DESIGN AND SYNTHESIS OF SYNCHRONIZATION SKELETONS
USING BRANCHING TIME TEMPORAL LOGIC™

Edmund M. Clarke
E. Allen Emerson
Aiken Computation Laboratory
Harvard University
Cambridge, Mass. 02138, USA

I. INTRODUCTION

We propose a method of constructing concurrent programs in which the synchroni-
aation skeleton of the program is automatically synthesized from a high-level
(branching time) Temporal Logic specification. The synchronization skeleton is an
abstraction of the actual program where detail irrelevant to synchronization is
suppressed. For example, in the synchronization skeleton for a solution to the
critical section problem each process's critical section may be viewed as a single
node since the internal structure of the critical section is unimportant. Most
solutions to synchronization problems in the literature are in fact given as synchro-
nization skeletons. Because synchronization skeletons are in general finite state,
the propositional version of Temporal Logic can be used to specify their properties.

Our synthesis method exploits the (bounded) finite model property for an appro-
priate propositional Temporal Logic which asserts that if a formula of the logic is
satisfiable, it is satisfiable in a finite model (of size bounded by a function of
the length of the formula). Decision procedures have been devised which, given a
formula of Temporal Logic, f, will decide whether f is satisfiable or unsatisfiable.
If f is satisfiable, a finite model of f is constructed. In our application, un-
satisfiability of f means that the specification is inconsistent (and must be re-
formulated). |If the formula f s satisfiable, then the specification it expresses
is consistent. A model for f with a finite number of states is constructed by the
decision procedure. The synchronization skeleton of a program meeting the specifica-
tion can be read from this model. The finite model property ensures that any program
whose synchronization properties can be expressed in propositional Temporal Logic can
be realized by a system of concurrently running processes, each of which is a finite
state machine.

[nitially, the synchronization skeletonswe synthesize will be for concurrent
programs running in a shared-memory environment and for monitors. However, we
believe that it is also possible to extend these techniques to synthesize distributed
programs. One such application would be the automatic synthesis of network communi-
cation protocols from propositional Temporal Logic specifications.

Previous efforts toward parallel program synthesis can be found in the work of
[LA78] and [RK80]. [LA78] uses a specification language that is essentially predicate
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calculus augmented with a special predicate to define the relative order of events
in time. [RK80] uses an applied linear time Temporal Logic. Both [LA80] and [RK80]
use ad hoc techniques to construct a monitor that meets the specification. We have
recently learned that [W081] has independently developed model-theoretic synthesis
techniques similar to our own. However, he uses a linear time logic for specifica-
tion and generates CSP-like programs.

We also discuss how a Model Checker for Temporal Logic formulae can be used to
verify the correctness of a priori existing programs. In the traditional approach
to concurrent program verification, the proof thata program meets its specification
is constructed using various axioms and rules of inference in a deductive system
such as Temporal Logic. The task of proof construction can be quite tedious, and a
good deal of ingenuity may be required. We believe that this task may be unnecessary
in the case of finite state concurrent systems, and can be replaced by a mechanical
check that the system meets a specification expressed in a propositional temporal
logic. The global system flowgraph of a finite state concurrent system may be
viewed as defining a finite structure. We describe an efficient algorithm (a model
checker) to decide whether a given finite structure is a model of a particular
formula. We also discuss extended logics for which it is not possible to construct
efficient model checkers.

The paper is organized as follows: Section 2 discusses the model of paraliel
computation. Section 3 presents the branching time logic that is used to specify
synchronization skeletons. Sections 4 and 5 describe the model checker and the
decision procedure, respectively. Finally, Section 6 shows how the synthesis method

can be used to construct a solution to the starvation free mutual exclusion problem.

