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Abstract—We consider the problem of learning a non-
deterministic probabilistic system consistent with a given finite
set of positive and negative tree samples. Consistency is defined
with respect to strong simulation conformance. We propose
learning algorithms that use traditional and a new stochastic
state-space partitioning, the latter resulting in the minimum
number of states. We then use them to solve the problem of active
learning, that uses a knowledgeable teacher to generate samples
as counterexamples to simulation equivalence queries. We show
that the problem is undecidable in general, but that it becomes
decidable under a suitable condition on the teacher which
comes naturally from the way samples are generated from failed
simulation checks. The latter problem is shown to be undecidable
if we impose an additional condition on the learner to always
conjecture a minimum state hypothesis. We therefore propose a
semi-algorithm using stochastic partitions. Finally, we apply the
proposed (semi-) algorithms to infer intermediate assumptions
in an automated assume-guarantee verification framework for
probabilistic systems.

Index Terms—probability, transition, system, simulation, con-
formance, active learning, tree, partition, assume-guarantee

I. INTRODUCTION

We study the problem of learning an unknown non-
deterministic Labeled Probabilistic Transition System (LPTS)
from tree samples. The motivation for this work was to in-
vestigate learning techniques for automating assume-guarantee
style [25] compositional verification of strong simulation con-
formance [28] between LPTSes. Strong simulation for LPTSes
is decidable in polynomial time [4] and yields stochastic tree
counterexamples when it fails [19]. Stochastic trees are tree-
shaped LPTSes (see Section II) with probabilities appearing
on the transitions.

Compositional verification [11] is a promising approach for
alleviating the state explosion problem in model checking [12].
Learning from trace [2], [23] and tree [9] counterexamples has
been successfully applied before for automating the approach
in a non-probabilistic setting, for checking trace inclusion [26],
[10] and simulation conformance [9], respectively. The most
closely related work [9] reduces simulation conformance to
tree language inclusion and uses learning for deterministic tree
automata to automatically generate the assumptions used in
compositional reasoning. In the probabilistic setting, existing
literature has dealt with learning from samples consisting of
trees with information regarding the probability of accep-
tance [7], but learning from stochastic trees has not been
considered before. Moreover, there is no existing probabilis-
tic variant of a tree automaton to recognize stochastic tree
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languages. This motivated us to consider learning an LPTS
directly, without working with tree languages or tree automata.

We consider first the problem of learning a non-
deterministic LPTS that is consistent with respect to a set of
positive and negative stochastic tree samples, where consis-
tency is defined in terms of strong simulation conformance.
For the purpose of verification, we want the learnt models to
be minimal or at least to have a good upper bound on their
size. We describe two algorithms, each using a different way of
partitioning the state-space of the positive samples. One algo-
rithm uses traditional state-space partitioning (Section III-A)
resulting in the least number of partitions, while the other uses
a new stochastic partitioning (Section III-B) resulting in the
least number of states.

We then apply the above algorithms to solve the problem of
learning an unknown target in Section IV. This is done in the
framework of active learning with the help of a knowledgeable
teacher. Typically active learning algorithms assume a teacher
that answers two types of queries - membership (of a sample in
the unknown target) and equivalence (between the conjectured
model and the unknown target) [2]. However we observe
that membership queries are not straightforward to create in
our case as the learner would need to guess the transition
probabilities, along with the tree-structure. Therefore, we only
assume the teacher can answer equivalence queries — the
teacher checks simulation equivalence (two-way simulation
conformance) between a conjectured LPTS and the target
LPTS and returns positive or negative stochastic trees when
the check fails.

We show that active learning for LPTSes is undecidable
in general. We then propose a learning algorithm that works
under an assumption on the teacher which comes naturally
from the way the tree counterexamples are generated from
failed simulation checks. As we are interested in learning an
LPTS of the least number of states, we also consider imposing
a restriction on the learner to always conjecture a minimum
state hypothesis. Learning with this restriction also turns out
to be undecidable and we propose a semi-algorithm using
stochastic partitions.

LPTSes are related to probabilistic automata (PA) [27].
Algorithms to learn PAs have only been proposed in restricted
settings of stronger assumptions on a teacher [29] or approxi-
mate learning [13], [21]. Algorithms to learn a multiplicity au-
tomaton, which generalizes a PA by replacing the probabilities
with arbitrary rationals, have also been proposed [5]. Adapting
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these to solve verification problems involving probabilistic
transition systems is difficult and results in non-terminating
algorithms [14]. On the other hand, we show in Section V
that one can readily apply the algorithms we propose to infer
intermediate assumptions in an automated assume-guarantee
style framework for the verification of strong simulation
conformance between LPTSes. This yields the first complete
and fully automated learning framework for compositional
verification of probabilistic systems. Moreover, one can ex-
tend this framework to check logical properties, such as the
fragment weakly safe PCTL [8], which are preserved by the
conformance and also have tree counterexamples.

Other Related Work. Learning for automating compositional
reasoning of probabilistic systems has been proposed be-
fore [15] in the context of checking probabilistic reachability
properties, which are refuted by sets of trace counterexamples.
The approach uses a variant of L* [2], a learning algorithm
for DFAs, to automatically learn deterministic assumptions,
following previous work in the non-probabilistic setting [26].
The approach uses a sound but incomplete rule, and therefore,
it is not guaranteed to terminate (completeness is necessary for
termination). A complete rule for such properties restricted
to systems without non-determinism has been considered
recently [14]. It uses learning with probabilistic trace inclusion
as the conformance relation which is undecidable. Also, the
learning algorithm is not guaranteed to terminate. In contrast,
we use simulation conformance which is decidable in polyno-
mial time and leads to a sound and complete rule (Section V).
We are also able to guarantee termination for the algorithm
proposed in Section V when using classical partitions to infer
a consistent LPTS.

