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Abstract. Algorithmic counterexample generation is a central feature
of model checking which sets the method apart from other approaches
such as theorem proving. The practical value of counterexamples to
the verification engineer is evident, and for many years, counterexam-
ple generation algorithms have been employed in model checking sys-
tems, even though they had not been subject to an adequate fundamen-
tal investigation. Recent advances in model checking technology such
as counterexample-guided abstraction refinement have put strong em-
phasis on counterexamples, and have lead to renewed interest both in
fundamental and pragmatic aspects of counterexample generation. In
this paper, we survey several key contributions to the subject includ-
ing symbolic algorithms, results about the graph-theoretic structure of
counterexamples, and applications to automated abstraction as well as
software verification.

Irrefutability is not a virtue of a theory (as people often think) but a vice.

Karl R. Popper

1 Introduction

Disproof by counterexample is an ancient mathematical concept which lends it-
self naturally to refute universal statements. Formally, a counterexample to a uni-
versal formula V() is given by a constant ¢ for which ¢(c) evaluates to false.
In their most visible form, mathematical counterexamples refute long-standing
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conjectures, but much more often, counterexamples are natural byproducts in
the early stages of a mathematical analysis; they typically exhibit pathological
cases, refining our techniques and helping to shape the definitions we use.

In formal verification, the situation is similar. The specifications for a system
— a piece of hardware or software — essentially amount to conjectures about a
formal model of the system; although the specifications are expected to be true,
there is a need for a systematic way to check for specification violations, and
substantiate possible violations by concrete counterexamples. Experience has
shown that counterexamples are the single most effective feature to convince
system engineers about the value of formal verification.

Model checking is an algorithmic framework tailored to perform
this verification task; on a high level, model checking can be viewed as an ex-
haustive search algorithm which exploits various optimization strategies to find
a counterexample. Consequently, it is possible, at least in principle, to have a
model checker systematically output counterexamples for violated specifications.
All practically successful model checkers including SMV [48[10J20] are able to
output counterexamples in varying formats, cf. Figure [[l
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Fig. 1. Screenshot of a hardware counterexample.

The main practical problem in model checking is the combinatorial explo-
sion of system states commonly known as the state explosion problem. It is the
state explosion problem which renders apparently good theoretical results such
as linear time model checking algorithms practically pointless, because the sys-
tem size is so large that linear time is prohibitively expensive in practice. Most
current research in model checking is therefore devoted to combating state explo-
sion [I8]. The context of the state explosion problem makes the counterexample
feature even more important, because counterexamples are often composed only
of several states.

Despite their practical importance, counterexamples often have been dealt
with in an ad hoc manner, as if they were only parts of the user interface. In
particular, they used to be a blind spot in fundamental research until recently.
During the last few years however, counterexamples have attracted renewed in-
terest; they have been increasingly recognized as data structures worth of a
close algorithmic and logical analysis. This paper puts a spotlight on counterex-
amples. We survey theoretical and practical results, and focus in particular on
recent contributions.
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Section [3] deals with fundamental aspects, in particular with the graph-
theoretic structure of counterexamples and their appropriateness for different
temporal specification logics.

In Section [ we demonstrate on two examples how counterexamples are used
to improve the algorithmic efficiency of verification procedures. We first argue
that bounded model checking can be viewed as a parameterized counterexam-
ple construction. Second, we present the CEGAR (Counterezample-Guided Ab-
straction Refinement) framework, various instantiations of which are used in
state-of-the-art model checking systems.

In Section [}l we survey user-oriented applications of counterexamples in dif-
ferent frameworks, most notably in software verification, where ordinary coun-
terexamples are only part of a more complex debugging process.

2 Temporal Logic Model Checking in a Nutshell

A model checking system usually comes with a specialized compiler which trans-
lates the system description into a data structure representing a Kripke struc-
ture. Given a set P of atomic propositions, a Kripke structure over P is a tuple
K = (S,I,R, L), where S is a finite set of states, I C S is the set of initial states,
R C S x S is a total transition relation, and L : S +— 27 ig a function that labels
each state with a set of atomic propositions.

A path T = sg, s1, S2, ... starting at state s is an infinite sequence of states
such that s = s and (s, s;+1) € R for all i € N. We write 7" to denote the
suffix of 7 that begins at state s,, and (" to denote the state s,, on 7. When
the context is clear, 7" sometimes is also used to denote the state 7("). We write
Paths(s) to denote the set of paths starting at state s.