2.  MODEL OF PARALLEL COMPUTATION

We discuss concurrent systems consisting of a finite number of fixed processes
P],...,Pm running in parallel. The treatment of parallelism is the usual one: non-
deterministic interleaving of the sequential ''atomic'* actions of the individual
processes Pi' Each time an atomic action is executed, the system 'execution' state
is updated. This state may be thought of as containing the location counters and
the data values for all processes. The behavior of a system starting in a particular
state may be described by a computation tree. Each node of the tree is labelled
with the state it represents, and each arc out of a node is labelled with a process
index indicating which nondeterministic choice is made, i.e., which process's atomic
action is executed next, The root is labelled with the start state. Thus, a path
from the root through the tree represents a possible computation sequence of the
system beginning in a given start state. Our temporal logic specifications may then
be thought of as making statements about patterns of behavior in the computation
trees.
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Each process Pi is represented as a flowgraph. Each node represents a region
or a block of code and is identified by a unique label. For example there may be a
node labelled CSi the 1 representing ''the critical section of code of process
Pg.” Such a region of code is uninterpreted in that its internal structure and
intended application are unspecified. While in CSi, the process Py may simply
increment variable x or it may perform an extensive series of updates on a large
database. The underlying semantics of the computation performed in the various code
regions are irrelevant to the synchronization skeleton. The arcs between nodes
represent possible transitions between code regions. The labels on the arcs indicate
under what conditions Pi can make a transition to a neighboring node. Our job is
to supply the enabling conditions on the arcs so that the global system of processes

P!""’Pk meets a given Temporal Logic specification.

3.  THE SPECIFICATION LANGUAGE

Our specification language is a (propositional) branching time Temporal Logic
called Computation Tree Logic (CTL) and is based on the language presented in [EC80].
Our current notation is inspired by the language of “Unified Branching Time'" (UB)
discussed in [BM81]. UB is roughly equivalent to that subset of the language pre-
sented in [ECB0] obtained by deleting the infinitary quantifiers and the arc condi-
tions and adding an explicit next-time operator. For example, in [EC80] we write
VY path 3 node P to express the inevitability of predicate P. The corresponding
formula in our UB-like notation is AFP. The language presented in [EC80] is more
expressive than UB as evidenced by the formula V path 3 node P (which is not equi-
valent to any formula in UB or in the language of [EC80] without infinitary quanti-
fiers). However, the UB-like notation is more concise and is sufficiently expressive
for the purposes of program synthesis.

We use the following syntax (where p denotes an atomic proposition and fi
denotes a (sub-)formula):

1. Each of p, f A f2, and ~f, is a formula {where the latter two constructs

indicate conjunction and negation, respectively).

2, EXij

successor state reachable by executing one step of process Pj in which

is a formula which intuitively means that there is an immediate

formula fl holds.

3. A[f]Ule is a formula which intuitively means that for every computation
path, there exists an initial prefix of the path such that fz holds at the
last state of the prefix and fl holds at all other states along the
prefix.

L, E[f]UFZ] is a formula which intuitively means that for some computation
path, there exists an initial prefix of the path such that f2 holds at the
last state of the prefix and fI holds at all other states along the

prefix.
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Formally, we define the semantics of CTL formulae with respect to a structure
M= (S,A],...,Ak,L) which consists of
S - a countable set of states,
Ai_ < $xS, a binary relation on S giving the possible transitions by
process i, and
L - an assignment of atomic propositions true in each state.
let A=A/ U...UA. We require that A be total, i.e., that Vx€S 3y (x,y) €EA.

A path is an infinite sequence of states (so,sl,sz...)ESw such that Vi(si,s JEA.

To any structure M and state s€S of M, there corresponds a computation tllr:tla

with root labelled s, such that s-hst is an arc in the tree iff (s,t)GAi.
We use the usual notation to indicate truth in a structure: M, s0 }= f means

that at state Sg in structure M formula f holds true. When the structure M

is understood, we write sg E f. We define [ inductively:

Sp Ep iff pe€ L(so)

So k ~f iff not (sgk f)

soF fiaf, iff s, E fi oand sgkf,

So E EXjf iff for some state t such that (so,t)EAJ., tEf

So k A[FIUfz] iff for all paths (SO’SI"")’ 5i[i>0/\si E f,
AV](O<jAj<i->sj Efpl
sg E E[fIUfZJ iff for some path (50’51"")’ 3i[i>0/\si E fz
AvJ'(osjAj<i+sj E )]
We write |=f to indicate that f is universally valid, i.e., true at all states in
all structures. Similarly, we write =if to indicate that f 1is satisfiable, i.e.,

f is true in some state of some structure.