Our work draws inspiration from a previous work [18] that
automates assumption generation by using an algorithm for
learning the minimal separating automaton from positive and
negative trace counterexamples. The counterexamples are pro-
vided via model checking in an assume-guarantee framework.
Similar to our work, they use a partitioning approach, where
the goal is to find a folding of the counterexamples into the
learnt model. A different approach has been proposed to find
the separating automaton based on L* which makes use of
membership queries, in addition to equivalence queries [10].
All these works were done in the context of non-probabilistic
reasoning under trace semantics and thus, are different from
our setting.

Learning a minimum-state automaton from positive and
negative samples is a well studied problem [3], [24], [16] that
is known to be hard [17]. Algorithms have also been proposed
for samples with stochastic information, i.e. the probability of
acceptance of a trace or a tree [6], [7], learning stochastic
finite (tree) automata. As also previously said, we cannot
immediately borrow existing results from the above automata-
theoretic approaches.

II. PRELIMINARIES

Labeled Probabilistic Transition Systems. Let S be a non-
empty set. Dist(.S) is defined to be the set of discrete proba-
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Fig. 1: Three reactive LPTSes. p € (0,1) for Cp.

bility distributions over .S. We assume that all the probabilities
specified explicitly in a distribution are rationals in [0, 1];
there is no unique representation for all real numbers on a
computer and floating-point numbers are essentially rationals.
For s € S, 5 is the Dirac distribution on s, i.e. §5(s) = 1 and
ds(t) = 0 for all t # s. For p € Dist(S), the support of p,
denoted Supp(u), is defined to be the set {s € S|u(s) > 0}
and for X C S, p(X) stands for ) .y pu(s). The models
we consider, defined below, have both probabilistic and non-
deterministic behavior. Thus, there can be a non-deterministic
choice between two probability distributions, even for the same
action. Such modeling is typically used for underspecification.
Moreover, the theory described does not become any simpler
by disallowing non-deterministic choice for a given action (see
the discussion on counterexamples at the end of this section).

Definition 1 (LPTS). A Labeled Probabilistic Transition Sys-
tem (LPTS) is a tuple (S, s°, o, T) where S is a set of states,
s¥ € S is a distinguished start state, « is a set of actions and
7 C S X a xDist(S) is a probabilistic transition relation. For
s €S, a€ «aand p € Dist(S), we denote (s,a,p) € T by
s % u and say that s has a transition on a to p.

An LPTS is called reactive if T is a partial function from
S x a to Dist(S) (i.e. at most one transition on a given action
from a given state).

Throughout this paper, we use filled circles to denote start
states in the pictorial representations of LTPSes. For example,
Figure 1 shows three LPTSes. For p = {(s1,%), (s2,3)}
L, has the transition s; — u. All the LPTSes in the figure
are reactive as no state has more than one transition on a
given action. In the literature, an LPTS is also called a simple
probabilistic automaton [28]. Similarly, a reactive LPTS is also
called a (Labeled) Markov Decision Process. Also, note that an
LPTS with all the distributions restricted to Dirac distributions
is the classical (non-probabilistic) Labeled Transition System
(LTS); thus a reactive LTS corresponds to the standard notion
of a deterministic LTS. We only consider finite state, finite
alphabet and finitely branching (i.e. finitely many transitions
from any state) LPTSes. We use (S;, 9, a;, 7;) for an LPTS
L; and (S, s%, ar,7) for an LPTS L.

We are also interested in LPTSes with a tree structure, i.e.
the start state is not in the support of any distribution and every
other state is in the support of exactly one distribution. We call
such LPTSes stochastic trees or simply trees. For example, C),,
p € (0,1), in Figure 1 is a tree.

Strong Simulation. In the non-probabilistic case, for two
labeled transition systems (LTSes), a pair of states belonging to
a strong simulation relation depends on whether certain other
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Fig. 2: A simple example where matching probabilities (solid edges) directly
proves 1 TR po.
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Fig. 3: An example where probabilities are split (arrows) before matching
(solid edges) to prove u1 Cgr po.

pairs of successor states also belong to the relation [22]. For
LPTSes, one has successor distributions instead of successor
states; a pair of states belonging to a strong simulation relation
R should now depend on whether certain other pairs in the
supports of these successor distributions also belong to R.
We thus need a binary relation between distributions, Cg,
which depends on the relation R between states. Intuitively,
two distributions can be related if we can pair the states in
their support sets, the pairs contained in R, matching all the
probabilities under the distributions.

Consider an example with sRt and the transitions s — i
and t % up with g and po as in Figure 2. In this case, one
easy way to match the probabilities is to pair s; with ¢; and
so with to. This is sufficient if sy Rt; and sy Rts also hold,
in which case, we say that p1 Cg po. However, such a direct
matching may not be possible in general. As shown in Figure
3, we need a more general notion of matching the probabilities.
One can achieve that by splitting the probabilities under the
distributions in such a way that one can then directly match
the probabilities as in Figure 2. Now, if s1 Rtq, s1Rta, sa Rt
and soRts also hold, we say that py T po. Note that there
can more than one possible splitting.

This is the central idea behind the following definition
where the splitting is achieved by a weight function. For
the rest of the section, let L; and L, be two LPTSes,
Hn1 € DiSl(Sl), L2 € DiSt(SQ) and R C S7 x Ss.

Definition 2 ([28]). w1 Cr po iff there is a weight function
w: S x Sy = QNI0,1] such that

]) /,Ll(Sl) = ZSQESQ 'LU(Sl,SQ)fOV all s1 € Sl’
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2) pa(s2) =D, cg, W(s1,82) for all sy € S,
3) w(s1,s2) > 0 implies s1Rso for all s; € Sy, s2 € Sa.

u1 Cr pe can be checked by computing the maxflow in
an appropriate network and checking if it equals 1.0 [4]. If
11 Eg pe holds, w in the above definition is one such maxflow
function. As explained above, p1 Cgr po can be understood
as matching all the probabilities (after splitting appropriately)
under (1 and pe. Considering Supp(p1) and Supp(pz) as two
partite sets, this is the weighted analog of saturating a partite
set in bipartite matching, giving us the following analog of the
well-known Hall’s Theorem for saturating Supp(fi1).

