general. As shown in Figure
3, we need a more general notion of matching the probabilities.
One can achieve that by splitting the probabilities under the
distributions in such a way that one can then directly match
the probabilities as in Figure 2. Now, if 𝑠1𝑅𝑡1, 𝑠1𝑅𝑡2, 𝑠2𝑅𝑡2
and 𝑠2𝑅𝑡3 also hold, we say that 𝜇1 ⊑𝑅 𝜇2. Note that there
can more than one possible splitting.

This is the central idea behind the following definition
where the splitting is achieved by a weight function. For
the rest of the section, let 𝐿1 and 𝐿2 be two LPTSes,
𝜇1 ∈ Dist(𝑆1), 𝜇2 ∈ Dist(𝑆2) and 𝑅 ⊆ 𝑆1 × 𝑆2.

Definition 2 ([28]). 𝜇1 ⊑𝑅 𝜇2 iff there is a weight function
𝑤 : 𝑆1 × 𝑆2 → ℚ ∩ [0, 1] such that

1) 𝜇1(𝑠1) =
∑
𝑠2∈𝑆2 𝑤(𝑠1, 𝑠2) for all 𝑠1 ∈ 𝑆1,

2) 𝜇2(𝑠2) =
∑
𝑠1∈𝑆1 𝑤(𝑠1, 𝑠2) for all 𝑠2 ∈ 𝑆2,

3) 𝑤(𝑠1, 𝑠2) > 0 implies 𝑠1𝑅𝑠2 for all 𝑠1 ∈ 𝑆1, 𝑠2 ∈ 𝑆2.

𝜇1 ⊑𝑅 𝜇2 can be checked by computing the maxflow in
an appropriate network and checking if it equals 1.0 [4]. If
𝜇1 ⊑𝑅 𝜇2 holds, 𝑤 in the above definition is one such maxflow
function. As explained above, 𝜇1 ⊑𝑅 𝜇2 can be understood
as matching all the probabilities (after splitting appropriately)
under 𝜇1 and 𝜇2. Considering Supp(𝜇1) and Supp(𝜇2) as two
partite sets, this is the weighted analog of saturating a partite
set in bipartite matching, giving us the following analog of the
well-known Hall’s Theorem for saturating Supp(𝜇1).

Lemma 1 ([30]). 𝜇1 ⊑𝑅 𝜇2 iff for every 𝑆 ⊆ Supp(𝜇1),
𝜇1(𝑆) ≤ 𝜇2(𝑅(𝑆)).

It follows that when 𝜇1 ∕⊑𝑅 𝜇2, there exists a witness
𝑆 ⊆ Supp(𝜇1) such that 𝜇1(𝑆) > 𝜇2(𝑅(𝑆)). For example,
if 𝑅(𝑠2) = ∅ in Figure 2, its probability 1

2 under 𝜇1 cannot
be matched and 𝑆 = {𝑠2} is a witness subset.

Definition 3 (Strong Simulation [28]). 𝑅 is a strong simu-
lation iff for every 𝑠1𝑅𝑠2 and 𝑠1

𝑎→ 𝜇𝑎1 there is a 𝜇𝑎2 with
𝑠2

𝑎→ 𝜇𝑎2 and 𝜇𝑎1 ⊑𝑅 𝜇𝑎2 .
For 𝑠1 ∈ 𝑆1 and 𝑠2 ∈ 𝑆2, 𝑠2 strongly simulates 𝑠1, denoted

𝑠1 ⪯ 𝑠2, iff there is a strong simulation 𝑇 such that 𝑠1𝑇𝑠2. 𝐿2

strongly simulates 𝐿1, also denoted 𝐿1 ⪯ 𝐿2, iff 𝑠01 ⪯ 𝑠02. For
the latter, alternatively, we say that simulation conformance
holds between 𝐿1 and 𝐿2.

Definition 4 (Strong Simulation Equivalence). The strong
simulation equivalence, denoted ≃, is defined as the kernel
of strong simulation, i.e. ≃=⪯ ∩ ર.

Definition 3 generalizes the one in the non-probabilistic
setting [22] and has the following immediate consequence.

Lemma 2. ⪯⊆ 𝑆1×𝑆2 is the coarsest strong simulation, i.e.
⪯ is a strong simulation and contains every strong simulation.

Simulation conformance is decidable in polynomial time [4]
and can be checked with a greatest fixed point algorithm that
computes the coarsest simulation between 𝐿1 and 𝐿2. The
algorithm uses a relation variable 𝑅 initialized to 𝑆1×𝑆2 and
it checks the condition in Definition 3 for every pair in 𝑅,
iteratively, removing any violating pairs from 𝑅. The algorithm
terminates when a fixed point is reached showing 𝐿1 ⪯ 𝐿2

or when the pair of start states is removed showing 𝐿1 ∕⪯ 𝐿2.
Several optimizations exist [30] but we do not consider them
here, for simplicity.

Lemma 3 ([28]). ⪯ is a preorder (i.e. reflexive and transitive).

Finally, we find the following characterization of ⪯ useful
in the algorithms we will discuss later on.

Lemma 4. Let 𝐿1 be a tree and 𝑠1𝑅𝑠2 iff for every 𝑠1
𝑎→ 𝜇1,

there exists 𝑠2
𝑎→ 𝜇2 with 𝜇1 ⊑𝑅 𝜇2. Then, 𝑅 =⪯.

Proof Sketch: 𝑅 ⊆⪯ by Def. 3. ⪯⊆ 𝑅 can be proved by
induction on the height of a state of 𝐿1 using Lemma 2.
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Fig. 4: An example showing that Lemma 4 does not hold, in gen-
eral, if 𝐿1 is not a tree. Let 𝑅 = {(𝑠1, 𝑡1), (𝑠2, 𝑡2)}. Note that ⪯=
{(𝑠1, 𝑡1), (𝑠2, 𝑡2), (𝑠2, 𝑡3)} and 𝑅 ⊂⪯.

Note that the condition on 𝑅 in the lemma is stronger than
the one to make it a strong simulation (Definition 3). Also, if
𝐿1 is not a tree, we can only conclude that 𝑅 ⊆⪯, in general.
See Figure 4 for an example where 𝑅 ⊂⪯.
Counterexamples to ⪯. In the active learning problem we
are interested in (Section IV), a learner uses counterexamples
to simulation conformance as diagnostic information. We will
now briefly discuss what these counterexamples are. Let 𝐿1

and 𝐿2 be two LPTSes.

Definition 5 (Language of an LPTS). Given an LPTS
𝐿, we define its language, denoted ℒ(𝐿), as the set
{𝐿′∣𝐿′ is an LPTS and 𝐿′ ⪯ 𝐿}.