We introduce some abbreviations:

fxvf2§~(~f]/\~f2), fy>fy=~f v f,, and flﬁfzs(f}—>f2)/\(fz+f]) for logical

disjunction, implication, and equivalence, respectively.

A[f]vfz] E~Ef~f]va2] which means for every path, for every state s on the path,
if fl is false at all states on the path prior to s, then fay holds at s.

E[f] fz] '=""A[~f]U~f2] which means for some path, for every state s on the path,

v
f fl is false at all states on the path prior to s, then f2 holds at s.

AFf] =Altrue Ufl] which means for every path, there exists a state on the path at
which f] holds.

EFf, =E[true Ufl] which means for scme path, there exists a state on the path at
which f] holds.

AGF‘ ENEFNFl which means for every path, at every node on the path f] holds.

EGF] sm/-\FA-vF1 which means for some path, at every node on the path fi holds.
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Axifsnéxi~f which means at all successor states reachabie by an atomic step of
process Pi’ f holds.

EXF'EEX]fv cee V Eka which means at some successor state f holds.

AXf =~EX~f which means at all successor states f holds.

4.  MODEL CHECKER

Assume that we wish to determine whether formula f s true in the finite
structure M= (S,A‘,...,Ak,L). Let sub+(f0) denote the set subformulae of f
with main connective other than ~. We label each state s€S with the set of

positive/negative formulae f in sub+(f0) so that

f€label(s) iff M, sl f

~F € label(s) iff M, s [ ~f

The algorithm makes n+1 passes where n= Iength(fo). On pass i every state
s€S is labelled with f or ~f for each formula f€ sub+(f0) of length 1.
Information gathered in earlier passes about formulae of length less than i is used

to perform the labelling. For example, if f= flA fz, then f should be placed in
the set for s precisely when f] and fz are already present in the set for s.
For modalities such as A[flufz] information from the successor states of s (as

well as from s itself) is used. Since A[f]Ufz] = fzv (f‘A AXA[f]UfZ]),' A[fIUfz]
should be placed in the set for s when fz is already in the set for s or when
f
state of s.

is in the set for s and A[f]Ufz] is in the set of each immediate successor

Satisfaction of A[f]Ufz] may be seen to ''radiate’ outward from states where
it holds immediately by virtue of fz holding:

Let
£

(ALf,Uf,1)° 2

k+1 k
) fszX(A[f]UfZ]) .

(ALf,Uf,]
It can be shown that M,s | (A[f,UfZ])k iff M,s A[flule and along every path
starting at s, f, holds by the k-th state following s. Thus, states where
(A[flufz])0 holds are found first, then states where (A[f‘Uf2])‘ holds, etc. If
ALf,UF,] holds, then (A[f‘UfZI)Card(S)
are of length <card(S): Thus, if after card(8) steps of radiating outward,
A[f]Ufz] has still not been found to hold at state s, then put ~A[fIUF2] in the

must hold since all loop-free paths in M

set for s.
The algorithm for pass i is listed below in an Algol-like syntax:
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for every state s€S do
for every F€sub+(f0) of length i do
if f=A[F|Uf2] and f2€set(s) or
f=E['F]UF2] and f,€set(s) or
f=r-:xjfI and 3t((s,t) €A, and f,Eset(t)) or
f=f Af, and F]Eset(s) and f2€set(s)

then add f to set(s)

end

end;

A: for j=1 to card(S) do

for every state s€S do
for every f€sub+(f0) of length i do
if f=A[fUf)] and f €set(s) and Vt((s,t) €A>FEset(t)) or

f=E[f]Uf2] and f.{Eset(s) and 3t({s,t) €EAA fEset(t))

then add f to set(s)
end

B: end
end;
for every state s€S do
for every fEsub+(f0) of length i do

then add ~f to set(s)
end
C: end

Figures 4.1-4.4 give snapshots of the algorithm in operation on the structure
shown for the formula AFbA EGa (which abbreviates AFbA ~AF~a).