Lemma 1 ([30]). pu1 Cg uo iff for every S C Supp(uq),
p1(S) < p2(R(9)).

It follows that when puy L peo, there exists a witness
S C Supp(p1) such that p1(S) > ua(R(S)). For example,
if R(sz) = 0 in Figure 2, its probability 1 under 4, cannot
be matched and S = {s2} is a witness subset.

Definition 3 (Strong Simulation [28]). R is a strong simu-
lation iff for every siRss and s; — ui there is a pg with
s2 = p§ and p§ Cg ps.

For s1 € Sy and sy € S, so strongly simulates s1, denoted
s1 X So, iff there is a strong simulation T' such that s1T'so. Lo
strongly simulates Ly, also denoted L1 =< Lo, iﬁ‘s‘l) < sg. For
the latter, alternatively, we say that simulation conformance
holds between L1 and Lo.

Definition 4 (Strong Simulation Equivalence). The strong
simulation equivalence, denoted is defined as the kernel
of strong simulation, i.e. == N >.

~

—

Definition 3 generalizes the one in the non-probabilistic
setting [22] and has the following immediate consequence.

Lemma 2. <C S x S5 is the coarsest strong simulation, i.e.
= is a strong simulation and contains every strong simulation.

Simulation conformance is decidable in polynomial time [4]
and can be checked with a greatest fixed point algorithm that
computes the coarsest simulation between L; and Lo. The
algorithm uses a relation variable R initialized to S7 x Sy and
it checks the condition in Definition 3 for every pair in R,
iteratively, removing any violating pairs from R. The algorithm
terminates when a fixed point is reached showing L; < Lo
or when the pair of start states is removed showing Ly A Lo.
Several optimizations exist [30] but we do not consider them
here, for simplicity.

Lemma 3 ([28]). = is a preorder (i.e. reflexive and transitive).

Finally, we find the following characterization of < useful
in the algorithms we will discuss later on.

Lemma 4. Let Ly be a tree and s1 Rso iff for every s; N "1,
there exists sy — Lo with gy T pe. Then, R ==.

Proof Sketch: R CX by Def. 3. <C R can be proved by
induction on the height of a state of L; using Lemma 2. ®
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Fig. 4: An example showing that Lemma 4 does not hold, in gen-
eral, if Ly is not a tree. Let R {(s1,%1), (s2,t2)}. Note that <=
{(s1,t1), (s2,t2), (s2,t3)} and R C=.

Note that the condition on R in the lemma is stronger than
the one to make it a strong simulation (Definition 3). Also, if
L is not a tree, we can only conclude that R C=, in general.
See Figure 4 for an example where R C=.
Counterexamples to <. In the active learning problem we
are interested in (Section IV), a learner uses counterexamples
to simulation conformance as diagnostic information. We will
now briefly discuss what these counterexamples are. Let L4
and Lo be two LPTSes.

Definition 5 (Language of an LPTS). Given an LPTS
L, we define its language, denoted L(L), as the set
{L'|L" is an LPTS and L' < L}.

Lemma 5. Ly < Lo iff £L(L1) C L(Lo).

Proof: Necessity follows trivially from the transitivity of
= and sufficiency follows from the reflexivity of < which
implies L; € ,C(Ll) |

Thus, a counterexample C' can be defined as follows.

Definition 6 (Counterexample). A counterexample to Ly =X Lo
is an LPTS C such that C € L(L1) \ L(Lz), i.e. C = Ly but
C A Lo.

Now, L, itself is a trivial choice for C but it does not give
any more useful information than what we had before checking
the conformance. Moreover, it is preferable to have C' with a
special and simpler structure to efficiently work with coun-
terexamples. Fortunately, we have a simpler characterization
using trees.

Theorem 1 ([19]). If L1 A Lo, there is a tree which serves
as a counterexample.

Proof Sketch: One can instrument the algorithm to
compute the coarsest strong simulation described earlier to
obtain a tree counterexample whenever a pair of states is
removed from the current relation, making use of Lemma 1.

|

For example, C), in Figure 1, for p € (0, %], is a counterex-
ample to L; =X L,. In another work, we showed that structures
simpler than trees are not sufficient as counterexamples, even
when one of the models is reactive [19].

We note an important feature of the algorithm used to prove
the above theorem [19]. A counterexample C' generated by
the algorithm is essentially a finite tree execution of Lq. That
is, there is a total mapping M : Sc — 57 such that for
every transition ¢ % p. of C, there exists M(c) — p1 such
that M restricted to Supp(p.) is an injection and for every
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€ Supp(pc), pe(d) = p1(M(c')). Note that M is also
a strong simulation. We call such a mapping an execution
mapping from C to Ly in the rest of the paper. An execution
mapping is shown in brackets beside the states of C), for
p = % in Figure 1. While our algorithm always generates
counterexamples with an execution mapping, it is possible
to have a tree counterexample, as per Definition 6, without
such a mapping. For example, C,, in Figure 1 for p € (0, 3)
is also a counterexample with no such execution mapping.
The condition we impose on a teacher in the active learning
problem (Section IV) is regarding this execution mapping.

III. LEARNING A CONSISTENT LPTS

We are interested in the problem where we are given a
finite set of positive stochastic trees (i.e. in the language of
an LPTS), say P, and another finite set of negative stochastic
trees (i.e. not in the language of an LPTS), say . These trees
constitute the samples for a learner. The goal is to learn an
LPTS L such that P C L(L) and NN L(L) =0, i.e. P L
for every P € Pand N <X L forno N € N. Such an L
is said to be conmsistent with the tree samples. Without loss
of generality, assume that P # () as otherwise, a single state
LPTS with no transitions is trivially consistent. Also, note that
the LPTS obtained by merging the start states of all trees in
P, say Lp, trivially satisfies P < Lp for every P € P. Now,
if L is a consistent LPTS, it can be shown that Lp < L and
hence, by Lemma 3, Lp is also consistent. Thus, one can
easily check, in polynomial time, if there exists a consistent
LPTS by checking N < Lp for every N € N. For this reason,
we always assume the existence of a consistent LPTS. Clearly,
the size of Lp is as large as that of P.