Specifications are expressed in terms of temporal logics such as CTL or LTL.
(Note that the notation for CTL by Clarke and Emerson [15] was inspired by
the paper [5] by Ben-Ari, Manna, and Pnueli.) CTL" is the logic obtained from
propositional logic by introducing the unary modalities X, G, F, E, A and the
binary modality U. State formulas and path formulas are defined inductively
as follows: (i) Atomic formulas are state formulas. (ii) All state formulas are
path formulas. (iii) State formulas are closed under conjunction, disjunction,
and negation. (iv) If ¢ and v are state formulas, then X ¢, G, Fp and p U
are path formulas. (v) If ¢ is a path formula, then E ¢ and A ¢ are state formulas.
The semantics of CTL" is defined in Figure 2l When it is clear from the context,
we will omit K. We write K | ¢ to denote K, sg = ¢, where s is the unique
initial state in K.

Linear time logic LTL is the fragment of CTL* where each formula has the
form A1) where 1 does not contain A and E. CTL is the fragment of CTL* where
each path operator X, F, G, U is immediately preceded by either E or A, i.e.,
temporal operators only occur in the compound form EX, EG, EF, EU, AX,
AG, AF, AU. ACTL" is the fragment of CTL* where E does not occur, and
negation is restricted to atomic subformulas. ACTL is the analogous fragment
of CTL. We shall call ACTL, ACTL* and LTL universal fragments of CTL* .
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Fig. 2. Semantics of CTL*, assuming that ¢; and @9 are state formulas, and
that ¢, and 1, are path formulas.

The model checking problem for a logic L is to decide if for given K, s and
¢ € L it holds that K, s | ¢. For CTL* and LTL, this problem is PSPACE-
complete , while for CTL, the time complexity is linear in the size of both
K and ¢. Note that due to state explosion, however, the dominant factor in this
analysis is often K.

Model checking algorithms can be classified into ezplicit and symbolic algo-
rithms. Symbolic algorithms employ data structures such as Binary Decision Di-
agrams [8] to describe sets of states; in many cases, symbolic algorithms achieve
great reductions in the size of the data structures, and thus help to alleviate
the state explosion problem [I(]. Explicit algorithms in contrast are algorithms
which work directly on the Kripke structure, and construct necessary parts of
the Kripke structure on the fly, using methods such as partial order reduction to
prune the search space. Traditionally, symbolic methods have been used primar-
ily for CTL, while explicit methods are typical of LTL model checking. Examples
of symbolic and explicit model checkers are SMV HE&JTT20] and SPIN [38]39] re-
spectively.

3 What Is a Counterexample?

Suppose that your favorite model checking tool determines that the specification
¢ is violated over Kripke structure K, i.e., K £ ¢. Since K is very large, we
expect the model checker to provide a counterexample C' which explains the
violation [I2]. As ¢ ranges over paths, ¢ is essentially a second order formula over
Kripke structures, and thus, the counterexample C will be a Kripke structure. In
order for a structure C to be a counterexample, C' has to satisfy two properties,

cf. [22):
(i) C wviolates p, i.e., C [~ .
(i) The violation of ¢ on C “explains” the violation on K in a rigorous
manner.
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The simplest solution for C' would be to use C' = K as a counterexample. While
mathematically correct, this is evidently a simple-minded choice. Consequently,
it is natural to investigate restricted classes of counterexamples which are simple
enough to be practically useful, but rich enough to exhibit all behaviors which
are relevant for the violation of a specification. Based on the analysis in we
identify the following criteria for good classes C' of counterexamples:

— Completeness. C should be complete for a tangible class L of specifica-
tions, i.e., each violation of a specification in L is witnessed by a suitable
counterexample in C.

— Intelligibility. The elements of C' should be simple and specific enough to
be analysed by human engineers, possibly with the aid of automated tools
and suitable annotations.

— Uniformity. All counterexamples should be related to the specification and
the system by a uniform principle which explains the property violation; for
example, in [22], this principle was given by the simulation relation.

— Effectiveness. There should be effective algorithms for generating and ma-
nipulating counterexamples in the class C; in particular, computation of
counterexamples for a logic L should not be harder than the model checking
problem for L.

We say that C' is a viable class for L, if C fulfills these criteria. Note that we do
not give a formal definition of viable classes of counterexamples, as notions such
as intelligibility cannot be captured mathematically.

In the rest of this paper we will concentrate on counterexamples for uni-
versal logics such as ACTL, LTL, and ACTL*, because we can expect to have
simple natural counterexamples only for universal specifications. Moreover, uni-
versal logics are the formalism of choice for counterexample-guided abstraction
refinement.