Suppose we extend the logic to permit V path O\; node p or, equivalently, its
dual 3 path ‘5 node p which we write EeF"’p. We can generalize the model checker to

handle this case by using the following proposition:

PROPOSITION 4.,1. Let M= (S,AI,...,Ak,L) be a structure and s€S. Then
M,s E Eol-gp iff there exists a path from s to a node s' such that M,s'k p and
either s' ig a successor of itself or the stromgly comnected component of M

containing s' has cardinality greater than 1. -

Proof. (Only if:) Suppose M,s E?p. Then there is an infinite path
(50’5]’52"") through M and a state s'€S such that

(1) Sp=S»
(2) s'=s, for infinitely many distinct i, and
(3) M,s’ = p.
If s' is a successor of itself, we are done. Otherwise, there is a finite path

(s',...,s",...s") from s' back to itself (because of (2)) which contains a state
s'"#s. So, s'" is reachable from s' and s' is reachable from s'', and s' s
in a strongly connected component of M of cardinality greater than 1.

(1f:) 1f s' is a successor of itself, then p is true infinitely often

along the path (s',s',...). Since s' is reachable from s, M,s | E?p. If the
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strongly connected component of M containing s' is of cardinality greater than 1,
then there is a state s''#s' such that s' is reachable from s and s' s
reachable from s'. Hence there is a finite path from s' back to itself, and an
infinite path starting at s' which goes through s' infinitely often. Since s'

is reachable from s, M,s}= EFp. [

Notice that all algorithms discussed so far run in time polynomial in the size
of the candidate model and formula. The algorithm for basic CTL presented above runs
in time length(f)-(card(s))z. Since there is a linear time algorithm for finding
the strongly connected components of a graph [TA72], we can also achieve the
length(f)'(card(s))2 time bound when we include the infinitary quantifiers.

Finally, we show that it is not always possible to obtain polynomial time algo-
rithms for model checking. Suppose we extend our language to allow either an
existential or a universal path quantifier to prefix an arbitrary assertion from

tinear time logic as in [LA80] and [GPBO]. Thus, we can write assertions such as
E[Fg]A...Aanl\ GhIA...AGhn]

meaning
“"there exists a computation path p such that, along o
sometimes 9, and ... and sometimes 9, and

always h] and ... and always hn.”

We claim that the problem of determining whether a given formula f holds in a

given finite structure M is NP-hard.

PROPOSITION 4.2, Directed Homiltonian Path is reducible to the problem of
determining whether M,s = f where

M is a finite structure,

s 1i¢ a state in M and

f s the assertion (using atomic propositions p],...,pn):

E[Fp] Ao AFp A G(p‘—>XG~p]) A ...AG(pn+XG~pn)) . L

Proof. Consider an arbitrary directed graph G= (V,A) where V= {v],...,vn}.
We obtain a structure from G by making proposition P; hold at node v; and
false at all other nodes (for 1<i<n), and by adding a source node u, from which
all v, are accessible (but not vice versa) and a sink node u, which is accessible
from all vi (but not vice versa).

Formally, let the structure M= (U,B,L) consist of
U = vu {u],uz} where u],uzi v
L, on assignment of states to propositions such that
V;Fpi- V;#Pj, (1<i, j<n, i#£))

u, B Pi» Uy ¥ P; (1€i<n) and
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B = AU{(up,v)ev, €VEU Ly ,up) v, €VEU Lluy,u,) ).
It follows that

M,u} £ f iff there is a directed infinite path in M starting at Uy
which goes through all v;E V exactly once and ends in the
self-loop through Ug3

iff there is a directed Hamiltonian path in G. »

We believe that the model checker may turn out to be of considerable value in
the verification of certain finite state concurrent systems such as network protocols.
We have developed an experimental implementation of the model checker at Harvard

which is written in C and runs on the DEC 11-70.

5. THE DECISION PROCEDURE

In this section we outline a tableau-based decision procedure for satisfiability
of CTL formulae. Our algorithm is similar to one proposed for UB in [BMEH}.;E
Tableau-based decision procedures for simpler program logics such as PDL and DPDL are
given in [PR77] and [BH81]. The reader should consult [HC68] for a discussion of
tableau-based decision procedures for classical modal logics and [SM68] for a dis-
cussion of tableau-based decision procedures for propositional logic.