Lemma 5. 𝐿1 ⪯ 𝐿2 iff ℒ(𝐿1) ⊆ ℒ(𝐿2).

Proof: Necessity follows trivially from the transitivity of
⪯ and sufficiency follows from the reflexivity of ⪯ which
implies 𝐿1 ∈ ℒ(𝐿1).

Thus, a counterexample 𝐶 can be defined as follows.

Definition 6 (Counterexample). A counterexample to 𝐿1 ⪯ 𝐿2

is an LPTS 𝐶 such that 𝐶 ∈ ℒ(𝐿1) ∖ ℒ(𝐿2), i.e. 𝐶 ⪯ 𝐿1 but
𝐶 ∕⪯ 𝐿2.

Now, 𝐿1 itself is a trivial choice for 𝐶 but it does not give
any more useful information than what we had before checking
the conformance. Moreover, it is preferable to have 𝐶 with a
special and simpler structure to efficiently work with coun-
terexamples. Fortunately, we have a simpler characterization
using trees.

Theorem 1 ([19]). If 𝐿1 ∕⪯ 𝐿2, there is a tree which serves
as a counterexample.

Proof Sketch: One can instrument the algorithm to
compute the coarsest strong simulation described earlier to
obtain a tree counterexample whenever a pair of states is
removed from the current relation, making use of Lemma 1.

For example, 𝐶𝑝 in Figure 1, for 𝑝 ∈ (0, 1
2 ], is a counterex-

ample to 𝐿1 ⪯ 𝐿2. In another work, we showed that structures
simpler than trees are not sufficient as counterexamples, even
when one of the models is reactive [19].

We note an important feature of the algorithm used to prove
the above theorem [19]. A counterexample 𝐶 generated by
the algorithm is essentially a finite tree execution of 𝐿1. That
is, there is a total mapping 𝑀 : 𝑆𝐶 → 𝑆1 such that for
every transition 𝑐

𝑎→ 𝜇𝑐 of 𝐶, there exists 𝑀(𝑐)
𝑎→ 𝜇1 such

that 𝑀 restricted to Supp(𝜇𝑐) is an injection and for every

𝑐′ ∈ Supp(𝜇𝑐), 𝜇𝑐(𝑐
′) = 𝜇1(𝑀(𝑐′)). Note that 𝑀 is also

a strong simulation. We call such a mapping an execution
mapping from 𝐶 to 𝐿1 in the rest of the paper. An execution
mapping is shown in brackets beside the states of 𝐶𝑝 for
𝑝 = 1

2 in Figure 1. While our algorithm always generates
counterexamples with an execution mapping, it is possible
to have a tree counterexample, as per Definition 6, without
such a mapping. For example, 𝐶𝑝 in Figure 1 for 𝑝 ∈ (0, 1

2 )
is also a counterexample with no such execution mapping.
The condition we impose on a teacher in the active learning
problem (Section IV) is regarding this execution mapping.

III. LEARNING A CONSISTENT LPTS

We are interested in the problem where we are given a
finite set of positive stochastic trees (i.e. in the language of
an LPTS), say 𝒫 , and another finite set of negative stochastic
trees (i.e. not in the language of an LPTS), say 𝒩 . These trees
constitute the samples for a learner. The goal is to learn an
LPTS 𝐿 such that 𝒫 ⊆ ℒ(𝐿) and 𝒩 ∩ ℒ(𝐿) = ∅, i.e. 𝑃 ⪯ 𝐿
for every 𝑃 ∈ 𝒫 and 𝑁 ⪯ 𝐿 for no 𝑁 ∈ 𝒩 . Such an 𝐿
is said to be consistent with the tree samples. Without loss
of generality, assume that 𝒫 ∕= ∅ as otherwise, a single state
LPTS with no transitions is trivially consistent. Also, note that
the LPTS obtained by merging the start states of all trees in
𝒫 , say 𝐿𝒫 , trivially satisfies 𝑃 ⪯ 𝐿𝒫 for every 𝑃 ∈ 𝒫 . Now,
if 𝐿 is a consistent LPTS, it can be shown that 𝐿𝒫 ⪯ 𝐿 and
hence, by Lemma 3, 𝐿𝒫 is also consistent. Thus, one can
easily check, in polynomial time, if there exists a consistent
LPTS by checking 𝑁 ⪯ 𝐿𝒫 for every 𝑁 ∈ 𝒩 . For this reason,
we always assume the existence of a consistent LPTS. Clearly,
the size of 𝐿𝒫 is as large as that of 𝒫 .

If possible, we would like to learn a model with the least
size, or at least have a good upper bound on its size. Such
models would be useful when automating assume-guarantee
reasoning (see Section V). The algorithms we propose draw
inspiration from the ones used to infer consistent non-
probabilistic automata from counterexample traces [24], [16],
[6], [18] which are based on partitioning the state space of the
counterexamples. Let 𝑆𝒫 =

∪
𝑃∈𝒫 𝑆𝑃 and 𝑆𝒩 =

∪
𝑁∈𝒩 𝑆𝑁 .

First, we consider an algorithm based on the traditional state
space partitioning of 𝑆𝒫 . While there is an upper bound on
the size of the learnt model, we show that such partitioning is
insufficient to obtain a minimum state consistent probabilistic
system (LPTS). However, as we will see in Section IV, we find
it useful in learning an unknown target LPTS. We will then
introduce a new way of partitioning the state space, which we
call stochastic partitioning, enabling us to obtain a minimum
state consistent LPTS.

A. Using State Partitions

The first algorithm uses traditional partitions of 𝑆𝒫 . For
a partition Π of 𝑆𝒫 , let 𝐸Π denote the set of equivalence
classes under Π and for a state 𝑠 ∈ 𝑆𝒫 , we let [𝑠]Π denote
the equivalence class of 𝑠 (we drop the subscript Π when it is
clear from the context). We always assume that [𝑠0𝑃 ]Π = [𝑠0𝑄]Π
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Fig. 5: Positive (𝑃 ) and negative (𝑁𝑎, 𝑁𝑏, 𝑁
𝛽,𝛾
𝑐 ) tree samples.

for every 𝑃,𝑄 ∈ 𝒫 , i.e. the start states of all the positive
counterexamples are mapped to the same equivalence class.