3.1 Counterexamples for Linear Time Logic

The simplest kind of counterexamples refute invariants, i.e., finite paths where
the last state in the path exhibits the violation of the alleged invariant. The class
of LTL properties which are refutable by finite paths has been studied under the
name of safety properties [47].

Fact 1. Finite paths are viable counterezamples for LTL safety properties.

Finite paths obviously satisfy our requirements. The uniform relationship
between the path m and the Kripke structure K is given by the fact that the
path is contained in Paths(sg) where sq is the initial state of K.

Note that 7 is not a substructure of K, as m may contain the same state
several times. Indeed, we can view 7 as a substructure of the indered Kripke
structure K defined in [22]:

Definition 1. Given a Kripke structure K = (S,1, R, L), the indexed Kripke
structure K¢ = (S, I¥, R¥, L¥) is defined as follows.
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(i) S¥ =S x N, i.e., the states have the form (s,i). By convention, we write
s® instead of (s,i). i is called the index of the state s'.

(ii) I¥ = I x N. ‘ ‘

(iii) For any two states s}, s € S¥, (si,s3) € R* if and only if (s1,s2) € R;

(iv) For all states s* € S¥ we have L¥(s") = L(s).

Intuitively, K is obtained by creating a countable number of isomorphic copies
of each state. These copies are distinguished by an index, but cannot be dis-
tinguished by temporal properties. It is easy to see that the Kripke structures
K and K% are bisimilar. Unless noted otherwise, all counterexamples will be
substructures of K*.

A natural generalization of finite paths are traces. A trace is either a finite
path or a loop, i.e., a finite path which leads to a finite cycle, cf. Figure Bl

Fact 2. Traces are viable counterexamples for LTL.

Fig. 3. A simple trace counterexample for AF —z

Again, it is simple to observe that the requirements are fulfilled. Indeed, com-
pleteness follows easily from automata-theoretic methods: as both Paths(sg) and
the set of traces where ¢ is violated are recognized by Biichi automata, there
exists a Biichi automaton for the intersection from which a trace can be ex-
tracted; see [20] for details. Consequently, traces are also viable counterexam-
ples for extensions of LTL by regular temporal operators, e.g. ETL [59]. With
explicit-state model checkers, trace counterexamples are a natural byproduct of
the search procedure and are provided automatically with little overhead. A sys-
tematic analysis of the length of LTL counterexamples has recently been done
in |23].

3.2 Counterexamples for Branching Time Logic

For branching time logics the situation is more complicated than for linear time
logics. Consider for example the formula AFz vV AFy. Semantically, a coun-
terexample for this formula has to describe two traces, one where —x holds
globally, and one where —y holds globally. In other words, a counterexample for
AFz Vv AFy has to be a model for EG—z A EG—y. A more involved example is
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given by formulas such as AFAXz where a counterexample has to provide an
infinite path along which from every state —z can be reached in one step.

(a) Trace Counterexamples. Most model checkers including SMV compute
trace counterexamples for CTL specifications. Symbolic algorithms for comput-
ing trace counterexamples have been described early on [28]37]. Trace counterex-
amples are certainly very useful in practice because they provide an easy and
intuitive means to study system behavior. The above examples however demon-
strate that trace counterexamples are not complete even for ACTL.

This startling mismatch has been a blind spot in model checking for many
years; only recent papers [9122] have explicitly considered the adequacy of trace
counterexamples for ACTL. Trace counterexamples are closely related to the
linear fragment of ACTL, i.e. ACTL N LTL. To our best knowledge, this re-
lationship was never made explicit in the literature, and is expressed in the
following proposition:

Proposition 1. Let ¢ be an ACTL formula. ¢ is trace-refutable iff ¢ is express-
ible in LTL.

Following [14], we introduce the following notation: For a CTL* formula ¢,
let ¢ denote the formula obtained by removing all occurrences of E and A.

Proof. If ¢ is expressible in LTL, then it has trace counterexamples by Fact
For the other direction, consider the ECTL formula ¢ obtained from —¢ by
distributing the negation to atomic subformulas. By assumption, we know that
@ is violated on a model M iff @ is true on M iff there exists a single path
7 starting at the initial state of M such that all witnesses for the existential
quantifiers E in ¢ are suffixes of 7. Consequently, @ is equivalent to E¢?, and ¢
is equivalent to A—¢? which is in LTL.

Consequently, investigating trace-refutable ACTL amounts to investigating
the linear time fragment of ACTL. We can therefore draw from quite a rich body
of results dealing with the relationship between branching and linear time.