If possible, we would like to learn a model with the least
size, or at least have a good upper bound on its size. Such
models would be useful when automating assume-guarantee
reasoning (see Section V). The algorithms we propose draw
inspiration from the ones used to infer consistent non-
probabilistic automata from counterexample traces [24], [16],
[6], [18] which are based on partitioning the state space of the
counterexamples. Let Sp = Jpcp Sp and Sy = Uy cpr Sn-
First, we consider an algorithm based on the traditional state
space partitioning of Sp. While there is an upper bound on
the size of the learnt model, we show that such partitioning is
insufficient to obtain a minimum state consistent probabilistic
system (LPTS). However, as we will see in Section IV, we find
it useful in learning an unknown target LPTS. We will then
introduce a new way of partitioning the state space, which we
call stochastic partitioning, enabling us to obtain a minimum
state consistent LPTS.

A. Using State Partitions

The first algorithm uses traditional partitions of Sp. For
a partition II of Sp, let Ey denote the set of equivalence
classes under II and for a state s € Sp, we let [s];y denote
the equivalence class of s (we drop the subscript II when it is
clear from the context). We always assume that [s%] = [s%]n



51 N,
o . N . N7,
s3
52
c a b
P
54

Fig. 5: Positive (P) and negative (Ng, Np, Nf’ﬁ’) tree samples.

for every P,Q € P, ie. the start states of all the positive
counterexamples are mapped to the same equivalence class.

Definition 7 (Quotient LPTS). Given a partition 11 of
Sp, define the quotient LPTS, denoted P/11, as the LPTS
(Em, e a,7) where €° (sG] for every P € P, «
Upep ap and (e,a,p) € T iff there exists (s,a, ) € Tp
for some P € P with [slin = e such that pn = 1ift(yu,) where
lift(p)(€') = Dy cer Hp(s') for all € € En.

It can be easily shown that a quotient is always a well-
defined LPTS. In the following, II is a partition of Sp.

Lemma 6. P/II is consistent with P for all IL

Proof Sketch: One can show that {(s, [s]n)|s € Sp} is
a strong simulation between P and P/II for every P € P. &

Definition 8 (Consistent Partition). II is defined to be con-
sistent iff P/IL is consistent with N, i.e. for every N € N,
N A P/1L

Thus, we reduce the problem of finding a consistent LPTS
to that of finding a consistent partition. As we show below,
we can always find a consistent partition with a bounded size,
where the size of II is |Er|.

Lemma 7. If L is an LPTS of k states consistent with P, then
there is a 11 of size at most 2% such that P/TI < L.

Proof Sketch: Let P € P. As P = L, there is a strong
simulation Rp C Sp x Sy, with s% Rps?. As P is a tree, s%
is not in the support of any distribution and hence, assume
without loss of generality that Rp(s%) = {s%}. Let R =
U pep Bp. Now, R induces a partition IT of Sp such that
for s1,s0 € Sp, [Sﬂn [SQ]H iff R(Sl) R(SQ). Note that
[s]m = [s)]n for P,Q € P. The size of IT is clearly bounded
by 2. Now, we can show that {([s,]m, 51)|spRs;} is a strong
simulation between P/II and L. |

Note that, if L and every P € P is an LTS, an upper bound
of k on the size can be shown by choosing Rp in the proof to
be a function. The following is now immediate, using Lemmas
3 and 6.

Corollary 1. For every consistent LPTS of k states, there is
a consistent partition of size at most 2.

Observation. This shows that if L is a minimum state consis-
tent LPTS, there exists a consistent partition of Sp of size at
most exponential in |Sy,|. While there may be a better bound,
this way of partitioning Sp can not guarantee a minimum state
consistent LPTS in general. For example, H; in Figure 6 is
the quotient for a least sized consistent partition of P for the
trees in Figure 5 (obtained by merging ss and s4). On the other
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Fig. 6: Quotients for least size partition (H1) and stochastic partition (H )
of P in Figure 5.

hand, Hj, where X is any value in (0, 1), is another consistent
LPTS with one less state.

Algorithm. A naive algorithm for finding a least-sized con-
sistent partition is to enumerate all the partitions of Sp,
with increasing size, and for each of them, check if the
corresponding quotient simulates any tree in . Alternatively,
we can cast it as an instance of the satisfiability problem
over linear rational arithmetic, as shown below. In general,
this is more efficient than the exhaustive search in the naive
algorithm, and also prepares the ground for an algorithm we
discuss in the next subsection.

First, we describe the encoding to check if there is a
consistent partition of size at most a given k. Let e; denote the
equivalence class i for 1 < ¢ < k. For each ¢ and state s € Sp,
we introduce a new boolean variable, say U[s]=i» O denote
[s] = e;. We add the constraint xor(vis=1,...,V[s]=x) for
every s € Sp for the partition to be well-defined. Moreover,
we fix e; to be the start state of the resulting quotient and
have a constraint that v, for every P € P as e should
now contain all the start states (Definition 7).