Definition 7 (Quotient LPTS). Given a partition Π of
𝑆𝒫 , define the quotient LPTS, denoted 𝒫/Π, as the LPTS
⟨𝐸Π, 𝑒

0, 𝛼, 𝜏⟩ where 𝑒0 = [𝑠0𝑃 ]Π for every 𝑃 ∈ 𝒫 , 𝛼 =∪
𝑃∈𝒫 𝛼𝑃 and (𝑒, 𝑎, 𝜇) ∈ 𝜏 iff there exists (𝑠, 𝑎, 𝜇𝑝) ∈ 𝜏𝑃

for some 𝑃 ∈ 𝒫 with [𝑠]Π = 𝑒 such that 𝜇 = lift(𝜇𝑝) where
lift(𝜇𝑝)(𝑒′) =

∑
𝑠′∈𝑒′ 𝜇𝑝(𝑠

′) for all 𝑒′ ∈ 𝐸Π.

It can be easily shown that a quotient is always a well-
defined LPTS. In the following, Π is a partition of 𝑆𝒫 .

Lemma 6. 𝒫/Π is consistent with 𝒫 for all Π.

Proof Sketch: One can show that {(𝑠, [𝑠]Π)∣𝑠 ∈ 𝑆𝑃 } is
a strong simulation between 𝑃 and 𝒫/Π for every 𝑃 ∈ 𝒫 .

Definition 8 (Consistent Partition). Π is defined to be con-
sistent iff 𝒫/Π is consistent with 𝒩 , i.e. for every 𝑁 ∈ 𝒩 ,
𝑁 ∕⪯ 𝒫/Π.

Thus, we reduce the problem of finding a consistent LPTS
to that of finding a consistent partition. As we show below,
we can always find a consistent partition with a bounded size,
where the size of Π is ∣𝐸Π∣.
Lemma 7. If 𝐿 is an LPTS of 𝑘 states consistent with 𝒫 , then
there is a Π of size at most 2𝑘 such that 𝒫/Π ⪯ 𝐿.

Proof Sketch: Let 𝑃 ∈ 𝒫 . As 𝑃 ⪯ 𝐿, there is a strong
simulation 𝑅𝑃 ⊆ 𝑆𝑃 × 𝑆𝐿 with 𝑠0𝑃𝑅𝑃 𝑠

0
𝐿. As 𝑃 is a tree, 𝑠0𝑃

is not in the support of any distribution and hence, assume
without loss of generality that 𝑅𝑃 (𝑠

0
𝑃 ) = {𝑠0𝐿}. Let 𝑅 =∪

𝑃∈𝒫 𝑅𝑃 . Now, 𝑅 induces a partition Π of 𝑆𝒫 such that
for 𝑠1, 𝑠2 ∈ 𝑆𝒫 , [𝑠1]Π = [𝑠2]Π iff 𝑅(𝑠1) = 𝑅(𝑠2). Note that
[𝑠0𝑃 ]Π = [𝑠0𝑄]Π for 𝑃,𝑄 ∈ 𝒫 . The size of Π is clearly bounded
by 2𝑘. Now, we can show that {([𝑠𝑝]Π, 𝑠𝑙)∣𝑠𝑝𝑅𝑠𝑙} is a strong
simulation between 𝒫/Π and 𝐿.

Note that, if 𝐿 and every 𝑃 ∈ 𝒫 is an LTS, an upper bound
of 𝑘 on the size can be shown by choosing 𝑅𝑃 in the proof to
be a function. The following is now immediate, using Lemmas
3 and 6.

Corollary 1. For every consistent LPTS of 𝑘 states, there is
a consistent partition of size at most 2𝑘.

Observation. This shows that if 𝐿 is a minimum state consis-
tent LPTS, there exists a consistent partition of 𝑆𝒫 of size at
most exponential in ∣𝑆𝐿∣. While there may be a better bound,
this way of partitioning 𝑆𝒫 can not guarantee a minimum state
consistent LPTS in general. For example, 𝐻1 in Figure 6 is
the quotient for a least sized consistent partition of 𝑃 for the
trees in Figure 5 (obtained by merging 𝑠3 and 𝑠4). On the other

a b

c c

1 − λ

λ ∈ (0, 1)
b

a

H1 Hλ

Fig. 6: Quotients for least size partition (𝐻1) and stochastic partition (𝐻𝜆)
of 𝑃 in Figure 5.

hand, 𝐻𝜆, where 𝜆 is any value in (0, 1), is another consistent
LPTS with one less state.
Algorithm. A naı̈ve algorithm for finding a least-sized con-
sistent partition is to enumerate all the partitions of 𝑆𝒫 ,
with increasing size, and for each of them, check if the
corresponding quotient simulates any tree in 𝒩 . Alternatively,
we can cast it as an instance of the satisfiability problem
over linear rational arithmetic, as shown below. In general,
this is more efficient than the exhaustive search in the naı̈ve
algorithm, and also prepares the ground for an algorithm we
discuss in the next subsection.

First, we describe the encoding to check if there is a
consistent partition of size at most a given 𝑘. Let 𝑒𝑖 denote the
equivalence class 𝑖 for 1 ≤ 𝑖 ≤ 𝑘. For each 𝑖 and state 𝑠 ∈ 𝑆𝒫 ,
we introduce a new boolean variable, say 𝑣[𝑠]=𝑖, to denote
[𝑠] = 𝑒𝑖. We add the constraint xor(𝑣[𝑠]=1, . . . , 𝑣[𝑠]=𝑘) for
every 𝑠 ∈ 𝑆𝒫 for the partition to be well-defined. Moreover,
we fix 𝑒1 to be the start state of the resulting quotient and
have a constraint that 𝑣[𝑠0𝑃 ]=1 for every 𝑃 ∈ 𝒫 as 𝑒1 should
now contain all the start states (Definition 7).

Now, to encode consistency, we want to say that no tree
𝑁 ∈ 𝒩 is simulated by the resulting quotient. We can
avoid introducing a universal quantification over all possible
strong simulations by finding a way to say that (𝑠0𝑁 , 𝑒1) is
not in the coarsest strong simulation, for every 𝑁 ∈ 𝒩 .
Fortunately, we can make use of Lemma 4 to achieve exactly
this. We introduce a boolean variable 𝑅𝑠,𝑖 to denote that
𝑠 ∈ 𝑆𝒩 is related to 𝑒𝑖 by the coarsest strong simulation.
Let 𝑡𝑛 = (𝑠𝑛, 𝑎, 𝜇𝑛) and 𝑡𝑝 = (𝑠𝑝, 𝑎, 𝜇𝑝) be a transition of
𝒩 and 𝒫 , respectively, on the same action 𝑎, and 1 ≤ 𝑖 ≤ 𝑘.
Consider the expression 𝑑𝜇𝑛,𝜇𝑝 ∧ 𝑣[𝑠𝑝]=𝑖, denoted 𝜎𝑡𝑛,𝑖,𝑡𝑝 . If
𝑑𝜇𝑛,𝜇𝑝 denotes 𝜇𝑛 ⊑𝑅 lift(𝜇𝑝), then this expression has the
meaning that [𝑠𝑝] = 𝑒𝑖 and the transition corresponding to
𝑡𝑝 in the quotient, viz. 𝑒𝑖