— Clarke and Draghicescu have shown that an ACTL formula ¢ is expressible
in LTL iff ¢ is equivalent to Ap? [14]. Thus, if ¢ is expressible in LTL, it is
easy to find the corresponding LTL formula.

— Concerning this equivalence, it is easy to see that ¢ = A@? holds for ACTL
specifications ¢. Kupferman and Vardi however have shown that the deci-
sion problem whether ¢ is implied by A¢? is PSPACE-hard, and contained
in EXPSPACE; over a fixed Kripke structure M, the problem to decide if
Ap? =  is PSPACE-complete . Partial hardness results were indepen-
dently proved by Buccafurri et al. in [9].

— Maidl finally solved the open problem of finding a logic capturing the inter-
section of ACTL and LTL. She semantically characterized ACTL N LTL by
a fragment ACTLA® [46] defined as follows:
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If 1 and @y are in ACTLY®t, and p is an atomic formula, then p, o1 A,
(PA@1)V (P Ap2), AXp1, A(pAp1)U(-pAg2), ApAp1)W(-pApz)
are in ACTLI".
She also showed that given an ACTL formula ¢, it is PSPACE-complete to
decide if ¢ is equivalent to a formula in ACTLY* which by Theorem [[] below
closes the gap between PSPACE and EXPSPACE left open by [43].

Although most of the mentioned papers do not deal with counterexamples
explicitly, in conjunction with Proposition [l they provide us with a clear picture
about the relationship between trace counterexamples, ACTL and CTL:

Theorem 1. Let ¢ be an ACTL formula. The following are equivalent:

@ has trace counterexamples.

@ 1is expressible in LTL.

© is equivalent to a formula in ACTL.
Ap? = .

@ is equivalent to Ap?.

Grds Co o

The corresponding decision problem is PSPACE-complete.

Let K be a Kripke structure, and ¢ be an ACTL formula, s.t. K = ¢. The
following are equivalent:

1. ¢ has a trace counterezample on K.
2. K EAp? = o.
3. On K, ¢ is equivalent to Ap?.

The corresponding decision problem is PSPACE-complete.

We conclude that although CTL model checking is in linear time, computing
a trace counterexample is a hard problem. Consequently, unless P = PSPACE,
for every polynomial CTL model checker which outputs trace counterexamples,
there exist infinitely many cases where the trace counterexample produced by
the model checker is not complete. Moreover it follows that the syntactic frag-
ment of ACTL which guarantees the existence of a trace counterexample cannot
be captured by simple syntactic means, as the decision procedure is PSPACE-
complete.

This motivates the concept of ACTL templates introduced by Buccafurri et
al. [9]. An ACTL template is an ACTL formula where * is the single atomic
proposition used. An instantiation of a template is obtained by replacing each
occurrence of x in the template by a pure state formula. Buccafurri et al. show
that there exists a unique maximal set of ACTL templates whose instantiations
guarantee trace counterexamples. This set is given by the context-free grammar
LIN in BNF notation

LIN = PSF | (LIN A LIN) | (LIN V PSF) | (PSF V LIN) |
AX(LIN) | A(PSF V LIN) | UL
UL = A(LIN U PSF) | A(PSF U UL) | (UL V PSF) | (PSF V UL)
PSF = (PSF A PSF) | (PSF V PSF) | =(PSF) | %
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where PSF denotes the set of pure state formulas. (The operator V is defined
by U iff =(-pV-)).) Membership in LIN is efficiently decidable; moreover
they show that for all specifications in LIN, counterexamples can be efficiently
constructed.

In conclusion, we have two possibilities to use trace counterexamples as viable
counterexamples for a fragment of ACTL:

Fact 3. Traces are viable counterexamples for LIN and for ACTL°t.

There is a trade-off between the two languages: In the case of LIN, we have a
flexible syntax which makes it possible to formulate many ACTL specifications
in the usual manner at the cost of restricting the expressive power; in the case of
ACTLA we obtain the maximum expressive power, yet we need to express the
specifications in a somewhat artificial language into which the linear fragment
of ACTL cannot be efficiently translated unless PSPACE collapses to P.

The most significant disadvantage of trace counterexamples however is that
we restrict the expressive power of branching time logic to its linear fragment;
hence the results described in this section shed a clear light on an unsatisfactory
situation.

(b) Tree-Like Counterexamples. In a recent paper [22], Clarke et al. sug-
gested a new notion of counterexamples for ACTL. They introduced tree-like
counterexamples which generalize both trace counterexamples and tree models.
Intuitively, tree-like Kripke structures are obtained by gluing together traces in
a finite tree, cf. Figure [

53

S5 S7

Fig. 4. K, is tree-like, K5 is not.