Now, to encode consistency, we want to say that no tree
N € N is simulated by the resulting quotient. We can
avoid introducing a universal quantification over all possible
strong simulations by finding a way to say that (s%,e1) is
not in the coarsest strong simulation, for every N € N.
Fortunately, we can make use of Lemma 4 to achieve exactly
this. We introduce a boolean variable R,; to denote that
s € Sy is related to e; by the coarsest strong simulation.
Let t, = (sn,a,y,) and t, = (Sp,a, f1p) be a transition of
N and P, respectively, on the same action a, and 1 <7 < k.
Consider the expression d,,, ., A v[s,|=i> denoted oy, i1, If
dy, ., denotes pn, TR lift(p,), then this expression has the
meaning that [s,] = e; and the transition corresponding to
t, in the quotient, viz. e; % lift(u,), simulates t,. If X(s)
denotes the set of all transitions outgoing from s € Syr, Y (a)
denotes the set of all transitions in P on action a and act(t)
denotes the action for the transition ¢, we add

Ry NV

tn€X(s) tp€Y (act(tyn))

Ot ity

according to Lemma 4.

lift(p1p)(e;) can be encoded as ZsGSupp(up) lu,.i,s where
Uy, .i,s denotes the contribution of s to the lifted probability of
e; under p,, and satisfies

(v[s]:i - lu,,,z',s = ,U/p(s)) A (_‘U[s]:i = lup,i,s = O)



dy, 1, 18 encoded as follows. If we use Definition 2 alone, we
need to introduce a nested existential quantifier for the weight
function (to say that d,, ., iff there is a weight function
satisfying the conditions). To avoid this nested quantification,
we also make use of Lemma 1. First, we introduce a vari-
able for the weight function and encode the constraints of
Definition 2 if Ex holds between the distributions. We also
introduce a variable for the witness subset S C Supp(y,,) and
encode the condition of Lemma 1 when Cp fails to hold.
This variable for the witness subset can, in turn, be encoded
using individual boolean variables for each s € Supp(uy).
We also need boolean variables for the image of this witness
subset under R. The details are straightforward and left to the
reader. Finally, we encode consistency by having the constraint
“Ry y for every N € N.

It is not hard to show that the encoding is correct, i.e.
the resulting encoding is satisfiable iff there is a consistent
partition of size at most k. One can then obtain an algorithm
to find a least-sized consistent partition by starting with
k = 0 and incrementing it as long as the encoding for k
is unsatisfiable. As satisfiability over linear rational arithmetic
is decidable, this is guaranteed to terminate from Corollary 1.

Theorem 2. The above described algorithm to find a least-
sized consistent partition of Sp terminates.

B. Using Stochastic Partitions

As noted above, the quotient of a least-sized consistent
partition need not have the least number of states. We observe
that the main reason for this is not being able to partition
Sp such that there is a one-to-one correspondence between
the equivalence classes and Sy, instead of the current 25
for a consistent LPTS L (proof of Lemma 7). This suggests
that we can learn a minimum state consistent LPTS if we
can find a way to group the states of Sp (groups need not
be disjoint) with such a correspondence. This will then imply
that if there is a minimum state consistent LPTS L, we can
use this grouping to obtain an equally sized consistent LPTS.
One can then automate the search for such a grouping using
constraint solving.

Let L be a consistent LPTS and let us see what we can
do to group Sp to have the above one-to-one correspondence
with S7. Consider Figure 3 again and let ¢; be outgoing from
the root of some tree P in P and psy appear in L. Let there
be three groups (initially empty), one per state in Supp(uz),
say Gy, Gy, and Gy,. As explained in Section II, having
11 Eg pe, for some R, can be thought of as finding a way of
splitting the probabilities in both the distributions and pairing
states, already in R, to directly match the probabilities. We
would like to use this matching to group the states of Sp. In
particular, looking at the figure, we would like to place the two
splits of s; (s2) in Gy, and Gy, (G, and Gy,), respectively.

As the probability of each split of a state in Supp(u;)
is matched with that of some split of exactly one state in
Supp(p2), one can also think of the above grouping in the
following alternative way. As the probability of % for s; is
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split into % and %, s1 can be seen as being put in G, with
probability % = 2 and in Gy, with probability i% = 3.

Thus, instead of putting s; deterministically into one group,
it is put stochastically into multiple groups. Let these splits of
s1 put in Gy, and Gy, be s1[t1] and sy [to], respectively.

Now, consider s1[t1]. As the corresponding probability of %
is matched with that of some split of ¢; (implying s Rt1), and
as s; is not in the support of any distribution other than p;
(note that P is a tree), we need not consider if s; is related,
by R, to any other state in L, as far as s1[t1] is concerned.
And therefore, any distribution outgoing from this split of s;
will only need to be related to some distribution outgoing
from t; (by Cg). Similarly, for sq[tz] and to. Now, if pg
is a distribution outgoing from s; in P, we may want to
relate it to a distribution p outgoing from ¢y (for s1[t1]) and
another distribution ' outgoing from to (for si[ts]). For a
state s3 € Supp(us), considering us Cg p and puz Cg
both hold, following the above described stochastic grouping
may result in two different ways of grouping ss. Thus, we
need to remember the group of its parent, denoted by par(-),
when grouping a state in Sp.

This is the main motivation behind a stochastic partition,
which is defined below.

Definition 9 (Stochastic Partition). A stochastic partition of
Sp is a tuple (G,{[s]}sesp) where G C 257 and [s] : G —
Dist(G) for every s € Sp, such that | JG = Sp and

1) there is a g° € G such that for every P € P and g € G,
(s%](g) = 640 and
2) for every non-root state s € Sp and g € G, [s](g) is
defined iff [par(s)](g')(g) > 0 for some ¢' € G.
Furthermore, s € g iff [s](¢')(g) > O for some g’ € G, for
every s € Sp and g € G.
We use (G, {[s]1}s) for a stochastic partition 11 and when
11 is clear, we drop the subscripts.

Here, GG denotes the groups mentioned above and [s] denotes
the stochastic grouping of s € Sp given a group of its parent.
Point 1 above says that the start states of all trees in P go
deterministically to a designated group. Note that the start
states have no parents and the dependence of [s%] on an
argument is just a notational convenience. And point 2 says
that for every non-root state s, [s] is only defined for a valid
group of its parent. We implicitly assume that [s](¢')(g) = 0
for every g € G if [s] is not defined at ¢'.