𝑎→ lift(𝜇𝑝), simulates 𝑡𝑛. If 𝑋(𝑠)
denotes the set of all transitions outgoing from 𝑠 ∈ 𝑆𝒩 , 𝑌 (𝑎)
denotes the set of all transitions in 𝒫 on action 𝑎 and act(𝑡)
denotes the action for the transition 𝑡, we add

𝑅𝑠,𝑖 ⇐⇒
⋀

𝑡𝑛∈𝑋(𝑠)

⋁
𝑡𝑝∈𝑌 (act(𝑡𝑛))

𝜎𝑡𝑛,𝑖,𝑡𝑝

according to Lemma 4.
lift(𝜇𝑝)(𝑒𝑖) can be encoded as

∑
𝑠∈Supp(𝜇𝑝)

𝑙𝜇𝑝,𝑖,𝑠 where
𝑙𝜇𝑝,𝑖,𝑠 denotes the contribution of 𝑠 to the lifted probability of
𝑒𝑖 under 𝜇𝑝 and satisfies

(𝑣[𝑠]=𝑖 =⇒ 𝑙𝜇𝑝,𝑖,𝑠 = 𝜇𝑝(𝑠)) ∧ (¬𝑣[𝑠]=𝑖 =⇒ 𝑙𝜇𝑝,𝑖,𝑠 = 0).
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𝑑𝜇𝑛,𝜇𝑝 is encoded as follows. If we use Definition 2 alone, we
need to introduce a nested existential quantifier for the weight
function (to say that 𝑑𝜇𝑛,𝜇𝑝 iff there is a weight function
satisfying the conditions). To avoid this nested quantification,
we also make use of Lemma 1. First, we introduce a vari-
able for the weight function and encode the constraints of
Definition 2 if ⊑𝑅 holds between the distributions. We also
introduce a variable for the witness subset 𝑆 ⊆ Supp(𝜇𝑝) and
encode the condition of Lemma 1 when ⊑𝑅 fails to hold.
This variable for the witness subset can, in turn, be encoded
using individual boolean variables for each 𝑠 ∈ Supp(𝜇𝑝).
We also need boolean variables for the image of this witness
subset under 𝑅. The details are straightforward and left to the
reader. Finally, we encode consistency by having the constraint
¬𝑅𝑠0𝑁 ,1 for every 𝑁 ∈ 𝒩 .

It is not hard to show that the encoding is correct, i.e.
the resulting encoding is satisfiable iff there is a consistent
partition of size at most 𝑘. One can then obtain an algorithm
to find a least-sized consistent partition by starting with
𝑘 = 0 and incrementing it as long as the encoding for 𝑘
is unsatisfiable. As satisfiability over linear rational arithmetic
is decidable, this is guaranteed to terminate from Corollary 1.

Theorem 2. The above described algorithm to find a least-
sized consistent partition of 𝑆𝒫 terminates.

B. Using Stochastic Partitions

As noted above, the quotient of a least-sized consistent
partition need not have the least number of states. We observe
that the main reason for this is not being able to partition
𝑆𝒫 such that there is a one-to-one correspondence between
the equivalence classes and 𝑆𝐿, instead of the current 2𝑆𝐿

for a consistent LPTS 𝐿 (proof of Lemma 7). This suggests
that we can learn a minimum state consistent LPTS if we
can find a way to group the states of 𝑆𝒫 (groups need not
be disjoint) with such a correspondence. This will then imply
that if there is a minimum state consistent LPTS 𝐿, we can
use this grouping to obtain an equally sized consistent LPTS.
One can then automate the search for such a grouping using
constraint solving.

Let 𝐿 be a consistent LPTS and let us see what we can
do to group 𝑆𝒫 to have the above one-to-one correspondence
with 𝑆𝐿. Consider Figure 3 again and let 𝜇1 be outgoing from
the root of some tree 𝑃 in 𝒫 and 𝜇2 appear in 𝐿. Let there
be three groups (initially empty), one per state in Supp(𝜇2),
say 𝐺𝑡1 , 𝐺𝑡2 and 𝐺𝑡3 . As explained in Section II, having
𝜇1 ⊑𝑅 𝜇2, for some 𝑅, can be thought of as finding a way of
splitting the probabilities in both the distributions and pairing
states, already in 𝑅, to directly match the probabilities. We
would like to use this matching to group the states of 𝑆𝒫 . In
particular, looking at the figure, we would like to place the two
splits of 𝑠1 (𝑠2) in 𝐺𝑡1 and 𝐺𝑡2 (𝐺𝑡2 and 𝐺𝑡3 ), respectively.

As the probability of each split of a state in Supp(𝜇1 )

is matched with that of some split of exactly one state in
Supp(𝜇2), one can also think of the above grouping in the
following alternative way. As the probability of 1

2 for 𝑠1 is

split into 1
3 and 1

6 , 𝑠1 can be seen as being put in 𝐺𝑡1 with
probability 1/3

1/2 = 2
3 and in 𝐺𝑡2 with probability 1/6

1/2 = 1
3 .

Thus, instead of putting 𝑠1 deterministically into one group,
it is put stochastically into multiple groups. Let these splits of
𝑠1 put in 𝐺𝑡1 and 𝐺𝑡2 be 𝑠1[𝑡1] and 𝑠1[𝑡2], respectively.

Now, consider 𝑠1[𝑡1]. As the corresponding probability of 1
3

is matched with that of some split of 𝑡1 (implying 𝑠1𝑅𝑡1), and
as 𝑠1 is not in the support of any distribution other than 𝜇1

(note that 𝑃 is a tree), we need not consider if 𝑠1 is related,
by 𝑅, to any other state in 𝐿, as far as 𝑠1[𝑡1] is concerned.
And therefore, any distribution outgoing from this split of 𝑠1
will only need to be related to some distribution outgoing
from 𝑡1 (by ⊑𝑅). Similarly, for 𝑠1[𝑡2] and 𝑡2. Now, if 𝜇3

is a distribution outgoing from 𝑠1 in 𝑃 , we may want to
relate it to a distribution 𝜇 outgoing from 𝑡1 (for 𝑠1[𝑡1]) and
another distribution 𝜇′ outgoing from 𝑡2 (for 𝑠1[𝑡2]). For a
state 𝑠3 ∈ Supp(𝜇3), considering 𝜇3 ⊑𝑅 𝜇 and 𝜇3 ⊑𝑅 𝜇′

both hold, following the above described stochastic grouping
may result in two different ways of grouping 𝑠3. Thus, we
need to remember the group of its parent, denoted by par(⋅),
when grouping a state in 𝑆𝒫 .