We now briefly describe our decision precedure for CTL and illustrate
it with a simple example. The decision procedure is described in detail in the

Full paper. To simplify the notatien in rhe present discussion, we omit the
labels on arcs which are normally used to distinguish between transitions by
different processes.

The decision procedure takes as input a formula fO and returns either ''YES,
fo is satisfiable,' or VNO, FD is unsatisfiable.’ If FO is satisfiable, a finite
model is constructed. The decision procedure performs the following steps:

1. Build the initial tableau T which encodes potential models of fc. 1f

f is satisfiable, it has a finite model that can be ''embedded” in T.

0
2. Test the tableau for consistency by deleting inconsistent portions. {f the
"root!' of the tableau is deleted, fO is unsatisfiable. Otherwise, fo is satisfiable

3. Unravel the tableau into a model of fo.

The decision procedure begins by building a tableau T which is a finite
directed AND/OR graph. Each node of T is either an AND-node or an OR-node and is
labelled by a set of formulae. We use G],Gz,... to denote the labels of OR-nodes,
H‘,Hz,... to denote the labels of AND-nodes, and F]’FZ"" to denote the labels

of arbitrary nodes of either type. No two AND-nodes have the same label, and no two

“The [BM81] algorithm is incorrect and will erroneously claim that certain satis-
fiable formulae are unsatisfiable. Correct tableau-based and filtration-based
decision procedures for UB are given in [EH81]. In addition, Ben-Ari [BA81] states
that a corrected version of [BM81] based on different techniques is forthcoming.
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OR-nodes have the same label. The intended meaning is that, when node F is con-
sidered as a state in an appropriate structure, F }= f for all f€F. The tableau
T has a "root" node GO={f0} from which all other nodes in T are accessible.
The set of successors of an OR-node G, Blocks(G) ={H],H2,...,Hk} has the
property that
46 iff 4 Hy or ... or o H,

We can explain the construction of Blocks(G) as follows: Each formula in G may
be viewed as a conjunctive formula OLEOLIAOLZ or a disjunctive formula BEBI VSZ.
Clearly, fAg is an o formula and fvg is a B formula. A modal formula may be
classified as o or B based on its fixpoint characterization; thus, EFp=pv EXEFp
is a B formula and AGp=pAAXAGp is an o formula. A formula that involves no
modalities or has main connective one of EX or AX is both a and B and is
called an elementary formula. Any other formula is nonelementary. We say that a
set of formulae F is dowmard closed provided that (i) if a€F then a0, € F,
and (ii) if BEF then By€F or B,€F. We construct the members H, of
Blocks (G) by repeatedly expanding each nonelementary formula in G into its & or
B components. Each B expansion yields two blocks, one with B] and one with 82.
Expansion stops when all Hi are downward closed.

The set of successors of an AND-node H, Tiles(H) = {G] ’GZ""’Gk} has the

property that, if H contains no propositional inconsistencies, then

4 H iff={G1 and .., and =|c;k

To construct Tiles(H) we use the information supplied by the elementary formulae
in H. For example, if {Axh],AXhZ,EXgl,EXgZ,EXg3} is the set of all elementary
formulae in H, then Tiles(H) = {{hl,hz,g]},{h],hz,gz},{h] ,hz,g3}}.

To build T, we start out by letting Go={f0} be the root node. Then we
create BIocks(Go) ={HI’H2"“’Hk} and attach each Hi as a successor of G;. For
each H, we create THes(Hi) and attach its members as the successors of H;.

For each GJ.GTiles (Hi) we create Blocks(G,), etc. Whenever we encounter two nodes
of the same type with identical labels we identify them. This ensures that no two
AND-nodes will have the same label and that no two OR-nodes will have the same
label. The tableau construction will eventually terminate since there are only
Zlength(fo) possible labels, each of which can occur at most twice.