Now, we define the quotient of a stochastic partition in the
following way.

Definition 10 (Quotient LPTS). Given a stochastic partition
II = (G,{[s]}s) of Sp, define the quotient LPTS, denoted
P/1L, as the LPTS (G,g°, o, 7) where ¢° € G is such that
[s%](9) = d40 for every P € P and g € G, o = Upep p
and (g,a,p) € 7 iff there exists (s,a,pu,) € Tp, for some

P € P such that s € g and for every ¢’ € G,

w(g) =D [s19)d) - ().

s'eg’



We denote this relation between p and p, by p = lift(p,, g).

Thus, (g,a, i1) € T iff there is a state s € g with s % 1, and
1 is obtained by lifting f1,,, given that s € g. For this to make
sense, we need to show that the lifting is a valid distribution.
In the following, IT = (G, {[s]}5) is a stochastic partition.

Lemma 8. P/II is a well-defined LPTS.

We have the following lemma analogous to classical parti-
tions.

Lemma 9. P/1I is consistent with P for all T1.

Proof Sketch: One can show that {(s,g)lg € G,s €
SpNg} is a strong simulation between P and P/II for P € P.
|
Consistency of a stochastic partition is defined in the same
way as Definition 8. Thus, we reduce the problem of finding a
minimum state consistent LPTS to that of finding a least-sized
consistent stochastic partition where the size of a stochastic
partition is its number of groups.

Lemma 10. If L is an LPTS of k states consistent with P,
then there is a 11 of size at most k with P /11 < L.

Proof Sketch: let P € P. As P =< L, there is
a strong simulation Rp C Sp x S with s%Rps?. Let
R= Pep Rp. Now, construct a stochastic partition with at
most |.Sy,| many groups following the intuitive explanation we
gave when motivating stochastic partitions. For distributions
tp € Dist(Sp) and iy € Dist(Sy,), the stochastic groupings
of a state s € Supp(11p) is obtained by using a weight function
showing p, Egr . In particular, s is put in the group
corresponding to s; € Sy with probability w(s,s;)/p,(s)
where w is the weight function which is uniquely chosen given
tp and py;. Moreover, p; and this grouping depend on the
group of par(s). Once such a stochastic partition IT is built,
we can show that {(g, s;)|g is the group corresponding to s;}
is a strong simulation between P/II and L. [ |
Our main result follows as an immediate corollary, using
Lemmas 3 and 9.

Corollary 2. For every consistent LPTS of k states, there is
a consistent stochastic partition of size at most k.

So, we can obtain a minimum state consistent LPTS by
constructing the quotient for a consistent stochastic partition
of Sp of the least size. For example, Hy, A € (0, 1), in Figure
6 is the quotient for a least sized consistent stochastic partition
for the trees in Figure 5 (where s; goes to group 1, so goes
to group 2 with probability A and to group 1 with 1 — A and
s3 and s4 go to group 2). We describe an algorithm to find
a least-sized consistent stochastic partition by casting it as
an instance of the satisfiability problem over linear rational
arithmetic.

Algorithm. The encoding is similar to the case of partitions
in the previous subsection. To find a stochastic partition of
size at most a given k, let g; denote the group ¢ for 1 <
i < k. Introduce a non-negative rational variable v ; t0
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denote [s](g;)(g;) for every s € Sp, 1 < ,j < k. For every
7 and s € Sp, add the constraint (Z1§jgk Vis)(5).j = 1) vV

(Zl<j<k V(s (i),j = 0) to denote that [s](g;) is a distribution
or is undefined. Then, we encode points 1 and 2 of Definition 9
by adding the constraint v(.,;) ; = 1 for every i and P € P,
making g; the start state of the quotient, and adding

Y v =1 = D Ve, >0

1<<k 1<I<k

for every non-root state s and ¢. This ensures that the stochastic
partition obtained is well-defined.

Encoding consistency is the same as before except for
Ot,,it, (tn, t and t;, are as before) which will now be

dlbn»ﬂp’i A Z v[SP](j);i > 0.
1<<k

where d,,, ., denotes p, Eg lift(pp, gi). Thus, we will
check if there is a group of par(s,) (summation over 1 <
j < k) for which s, € g; and p,, Cg lift(11p, g;). For a j,
liﬁ(/lp, gl)(gj) is encoded as EsESupp(;tp) Uls](4),5 HP(S)' Rest
of the encoding is similar.

We can similarly show the correctness of the encoding and
the termination of the algorithm follows from Corollary 2.

Theorem 3. The problem of learning a minimum state con-
sistent LPTS with P and N is decidable.

IV. ACTIVE LEARNING FOR LPTSES

We now consider the problem of learning the language of
an LPTS, i.e. learning an LPTS up to simulation equivalence
(following Lemma 5), in the framework of active learning. Let
U be an unknown target LPTS. The learning framework has
a learner and a teacher. The goal of the learner is to learn an
LPTS L such that L ~ U. To that effect, the learner maintains
a hypothesis LPTS H. The process of learning proceeds in
rounds where in each round, the learner makes a query to the
teacher and updates H based on the response. For reasons
mentioned in the introduction, we only consider a single type
of queries in this paper where the learner conjectures H as
(simulation) equivalent to U. In response to such a query,
the teacher is expected to check whether H ~ U holds and
otherwise, return a counterexample. If it is a counterexample
to H = U (U =X H), it is called a negative (positive)
counterexample. Following Section II, we assume that the
counterexamples are always trees. Furthermore, there should
always exist an LPTS consistent with all of the counterex-
amples, i.e. simulating all the positive counterexamples and
none of the negative counterexamples, received by the learner
so far. Also, every conjecture H made by the learner should
be consistent with the counterexamples received so far, in the
above sense.

Unfortunately, the framework, as described above, is too
general to be useful, as the following lemma shows.

Theorem 4. The problem of learning an unknown LPTS U is
undecidable in the active learning framework.