This is the main motivation behind a stochastic partition,
which is defined below.

Definition 9 (Stochastic Partition). A stochastic partition of
𝑆𝒫 is a tuple (𝐺, {[𝑠]}𝑠∈𝑆𝒫 ) where 𝐺 ⊆ 2𝑆𝒫 and [𝑠] : 𝐺 →
Dist(𝐺) for every 𝑠 ∈ 𝑆𝒫 , such that

∪
𝐺 = 𝑆𝒫 and

1) there is a 𝑔0 ∈ 𝐺 such that for every 𝑃 ∈ 𝒫 and 𝑔 ∈ 𝐺,
[𝑠0𝑃 ](𝑔) = 𝛿𝑔0 and

2) for every non-root state 𝑠 ∈ 𝑆𝒫 and 𝑔 ∈ 𝐺, [𝑠](𝑔) is
defined iff [par(𝑠)](𝑔′)(𝑔) > 0 for some 𝑔′ ∈ 𝐺.

Furthermore, 𝑠 ∈ 𝑔 iff [𝑠](𝑔′)(𝑔) > 0 for some 𝑔′ ∈ 𝐺, for
every 𝑠 ∈ 𝑆𝒫 and 𝑔 ∈ 𝐺.

We use (𝐺Π, {[𝑠]Π}𝑠) for a stochastic partition Π and when
Π is clear, we drop the subscripts.

Here, 𝐺 denotes the groups mentioned above and [𝑠] denotes
the stochastic grouping of 𝑠 ∈ 𝑆𝒫 given a group of its parent.
Point 1 above says that the start states of all trees in 𝒫 go
deterministically to a designated group. Note that the start
states have no parents and the dependence of [𝑠0𝑃 ] on an
argument is just a notational convenience. And point 2 says
that for every non-root state 𝑠, [𝑠] is only defined for a valid
group of its parent. We implicitly assume that [𝑠](𝑔′)(𝑔) = 0
for every 𝑔 ∈ 𝐺 if [𝑠] is not defined at 𝑔′.

Now, we define the quotient of a stochastic partition in the
following way.

Definition 10 (Quotient LPTS). Given a stochastic partition
Π = (𝐺, {[𝑠]}𝑠) of 𝑆𝒫 , define the quotient LPTS, denoted
𝒫/Π, as the LPTS ⟨𝐺, 𝑔0, 𝛼, 𝜏⟩ where 𝑔0 ∈ 𝐺 is such that
[𝑠0𝑃 ](𝑔) = 𝛿𝑔0 for every 𝑃 ∈ 𝒫 and 𝑔 ∈ 𝐺, 𝛼 =

∪
𝑃∈𝒫 𝛼𝑃

and (𝑔, 𝑎, 𝜇) ∈ 𝜏 iff there exists (𝑠, 𝑎, 𝜇𝑝) ∈ 𝜏𝑃 , for some
𝑃 ∈ 𝒫 such that 𝑠 ∈ 𝑔 and for every 𝑔′ ∈ 𝐺,

𝜇(𝑔′) =
∑
𝑠′∈𝑔′

[𝑠′](𝑔)(𝑔′) ⋅ 𝜇𝑝(𝑠′).
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We denote this relation between 𝜇 and 𝜇𝑝 by 𝜇 = lift(𝜇𝑝, 𝑔).

Thus, (𝑔, 𝑎, 𝜇) ∈ 𝜏 iff there is a state 𝑠 ∈ 𝑔 with 𝑠
𝑎→ 𝜇𝑝 and

𝜇 is obtained by lifting 𝜇𝑝, given that 𝑠 ∈ 𝑔. For this to make
sense, we need to show that the lifting is a valid distribution.
In the following, Π = (𝐺, {[𝑠]}𝑠) is a stochastic partition.

Lemma 8. 𝒫/Π is a well-defined LPTS.

We have the following lemma analogous to classical parti-
tions.

Lemma 9. 𝒫/Π is consistent with 𝒫 for all Π.

Proof Sketch: One can show that {(𝑠, 𝑔)∣𝑔 ∈ 𝐺, 𝑠 ∈
𝑆𝑃 ∩𝑔} is a strong simulation between 𝑃 and 𝒫/Π for 𝑃 ∈ 𝒫 .

Consistency of a stochastic partition is defined in the same
way as Definition 8. Thus, we reduce the problem of finding a
minimum state consistent LPTS to that of finding a least-sized
consistent stochastic partition where the size of a stochastic
partition is its number of groups.

Lemma 10. If 𝐿 is an LPTS of 𝑘 states consistent with 𝒫 ,
then there is a Π of size at most 𝑘 with 𝒫/Π ⪯ 𝐿.

Proof Sketch: Let 𝑃 ∈ 𝒫 . As 𝑃 ⪯ 𝐿, there is
a strong simulation 𝑅𝑃 ⊆ 𝑆𝑃 × 𝑆𝐿 with 𝑠0𝑃𝑅𝑃 𝑠

0
𝐿. Let

𝑅 =
∪
𝑃∈𝒫 𝑅𝑃 . Now, construct a stochastic partition with at

most ∣𝑆𝐿∣ many groups following the intuitive explanation we
gave when motivating stochastic partitions. For distributions
𝜇𝑝 ∈ Dist(𝑆𝒫) and 𝜇𝑙 ∈ Dist(𝑆𝐿), the stochastic groupings
of a state 𝑠 ∈ Supp(𝜇𝑝) is obtained by using a weight function
showing 𝜇𝑝 ⊑𝑅 𝜇𝑙. In particular, 𝑠 is put in the group
corresponding to 𝑠𝑙 ∈ 𝑆𝐿 with probability 𝑤(𝑠, 𝑠𝑙)/𝜇𝑝(𝑠)
where 𝑤 is the weight function which is uniquely chosen given
𝜇𝑝 and 𝜇𝑙. Moreover, 𝜇𝑙 and this grouping depend on the
group of par(𝑠). Once such a stochastic partition Π is built,
we can show that {(𝑔, 𝑠𝑙)∣𝑔 is the group corresponding to 𝑠𝑙}
is a strong simulation between 𝒫/Π and 𝐿.

Our main result follows as an immediate corollary, using
Lemmas 3 and 9.

Corollary 2. For every consistent LPTS of 𝑘 states, there is
a consistent stochastic partition of size at most 𝑘.