Suppose, for example, that we want to determine whether EFpAEF~p is satis~-
fiable. We build the tableau T starting with root node G0={EFpA EF~p}. We
construct Blocks(Go) ={H0-H1 ’HZ’H3}' Each Hi is attached as a successor of Go.
Next, Tiles(Hi) is determined for each Hi (except H, which is immediately seen
to contain a propositional inconsistency) and its members are attached as successors
of #,. (Note that two copies of G, = {EF~p} are created, one in Tiles (HO) and
the other in Tiles(h’z); but they are then merged into a single node.) Similarly,

GZETi]es(HZ) nTi les(H3) . Continuing in this fashionweobtain the compliete tableau shown
in Fig. 5.1.
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Figure 5.1
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Next we must test the tableau for consistency. Note that Hi is inconsistent
because it contains both p and ~p. We must also check that is possible for
eventuality formulae such as AFh or EFh to be fulfilled: e.g., if EFh€F, then
there must be some node F' reachable from F such that h€F'. |If any noae fails
to pass this test, it is marked inconsistent. I[n this example, all nodes pass the
test. Since the root is not marked inconsistent, EFpA EF~p is satisfiable.

Finally, we construct a model M of EFpAEF~p. The states in M will be
(copies of) the AND-nodes in the tableau. The model will have the property that for
each state H, M,H |z f for all fEH. The root of M can be any consistent state
HiE B]ocks(Go). We choose Hy. Now H0 contains the eventualities EFp and EFf~p.
We must ensure that they are actually fulfilled in M. EFp is immediately fulfilled
in HO’ but EF~p 1is not. So when we choose a successor state to HO’ which must
be one of Hh or H5, we want to ensure that EF~p is fulfilled. Thus, we choose

HS. Finally, the only possible successor state of HS is HS itself.

6.  SYNTHESIS ALGORITHM

We now present our method of synthesizing synchronization skeletons from a CTL
description of their intended behavior. We identify the following steps:

1. Specify the desired behavior of the concurrent system using CTL.

2. Apply the decision procedure to the resulting CTL formula in order to obtain
a finite model of the formula.

3. Factor out the synchronization skeletons of the individual processes from
the global system flowgraph defined by the model.

We illustrate the method by solving & mutual exclusion problem for processes

P] and P2‘ Each process is always in one of three regions of code:

NCSi the NonCritical Section
TRYi the TRYing Section
CSi the Critical Section

which it moves through as suggested in Fig. 6.1.

Figure 6.1

When it is in region NCSi, process Pi performs 'noncritical'' computations
which can proceed in parallel with computations by the other process Pj' At certain
times, however, Pi may need to perform certain ''critical’ computations in the region

CSi. Thus, Pi remains in NCSi as long as it has not yet decided to attempt
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critical section entry. When and if it decides to make this attempt, it moves into
the region TRYi. From there it enters CSi as soon as possible, provided that the
mutual exclusion constraint ~=(CS]A CSZ) is not violated. It remains in CSias long as
necessary to perform its 'critical' computations and then re-enters NCSi. Note

that in the synchronization skeleton described, we only record transitions between
different regions of code. Moves entirely within the same region are not considered

in specifying synchronization. Listed below are the CTL formulae whose conjunction

specifies the mutual exclusion system:

1. start state
NCS] A NCS2
2. mutual exclusion
AG(~(CS; A CS,))

3. absence of starvation for Pi
AG(TRYi->AF CSi)
k4, each process Pi is always in exactly one of the three code regions
AG(NCS, v TRY, v csi)
AG(NCS, >~(TRY, ves;))
AG(TRYi +~(Ncsi ves,))
AG(CS; > ~(NCS, v TRY,))

5. it is always possible for Pi to enter its trying region from its non-
critical region

AG(NCSi—>EXiTRYi)

6. it is always the case that any move Pi makes from its trying region is
into the critical region

AG(TRYi A EX;True+AX3CSi)

7. it is always possibte for Pi to re-enter its noncritical region from
its critical region

AG(CSiA-EXiNCSi)
8. a transition by one process cannot cause a move by the other
AG(MCS; +AX.HCSi)
AG (TRY , > AX.TRY,)
AG(CS, +~AX.CS.)
i ji
9. some process can always move
AG(EX true)

\le must now construct the initial AND/OR graph tableau. In order to reduce the
recording of inessential or redundant information in the node labels we observe the
following rules:

(1) Automatically convert a formula of the form f,A...A f, to the set of
formulae {f?""’fn}' (Recall that the set of formulae {f],...,fn} is satis-
fiable iff f a...Af s satisfiable.)