Proof Sketch: 'We show that there is no algorithm to
learn the unknown target Uy, which first performs an action
a and goes to a state with (unknown) probability A\ to loop
on action b or goes to another state with the remaining proba-
bility to deadlock, by describing an adversarial teacher which
manipulates the value of A as necessary to keep generating
counterexamples. After choosing an initial value of A, the
teacher returns a counterexample as long as the hypothesis
is not simulation equivalent to the target. If a hypothesis
simulation equivalent to the target is conjectured, the teacher
increases the value of A just enough to have the new target
not simulated by the hypothesis, while still being consistent
with all the previously generated counterexamples, and a new
(positive) counterexample can then be generated. ]

The main reason behind the theorem is that it is not
necessary for the positive tree counterexamples returned by
the teacher to have an execution mapping to U (see Section
I). Such a teacher can be seen as an adversary which can
choose the probability values in the counterexamples returned,
which are infinitely many, to make the learner never converge
to the desired probabilities.

But, in practice, to be able to apply the learning framework
in a given setting, one needs to implement the teacher’s
algorithm and we are not aware of any algorithm to generate
counterexamples other than the one discussed in Section II. As
mentioned before, this algorithm has an interesting property
that the generated counterexamples have an execution mapping
to L; when L =< L, fails. This suggests us to impose the
following friendliness condition on a teacher.

Condition 1 (Friendly Teacher). Every positive (negative)
counterexample returned by the teacher should have an ex-
ecution mapping to U (H).

First of all, we observe that the proof of Theorem 4 no
longer works because an update to A may violate Condition
1 on any positive counterexample already returned. In fact, as
we show below, the problem becomes decidable. Let P and
N denote the sets of positive and negative counterexamples,
returned by the teacher so far, respectively. First, consider the
pseudo-code in Algorithm 1. It suggests a method of using the
algorithms described in Section III by treating P and A as
the tree samples. There is a choice at line 6 to use partitions
or stochastic partitions.

Algorithm 1 Active Learning Loop.
LP=N=10

2: H < single state LPTS with no transitions

: repeat

conjecture H to the teacher

update P and N from returned counterexamples, or exit
obtain a least sized consistent (stochastic) partition IT
H«+ P/II

: until false

3
4
5:
6
7
3

First, we show that using traditional partitions at line 6
makes the problem of learning a target decidable.

448

Lemma 11. The active learning loop of Algorithm 1 termi-
nates under Condition 1 on the teacher and using partitions
at line 6 with the number of states of each intermediate

hypothesis H bounded by that of U.

Proof Sketch: Consider an arbitrary iteration of the
learning loop. First of all, due to Condition 1, the quotient
of the partition induced by the execution mappings from the
positive counterexamples to U is a sub-structure of U and
hence, is trivially simulated by U and is a consistent LPTS.
As the algorithm finds a least-sized consistent partition, its
size is bounded by |Sy|.

Then, notice that every future hypothesis is consistent with
any new counterexample returned, and hence, is distinct from
the current one. Moreover, due again to Condition 1, and as
lift only adds probabilities, one can show that there are only
finitely many possible distributions for a given partition size.

We conclude that the algorithm terminates. ]

Thus, we have the following result.

Theorem 5. The problem of learning an unknown LPTS is
decidable in the active learning framework, with Condition 1
on the teacher.

It is sometimes desirable to learn an LPTS with the least
number of states. While the algorithm described above learns
an LPTS, it is not guaranteed to output a minimum state LPTS
simply because each hypothesis need not have the least number
of states (see Section III-A). This suggests us to impose the
following condition on the learner.

Condition 2 (Learner). Every hypothesis H made by the
learner is a minimum state LPTS consistent with P and N.

If there is a learning algorithm under Conditions 1 and 2,
then it is guaranteed to output a minimum state LPTS which is
(simulation) equivalent to U. But, there is no such algorithm
as we show below.

Theorem 6. The problem of learning an unknown LPTS U
is undecidable in the active learning framework, with both
Condition 1 on the teacher and Condition 2 on the learner.

Proof Sketch: 'We show that there is no algorithm to
learn (unknown) H; in Figure 6, by describing an adversarial
teacher which can return a counterexample for any conjectured
hypothesis. Initially, the teacher keeps returning negative coun-
terexamples, if there are transitions on actions other than a, b
and c in the hypothesis, or the positive counterexample P in
Figure 5 until the learner conjectures a single-state LPTS with
self-loops on these three actions. Thereafter, if a conjectured
hypothesis has transitions on only a, b and ¢ and simulates
P, the teacher returns N, to force the future hypotheses to
have at least two states and in every future round, returns N}
or Nf "7 in the figure, as necessary. One can show that there
are always suitable values of 3 and « whenever N7 needs
to be returned and the learner always conjectures a two state
LPTS. In fact, H) is always a consistent LPTS for a suitable
A e (0,1). |



However, we obtain a semi-algorithm to the problem by
using stochastic partitions at line 6 of Algorithm 1. That is,
if the algorithm terminates, it is guaranteed to learn the target
with the least number of states. Correctness is immediate from
Theorem 3.

V. LEARNING ASSUMPTIONS FOR
COMPOSITIONAL REASONING

As mentioned in the introduction, the original motivation for
this work was to automate assume-guarantee style reasoning
for simulation conformance. Assume-guarantee reasoning [25]
is a compositional technique that breaks up the verification of
large systems into that of its components for increased scala-
bility. When checking individual components, the method uses
assumptions about their environments and discharges them
on the rest of the system. For a system of two components,
such reasoning is captured by the following simple assume-
guarantee rule (ASYM).

Li||[A=P IL,=<A
Li|[Ly =P

Several other assume-guarantee rules have been proposed,
some of them involving symmetric [26] or circular reason-
ing [1], [26], [20]. Despite its simplicity, rule ASYM has
been proven most effective in practice and has been studied
extensively mainly in a non-probabilistic setting, for different
notions of conformance [26], [9], [15].