So, we can obtain a minimum state consistent LPTS by
constructing the quotient for a consistent stochastic partition
of 𝑆𝒫 of the least size. For example, 𝐻𝜆, 𝜆 ∈ (0, 1), in Figure
6 is the quotient for a least sized consistent stochastic partition
for the trees in Figure 5 (where 𝑠1 goes to group 1, 𝑠2 goes
to group 2 with probability 𝜆 and to group 1 with 1− 𝜆 and
𝑠3 and 𝑠4 go to group 2). We describe an algorithm to find
a least-sized consistent stochastic partition by casting it as
an instance of the satisfiability problem over linear rational
arithmetic.
Algorithm. The encoding is similar to the case of partitions
in the previous subsection. To find a stochastic partition of
size at most a given 𝑘, let 𝑔𝑖 denote the group 𝑖 for 1 ≤
𝑖 ≤ 𝑘. Introduce a non-negative rational variable 𝑣[𝑠](𝑖),𝑗 to

denote [𝑠](𝑔𝑖)(𝑔𝑗) for every 𝑠 ∈ 𝑆𝒫 , 1 ≤ 𝑖, 𝑗 ≤ 𝑘. For every

𝑖 and 𝑠 ∈ 𝑆𝒫 , add the constraint
(∑

1≤𝑗≤𝑘 𝑣[𝑠](𝑖),𝑗 = 1
)
∨(∑

1≤𝑗≤𝑘 𝑣[𝑠](𝑖),𝑗 = 0
)

to denote that [𝑠](𝑔𝑖) is a distribution
or is undefined. Then, we encode points 1 and 2 of Definition 9
by adding the constraint 𝑣[𝑠0𝑃 ](𝑖),1 = 1 for every 𝑖 and 𝑃 ∈ 𝒫 ,
making 𝑔1 the start state of the quotient, and adding

∑
1≤𝑗≤𝑘

𝑣[𝑠](𝑖),𝑗 = 1 ⇐⇒
∑

1≤𝑙≤𝑘
𝑣[par(𝑠)](𝑙),𝑖 > 0

for every non-root state 𝑠 and 𝑖. This ensures that the stochastic
partition obtained is well-defined.

Encoding consistency is the same as before except for
𝜎𝑡𝑛,𝑖,𝑡𝑝 (𝑡𝑛, 𝑖 and 𝑡𝑝 are as before) which will now be

𝑑𝜇𝑛,𝜇𝑝,𝑖 ∧
∑

1≤𝑗≤𝑘
𝑣[𝑠𝑝](𝑗),𝑖 > 0.

where 𝑑𝜇𝑛,𝜇𝑝,𝑖 denotes 𝜇𝑛 ⊑𝑅 lift(𝜇𝑝, 𝑔𝑖). Thus, we will
check if there is a group of par(𝑠𝑝) (summation over 1 ≤
𝑗 ≤ 𝑘) for which 𝑠𝑝 ∈ 𝑔𝑖 and 𝜇𝑛 ⊑𝑅 lift(𝜇𝑝, 𝑔𝑖). For a 𝑗,
lift(𝜇𝑝, 𝑔𝑖)(𝑔𝑗) is encoded as

∑
𝑠∈Supp(𝜇𝑝)

𝑣[𝑠](𝑖),𝑗 ⋅𝜇𝑝(𝑠). Rest
of the encoding is similar.

We can similarly show the correctness of the encoding and
the termination of the algorithm follows from Corollary 2.

Theorem 3. The problem of learning a minimum state con-
sistent LPTS with 𝒫 and 𝒩 is decidable.

IV. ACTIVE LEARNING FOR LPTSES

We now consider the problem of learning the language of
an LPTS, i.e. learning an LPTS up to simulation equivalence
(following Lemma 5), in the framework of active learning. Let
𝑈 be an unknown target LPTS. The learning framework has
a learner and a teacher. The goal of the learner is to learn an
LPTS 𝐿 such that 𝐿 ≃ 𝑈 . To that effect, the learner maintains
a hypothesis LPTS 𝐻 . The process of learning proceeds in
rounds where in each round, the learner makes a query to the
teacher and updates 𝐻 based on the response. For reasons
mentioned in the introduction, we only consider a single type
of queries in this paper where the learner conjectures 𝐻 as
(simulation) equivalent to 𝑈 . In response to such a query,
the teacher is expected to check whether 𝐻 ≃ 𝑈 holds and
otherwise, return a counterexample. If it is a counterexample
to 𝐻 ⪯ 𝑈 (𝑈 ⪯ 𝐻), it is called a negative (positive)
counterexample. Following Section II, we assume that the
counterexamples are always trees. Furthermore, there should
always exist an LPTS consistent with all of the counterex-
amples, i.e. simulating all the positive counterexamples and
none of the negative counterexamples, received by the learner
so far. Also, every conjecture 𝐻 made by the learner should
be consistent with the counterexamples received so far, in the
above sense.

Unfortunately, the framework, as described above, is too
general to be useful, as the following lemma shows.

Theorem 4. The problem of learning an unknown LPTS 𝑈 is
undecidable in the active learning framework.
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Proof Sketch: We show that there is no algorithm to
learn the unknown target 𝑈𝜆, which first performs an action
𝑎 and goes to a state with (unknown) probability 𝜆 to loop
on action 𝑏 or goes to another state with the remaining proba-
bility to deadlock, by describing an adversarial teacher which
manipulates the value of 𝜆 as necessary to keep generating
counterexamples. After choosing an initial value of 𝜆, the
teacher returns a counterexample as long as the hypothesis
is not simulation equivalent to the target. If a hypothesis
simulation equivalent to the target is conjectured, the teacher
increases the value of 𝜆 just enough to have the new target
not simulated by the hypothesis, while still being consistent
with all the previously generated counterexamples, and a new
(positive) counterexample can then be generated.

The main reason behind the theorem is that it is not
necessary for the positive tree counterexamples returned by
the teacher to have an execution mapping to 𝑈 (see Section
II). Such a teacher can be seen as an adversary which can
choose the probability values in the counterexamples returned,
which are infinitely many, to make the learner never converge
to the desired probabilities.

But, in practice, to be able to apply the learning framework
in a given setting, one needs to implement the teacher’s
algorithm and we are not aware of any algorithm to generate
counterexamples other than the one discussed in Section II. As
mentioned before, this algorithm has an interesting property
that the generated counterexamples have an execution mapping
to 𝐿1 when 𝐿1 ⪯ 𝐿2 fails. This suggests us to impose the
following friendliness condition on a teacher.

Condition 1 (Friendly Teacher). Every positive (negative)
counterexample returned by the teacher should have an ex-
ecution mapping to 𝑈 (𝐻).