(2) Do not physically write down an invariance assertion of the form AGf

because it holds everywhere as do its consequences f and AXAGF (obtained by
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a-expansion). The consequence AXAGf serves only to propagate forward the truth of
AGF to any ''descendent' nodes in the tableau. Do that propagation automatically
but without writing down AGf in any of the descendent nodes. The consequence f
may be written down if needed.

(3) An assertion of the form fvg need not be recorded when f s already
present. Since any state which satisfies f must also satisfy fvg, fvg is
redundant.

(4) If we have TRYi present, there is no need to record ~NCS, and ~S .

If we have NCSi present, there is no need to record ~TRYi and NCSi. I f we have
CS; present, there is no need to record nJNCSi and NTRYE.

By the above conventions, the root node of the tableau will have the two
formulae MNCS, and NCS, recorded in its label which we now write as <NES‘ NCSZ>.
In building the tableau, it will be helpful to have constructed Blocks(G) for the
following OR-nodes: <NCSI NCSZ>, <TRYI NCSZ>, <CSI NC52>, <TRY] TRY2>, and
<CS; TRY,>. For all other OR-nodes G' appearing in the tableau, Blocks (G') will
be identical to or can be obtained by symmetry from Blocks(G) for some G in the
above list. We then build the tableau using the information about Blocks and Tiles
contained in the Tist. ilext we apply the marking rules to delete inconsistent nodes,
Note that the OR-node <CS] CSZAFCSZ> is marked as deleted because of a propositional
inconsistency (with ~(cslA CSZ), a consequence of the unwritten invariance
AG(n(CS] CSZ)). This, in turn, causes the AlD-node that is the predecessor of
<CS] s, AFCSZ> to be marked. The resulting tableau is shown in Fig. 6.2. Each
node in Fig. 6.2 is labelled with a minimal set of formulae sufficient to distinguish
it from any other node.

We construct a model M from T by pasting together model fragments for the
AtiD-nodes using local structure information provided by T. Intuitively, a fragment
is a rooted dag of AND-nodes embeddable in T such that all eventuality formulae in
the label of the root node are fulfilled in the fragment.

The root node of the model is HO’ the unique successor of GO‘ From the
tableau we see that H0 must have two successors, one of H] or H2 and one of
H3 or Hh' Each candidate successor state contains an eventuality to fulfill, so
we must construct and attach its fragment. Using the method described, we choose
the fragement rooted at H] to be the left successor and the fragment rooted at ty,
to be the right successor (see Fig. 6.3). This yields the portion of the model
shown in Fig. 6.4.

We continue the construction by finding successors for each of the leaves: HS,
H9, HIO and H8' We start with HS. By inspection of T, we see that the only

successors HS can have are HO and H9- Since H0 and H9 already occur in
the structure built so far, we add the arcs H5 1 Hﬂ and H5 2 H9 to the
structure. Note that this introduces a cycle (H0 1 H] 1 HE 1 HO). In general, a

cycle can be dangerous because it might form a path along which some eventuality is

never fulfilled; however, there is no problem this time because the root of a
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fragment, H], occurs along the cycle. A fragment root serves as a checkpoint to
ensure that all eventualities are fulfilled. By symmetry between the roles of | and
2, we add in the arcs H8 1 HlO and H8 3 HO. The structure now has the form shown
in Fig. 6.5.
We now have two leaves remaining: H9 and HIO' We see from the tableau that
Hy, s a possible successor to H9. We add in the arc H9 1 Hh‘ Again a cycle is
formed but since Hh is a fragment root no problems arise. Similarly, we add in
the arc H]O 3 H}‘ The decision procedure thus yields a model M such that
M,so = fo where Fo is the conjunction of the mutual exclusion system specifications.
We may view the model as a flowgraph of global system behavior. For example,
when the system is in state H], process P‘ is in its trying region and process
Py is in its noncritical section. P, may enter its critical section or P, may
enter its trying region. MNo other moves are possible in state H]. Note that all
states except H6 and H7 are distinguished by their propositional labels. In
order to distinguish H6 from H7, we introduce a variable TURN which is set to |
upon entry to Hé and to 2 upon entry to H7. If we introduce TURN's value into
the labels of H6 and H7 then, the labels uniquely identify each node in the
global system flowgraph. See Fig. 6.6.
We describe how to obtain the synchronization skeletons of the individual pro-
cesses from the global system flowgraph. In the sequel we will refer to these
global system states by the prcpositional labels.
When P1 is in NCS], there are three possible global states [NCSI NCSZ],
[NCS] TRYZ], and [NCSl CSZ]' In each case it is always possible for P, to make a
transition into TRY, by the global transitions [NCSI NCSZ] 1’[TRY] NCSZ],
[ics, TRY,] LTURN:=Z, [rry, TRY,], and INcS, Cs,] 4 [TRY, CS,]. From each global
transition by P‘, we obtain a transition in the synchronization skeleton of Pl‘
The P2
tions in the skeleton of Pl' If along a global transition, there is an assignment