In our case, L1, Lo, A and P are LPTSes with P standing
for the specification which the composition Ly || Lo should
conform to, where || is defined below.

Definition 11 (Composition [28]). The parallel composition
of Ly and Lo, denoted Ly || Lo, is defined as the LPTS (S x
Sa, (59,59), a1 U ag, 7) where (s1,52) — p iff

1) s1 5 1, 82— pio and p = j1y ® pia, or

2) s1 5, agasand = py @ Js,, or

3) adal, s5-5 py and pn =85, @ plo.
Here v ® vy € Dist(S1 X Sa), such that v1 @ v2 : (s1, $2) —
121 (81) . VQ(SQ), for vy € DiSt(Sl), Vo € DiSt(SQ).

The main challenge in using assume-guarantee reasoning is
to automatically come up with a small assumption A satisfying
the premises. We first note that the proposed rule is sound and
complete [19]. Completeness, obtained trivially by replacing A
with Lo, is essential to guarantee termination of our proposed
algorithm. Previous attempts at automating assume-guarantee
reasoning using learning in a probabilistic setting have been
restricted to checking probabilistic reachability properties us-
ing either an incomplete rule [15] or algorithms which may
not terminate [14].

Motivated by the success of existing applications of active
learning to assume-guarantee reasoning [26], [9], [10], we
propose to use the active learning framework presented in
Section IV to learn an intermediate assumption A in the
rule ASYM. We describe an algorithm for the problem using
learning and show termination below.
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Teacher. The teacher is implemented by two conformance
checks corresponding to the two premises of the rule, checked
in any order.

e Premise 1 guides the learner towards a conjecture that

makes L, || A < P true.

e Premise 2 guides the learner towards a conjecture that is

discharged on Lo, i.e. that makes Lo < A true.

If the conjectured A satisfies both the premises, soundness
of ASYM implies Ly || Ly =< P holds, and the teacher
returns true. If one of the premises fails, the teacher generates
counterexamples with an execution mapping (Section II).
Thus, the teacher satisfies Condition 1. When premise 2 fails,
a positive counterexample is returned to the learner. When
premise 1 fails, the obtained counterexample is first projected
onto A and then returned as a negative counterexample. As a
counterexample C' to premise 1 has an execution mapping to
Ly || A, the projection onto A is simply the contribution of
A towards C' in the composition. To enable this, additional
information regarding individual distributions is maintained
during composition [19].

Spuriousness Check. Note that if L; || Ly A P, no
assumption satisfies both the premises of ASYM (violating
the assumption on the existence of a consistent LPTS in
Section III). To detect this, the learner needs to check if a
counterexample returned by the teacher exposes the failure of
the conclusion of ASYM. A real counterexample would imply
that the specification will not hold of the original system while
a spurious one would need the learner to revise its hypothesis
for the assumption. We restrict spuriousness check to negative
counterexamples following previous approaches [26]. A simple
way is to check N < Ly for a negative counterexample N. N
is real if the check succeeds and spurious, otherwise. A slightly
more involved, but practical, way is described elsewhere [19].
Algorithm. Now, the learner can simply use Algorithm 1,
using partitions, to learn an intermediate assumption. As the
positive (negative) counterexamples have execution mapping
to Ly (A), it is as if the unknown target is Lo. Note that if
P holds of the system, L is clearly an assumption satisfying
the premises. However, the algorithm is expected to terminate
with a smaller assumption in practice, which also satisfies the
premises. If P does not hold, the algorithm terminates with
a real counterexample. Termination is guaranteed by Lemma
11. If we also impose Condition 2, the learner uses stochastic
partitions in Algorithm 1 giving a semi-algorithm.
Complexity Analysis. Let us now analyze the complexity
of assume-guarantee reasoning using the learning algorithm
described above (with partitions). The complexity of checking
Ly || Ly X P directly is O(poly(|Ly| - |Lo|,|P|)), where |L|
denotes max(|SL|, |Tz|).

Let d = |2| and b be the maximum size of the support of
a distribution in Ls. Given a state of a candidate assumption
of size k and a distribution of Lo, there can be at most k-
many corresponding distributions (due to non-determinism)
from that state. For k states and d distributions, this gives
a total of dk"+1. Therefore, there are 27" different possible
candidates of size k to consider. The total number of iterations



of the learning algorithm is then bounded by > ;" 9dk"*! —

O(m2dmb+1), where m is the number of states in the final
assumption output by the algorithm.

At each iteration, in the worst-case, the algorithm enumer-
ates all the candidate assumptions of the current size k£ and
performs simulation checks with all the negative counterexam-
ples. These checks have a complexity of O(poly(| 4], |N|,1)),
where A is the final assumption, A is the final set of negative
counterexamples and [ is the largest |N|, for any N € N.
Thus, the total worst-case complexity of the learning algorithm
for computing the final assumption is O(poly(|A|, |N,1) -
m2dmb+1). Furthermore, the complexity of checking the two
premises of ASYM is O(poly(|L1]|-|A|, | P])+poly(|La|,|P|))
at every iteration. We observe that in practice, if the assump-
tion is small (i.e. |A| < |L2]) this approach can be better than
checking L || L directly. In other cases, however, we would
need better algorithms to address the problem. We leave this
for future work.

VI. CONCLUSION

We have presented algorithms and decidability results
for the problem of learning non-deterministic LPTSes from
stochastic tree samples, using traditional and stochastic state-
space partitioning. We have also described the application of
the algorithms to automating the discovery of assumptions for
the compositional verification of LPTSes.

In the future, we would like to investigate further conditions
on the teacher that will make the active learning problem with
stochastic partitions decidable. We also plan to investigate
the use of weak simulation for the conformance relation,
as this will result in smaller assumptions for compositional
verification. However, algorithms for checking weak simula-
tion are not currently known. Finally we plan to investigate
new applications for our algorithms in learning abstractions or
active model checking and in domains other than verification.
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