First of all, we observe that the proof of Theorem 4 no
longer works because an update to 𝜆 may violate Condition
1 on any positive counterexample already returned. In fact, as
we show below, the problem becomes decidable. Let 𝒫 and
𝒩 denote the sets of positive and negative counterexamples,
returned by the teacher so far, respectively. First, consider the
pseudo-code in Algorithm 1. It suggests a method of using the
algorithms described in Section III by treating 𝒫 and 𝒩 as
the tree samples. There is a choice at line 6 to use partitions
or stochastic partitions.

Algorithm 1 Active Learning Loop.

1: 𝒫 = 𝒩 = ∅
2: 𝐻 ← single state LPTS with no transitions
3: repeat
4: conjecture 𝐻 to the teacher
5: update 𝒫 and 𝒩 from returned counterexamples, or exit
6: obtain a least sized consistent (stochastic) partition Π
7: 𝐻 ← 𝒫/Π
8: until false

First, we show that using traditional partitions at line 6
makes the problem of learning a target decidable.

Lemma 11. The active learning loop of Algorithm 1 termi-
nates under Condition 1 on the teacher and using partitions
at line 6 with the number of states of each intermediate
hypothesis 𝐻 bounded by that of 𝑈 .

Proof Sketch: Consider an arbitrary iteration of the
learning loop. First of all, due to Condition 1, the quotient
of the partition induced by the execution mappings from the
positive counterexamples to 𝑈 is a sub-structure of 𝑈 and
hence, is trivially simulated by 𝑈 and is a consistent LPTS.
As the algorithm finds a least-sized consistent partition, its
size is bounded by ∣𝑆𝑈 ∣.

Then, notice that every future hypothesis is consistent with
any new counterexample returned, and hence, is distinct from
the current one. Moreover, due again to Condition 1, and as
lift only adds probabilities, one can show that there are only
finitely many possible distributions for a given partition size.

We conclude that the algorithm terminates.
Thus, we have the following result.

Theorem 5. The problem of learning an unknown LPTS is
decidable in the active learning framework, with Condition 1
on the teacher.

It is sometimes desirable to learn an LPTS with the least
number of states. While the algorithm described above learns
an LPTS, it is not guaranteed to output a minimum state LPTS
simply because each hypothesis need not have the least number
of states (see Section III-A). This suggests us to impose the
following condition on the learner.

Condition 2 (Learner). Every hypothesis 𝐻 made by the
learner is a minimum state LPTS consistent with 𝒫 and 𝒩 .

If there is a learning algorithm under Conditions 1 and 2,
then it is guaranteed to output a minimum state LPTS which is
(simulation) equivalent to 𝑈 . But, there is no such algorithm
as we show below.

Theorem 6. The problem of learning an unknown LPTS 𝑈
is undecidable in the active learning framework, with both
Condition 1 on the teacher and Condition 2 on the learner.

Proof Sketch: We show that there is no algorithm to
learn (unknown) 𝐻1 in Figure 6, by describing an adversarial
teacher which can return a counterexample for any conjectured
hypothesis. Initially, the teacher keeps returning negative coun-
terexamples, if there are transitions on actions other than 𝑎, 𝑏
and 𝑐 in the hypothesis, or the positive counterexample 𝑃 in
Figure 5 until the learner conjectures a single-state LPTS with
self-loops on these three actions. Thereafter, if a conjectured
hypothesis has transitions on only 𝑎, 𝑏 and 𝑐 and simulates
𝑃 , the teacher returns 𝑁𝑎 to force the future hypotheses to
have at least two states and in every future round, returns 𝑁𝑏
or 𝑁𝛽,𝛾𝑐 in the figure, as necessary. One can show that there
are always suitable values of 𝛽 and 𝛾 whenever 𝑁𝛽,𝛾𝑐 needs
to be returned and the learner always conjectures a two state
LPTS. In fact, 𝐻𝜆 is always a consistent LPTS for a suitable
𝜆 ∈ (0, 1).
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However, we obtain a semi-algorithm to the problem by
using stochastic partitions at line 6 of Algorithm 1. That is,
if the algorithm terminates, it is guaranteed to learn the target
with the least number of states. Correctness is immediate from
Theorem 3.

V. LEARNING ASSUMPTIONS FOR

COMPOSITIONAL REASONING

As mentioned in the introduction, the original motivation for
this work was to automate assume-guarantee style reasoning
for simulation conformance. Assume-guarantee reasoning [25]
is a compositional technique that breaks up the verification of
large systems into that of its components for increased scala-
bility. When checking individual components, the method uses
assumptions about their environments and discharges them
on the rest of the system. For a system of two components,
such reasoning is captured by the following simple assume-
guarantee rule (ASYM).

𝐿1 ∥ 𝐴 ⪯ 𝑃 𝐿2 ⪯ 𝐴

𝐿1 ∥ 𝐿2 ⪯ 𝑃

Several other assume-guarantee rules have been proposed,
some of them involving symmetric [26] or circular reason-
ing [1], [26], [20]. Despite its simplicity, rule ASYM has
been proven most effective in practice and has been studied
extensively mainly in a non-probabilistic setting, for different
notions of conformance [26], [9], [15].

In our case, 𝐿1, 𝐿2, 𝐴 and 𝑃 are LPTSes with 𝑃 standing
for the specification which the composition 𝐿1 ∥ 𝐿2 should
conform to, where ∥ is defined below.

Definition 11 (Composition [28]). The parallel composition
of 𝐿1 and 𝐿2, denoted 𝐿1 ∥ 𝐿2, is defined as the LPTS ⟨𝑆1×
𝑆2, (𝑠

0
1, 𝑠

0
2), 𝛼1 ∪ 𝛼2, 𝜏⟩ where (𝑠1, 𝑠2)

𝑎→ 𝜇 iff

1) 𝑠1
𝑎→ 𝜇1, 𝑠2

𝑎→ 𝜇2 and 𝜇 = 𝜇1 ⊗ 𝜇2, or
2) 𝑠1

𝑎→ 𝜇1, 𝑎 ∕∈ 𝛼2 and 𝜇 = 𝜇1 ⊗ 𝛿𝑠2 , or
3) 𝑎 ∕∈ 𝛼1, 𝑠2

𝑎→ 𝜇2 and 𝜇 = 𝛿𝑠1 ⊗ 𝜇2.

Here 𝜈1 ⊗ 𝜈2 ∈ Dist(𝑆1 × 𝑆2), such that 𝜈1 ⊗ 𝜈2 : (𝑠1, 𝑠2) "→
𝜈1(𝑠1) ⋅ 𝜈2(𝑠2), for 𝜈1 ∈ Dist(𝑆1), 𝜈2 ∈ Dist(𝑆2).