component of the global state provides enabling conditions for the transi-

to TURN, the assignment is copied into the corresponding transition of the
synchronization skeleton.

Now when P] is in TRY],
[TRY] ricsz}, [TRY, TRY, TURN =11, [TR‘{] TRY, TURN=2], and [TRY] csz] and their
associated global transitions by Py: [TRY, MCSZ] 1 [CS] Nes,]  and
[TRY] TRY, TURH = 1] 1 [CS‘ TRYZ]. (No transitions by P, are possible in
[TRY] TRY, TURN = 2] or [TRYl CSZ]') When P is in CS,; the associated globat
states and transitions are: [CS] Nes,1, [CS] TRYZ]’ [CS‘ NS, ] 1 [NCS] NCSZ], and
[CS‘ TRYZ] 1 [NCS] TRYZ]. Altogether, the synchronization skeleton for P, s

there are four possible global states: [TRYl Nes, T,

shown in Fig. 6.7(a). By symmetry in the global state diagram we obtain the
synchronization skeleton for P, as shown in Fig. 6.7(b).

The general method of factoring out the synchronization skeletons of the indi-
vidual processes may be described as follows: Take the model of the specification

formula and retain only the propositional formulae in the labels of each node.
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There may now be distinct nodes with the same label. Auxiliary variables are

introduced to ensure that each node gets a distinct label: if label L occurs at
n>1 distinct nodes ViseeesVos then for each Vi, set L:=i on all arcs coming
into v and add L=1i as an additional component to the label of vy The

resulting newly labelled graph is the global system flowgraph.

We now construct the synchronization skeleton for process Pi which has m
distinct code regions Rl"“’Rm', Initially, the synchronization skeleton for Pi
is a graph with m distinct nodes R]""’Rm and no arcs. Draw an arc from Rj
to Rk if there is at least one arc of the form LJ.-+Lk in the global system flow-
graph where R, is a component of the label Lj and Rk is a component of the
label Lk' The arc R.—’»Rk is a transition in the synchronization skeleton and is
labelled with the enabling condition

V{(S]A coAS ) IR, S]...S 14 [Rk S]...S 1 is an arc in the global system
P J p flowgraph}.
Add Li=n to the label of R *R, if some arc [R. §...5 ] 2ET, [R s ....5 ]
j H R R k717 7p

also occurs in the flowgraph.

7.  CONCLUSIOH

We have shown that it is possible to automatically synthesize the synchro-
nization skeleton of a concurrent program from a Temporal Logic specification. We
believe that this approach may in the long run turn out to be quite practical.
Since synchronization skeletons are, in general, quite small, the potentially
exponential behavior of our algorithm need not be an insurmountable obstacle. Much
additional research will be needed, however, to make the approach feasible in
practice.

We have also described a model checking algorithm which can be applied to
mechanically verify that a finite state concurrent program meets a particular
Temporal Logic specification. We believe that practical software tools based on
this technique could be developed in the near future. Indeed, we have already
programmed an experimental implementation of the model checker on the DEC 11/70 at
Harvard.* Certain applications seem particularly suited to the model checker
approach to verification: One example is the problem of verifying the correctness
of existing network protocols many of which are coded as finite state machines. We

encourage additional work in this area.

*We would like to acknowledge Marshall Brinn who did the actual programming for our
implementation of the model checker.
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