The main challenge in using assume-guarantee reasoning is
to automatically come up with a small assumption 𝐴 satisfying
the premises. We first note that the proposed rule is sound and
complete [19]. Completeness, obtained trivially by replacing 𝐴
with 𝐿2, is essential to guarantee termination of our proposed
algorithm. Previous attempts at automating assume-guarantee
reasoning using learning in a probabilistic setting have been
restricted to checking probabilistic reachability properties us-
ing either an incomplete rule [15] or algorithms which may
not terminate [14].

Motivated by the success of existing applications of active
learning to assume-guarantee reasoning [26], [9], [10], we
propose to use the active learning framework presented in
Section IV to learn an intermediate assumption 𝐴 in the
rule ASYM. We describe an algorithm for the problem using
learning and show termination below.

Teacher. The teacher is implemented by two conformance
checks corresponding to the two premises of the rule, checked
in any order.

∙ Premise 1 guides the learner towards a conjecture that
makes 𝐿1 ∥ 𝐴 ⪯ 𝑃 true.

∙ Premise 2 guides the learner towards a conjecture that is
discharged on 𝐿2, i.e. that makes 𝐿2 ⪯ 𝐴 true.

If the conjectured 𝐴 satisfies both the premises, soundness
of ASYM implies 𝐿1 ∥ 𝐿2 ⪯ 𝑃 holds, and the teacher
returns true. If one of the premises fails, the teacher generates
counterexamples with an execution mapping (Section II).
Thus, the teacher satisfies Condition 1. When premise 2 fails,
a positive counterexample is returned to the learner. When
premise 1 fails, the obtained counterexample is first projected
onto 𝐴 and then returned as a negative counterexample. As a
counterexample 𝐶 to premise 1 has an execution mapping to
𝐿1 ∥ 𝐴, the projection onto 𝐴 is simply the contribution of
𝐴 towards 𝐶 in the composition. To enable this, additional
information regarding individual distributions is maintained
during composition [19].
Spuriousness Check. Note that if 𝐿1 ∥ 𝐿2 ∕⪯ 𝑃 , no
assumption satisfies both the premises of ASYM (violating
the assumption on the existence of a consistent LPTS in
Section III). To detect this, the learner needs to check if a
counterexample returned by the teacher exposes the failure of
the conclusion of ASYM. A real counterexample would imply
that the specification will not hold of the original system while
a spurious one would need the learner to revise its hypothesis
for the assumption. We restrict spuriousness check to negative
counterexamples following previous approaches [26]. A simple
way is to check 𝑁 ⪯ 𝐿2 for a negative counterexample 𝑁 . 𝑁
is real if the check succeeds and spurious, otherwise. A slightly
more involved, but practical, way is described elsewhere [19].
Algorithm. Now, the learner can simply use Algorithm 1,
using partitions, to learn an intermediate assumption. As the
positive (negative) counterexamples have execution mapping
to 𝐿2 (A), it is as if the unknown target is 𝐿2. Note that if
𝑃 holds of the system, 𝐿2 is clearly an assumption satisfying
the premises. However, the algorithm is expected to terminate
with a smaller assumption in practice, which also satisfies the
premises. If 𝑃 does not hold, the algorithm terminates with
a real counterexample. Termination is guaranteed by Lemma
11. If we also impose Condition 2, the learner uses stochastic
partitions in Algorithm 1 giving a semi-algorithm.
Complexity Analysis. Let us now analyze the complexity
of assume-guarantee reasoning using the learning algorithm
described above (with partitions). The complexity of checking
𝐿1 ∥ 𝐿2 ⪯ 𝑃 directly is 𝑂(poly(∣𝐿1∣ ⋅ ∣𝐿2∣, ∣𝑃 ∣)), where ∣𝐿∣
denotes max(∣𝑆𝐿∣, ∣𝜏𝐿∣).

Let 𝑑 = ∣𝜏2∣ and 𝑏 be the maximum size of the support of
a distribution in 𝐿2. Given a state of a candidate assumption
of size 𝑘 and a distribution of 𝐿2, there can be at most 𝑘𝑏-
many corresponding distributions (due to non-determinism)
from that state. For 𝑘 states and 𝑑 distributions, this gives
a total of 𝑑𝑘𝑏+1. Therefore, there are 2𝑑𝑘

𝑏+1

different possible
candidates of size 𝑘 to consider. The total number of iterations
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of the learning algorithm is then bounded by
∑𝑚
𝑘=1 2

𝑑𝑘𝑏+1

=

𝑂(𝑚2𝑑𝑚
𝑏+1

), where 𝑚 is the number of states in the final
assumption output by the algorithm.

At each iteration, in the worst-case, the algorithm enumer-
ates all the candidate assumptions of the current size 𝑘 and
performs simulation checks with all the negative counterexam-
ples. These checks have a complexity of 𝑂(poly(∣𝐴∣, ∣𝒩 ∣, 𝑙)),
where 𝐴 is the final assumption, 𝒩 is the final set of negative
counterexamples and 𝑙 is the largest ∣𝑁 ∣, for any 𝑁 ∈ 𝒩 .
Thus, the total worst-case complexity of the learning algorithm
for computing the final assumption is 𝑂(poly(∣𝐴∣, ∣𝒩 ∣, 𝑙) ⋅
𝑚2𝑑𝑚

𝑏+1

). Furthermore, the complexity of checking the two
premises of ASYM is 𝑂(poly(∣𝐿1∣ ⋅ ∣𝐴∣, ∣𝑃 ∣)+poly(∣𝐿2∣, ∣𝑃 ∣))
at every iteration. We observe that in practice, if the assump-
tion is small (i.e. ∣𝐴∣ ≪ ∣𝐿2∣) this approach can be better than
checking 𝐿1 ∥ 𝐿2 directly. In other cases, however, we would
need better algorithms to address the problem. We leave this
for future work.

VI. CONCLUSION

We have presented algorithms and decidability results
for the problem of learning non-deterministic LPTSes from
stochastic tree samples, using traditional and stochastic state-
space partitioning. We have also described the application of
the algorithms to automating the discovery of assumptions for
the compositional verification of LPTSes.

In the future, we would like to investigate further conditions
on the teacher that will make the active learning problem with
stochastic partitions decidable. We also plan to investigate
the use of weak simulation for the conformance relation,
as this will result in smaller assumptions for compositional
verification. However, algorithms for checking weak simula-
tion are not currently known. Finally we plan to investigate
new applications for our algorithms in learning abstractions or
active model checking and in domains other than verification.
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