Formally, let G be a directed graph. The component graph ¢(G) is a graph
whose vertices are given by the strongly connected components (SCCs) of G,
and where two vertices are connected by an edge if there exists an edge between
vertices in the corresponding SCCs. A graph is tree-like, if (i) all SCCs are either
cycles or simple nodes, and (ii) the component graph is a directed tree. A Kripke
structure C' is tree-like if its transition relation is tree-like, and its root is the
initial state so of C.
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Theorem 2. [22] Tree-like Kripke structures are viable counterexamples for
ACTL* .

Example 1. A counterexample for the ACTL specification AG —x V AF —y has
to demonstrate that there is a finite path leading to a state satisfying x, and that
there is an infinite path along which y is always true. Thus, a counterexample is
a model of the ECTL formula EF t AEG y. A tree-like counterexample typically
has the form described in Figure[Bl The shaded areas indicate which subformula
is disproved. For the specification AF(—yAAX —z) a counterexample is a model
of EG(y V EX ). A typical tree-like counterexample is shown in Figure

As the examples demonstrate, tree-like counterexamples are indeed easy to
understand. The algorithms of [22] can provide annotations to be used by an
interactive browser which facilitates manual inspection of tree-like counterex-
amples. Due to the absence of complicated cycles navigation within the coun-
terexamples is relatively simple. As tree-like counterexamples can be viewed
as compositions of trace counterexamples, they tie in well with the existing
work on counterexamples. In particular, the refinement techniques necessary for
counterexample-guided refinement extend easily to the case of tree-like coun-
terexamples. On a more general note, tree-like graphs have many favorable al-
gorithmic properties: having a treewidth of 2, they share many favorable algo-
rithmic properties of finite trees.

®

AX

Fig. 5. Tree-like Counterexamples for AG -2 V AF —y and AF(-y A AX —z).

The result of Theorem ] indeed was proved for extensions of ACTL by w-
regular linear time temporal operators and by infinitary conjunctions, cf. [22].
In addition, the paper shows how to extend the symbolic counterexample algo-
rithms of [28] to tree-like counterexamples.

(c) Counterexamples for Existential Formulas. It is easy to see that
counterexamples for universal formulas are witnesses for the dual existential
formulas, and vice versa. Consider for example the existential formula EFz. A
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counterexample for this formula has to be a witness for the formula AG—z. It
is evident that a witness for AG—z has to contain all reachable states, and this
is usually infeasible due to state explosion. There may however occur situations
where certain existential formulas also can be refuted by counterexamples of a
reasonable size.

Loosely speaking, EF is very existential because both E and F amount to
existential quantification. Consequently, as argued above, it is usually not possi-
ble to generate counterexamples for EF. The situation is somewhat different for
formulas such as EGz where the G operator is defined by a universal property:
A counterexample for EGz may be feasible in certain situations, because wit-
nesses for AF—z may be small even for large Kripke structures. Formulas such
as EXx have witnesses whose size is bounded by the maximum out-degree of
the nodes in the Kripke structure. For ExUy, the counterexample is potentially
simple only in case that the counterexample satisfies Ax A —~yU—-x A —y. Using
the methods of [22], it is easy to see that tree-like counterexamples can in prin-
ciple be generated for all CTL formulas where EU or EF does not occur; in the
latter case, the only reasonable counterexample is given by the Kripke structure,
reduced to the set of reachable states.

In recent work, Shankar and Sorea describe counterexamples for full CTL
obtained by storing the stages of a fixpoint computation [53], while Shoman and
Grumberg use annotations to deal with full CTL [55]. In both cases, however,
completeness for CTL is obtained at the cost of compromising the conceptual
simplicity of traces and tree-like counterexamples.

As pointed out by Gradel and Sistla [57/31], the results about tree-like coun-
terexamples tie in nicely with classic results about tree automata [40]: every
satisfiable property described by a tree automaton has a back edge model, i.e., a
model obtained from a finite tree by adding at most one “back edge” from each
leaf of the tree to one of its ancestor nodes. Consequently, back edge models are
candidates for viable counterexamples for complicated branching time proper-
ties described by tree automata. It is not hard to see that tree-like models are
special cases of back edge models, similarly as traces are special cases of tree-like
models; back edge models however can be complicated to analyse, as they can
have interfering cycles. Thus, the relative simplicity of CTL in comparison with
tree automata is mirrored by the simplicity of its counterexamples.

4 Introverted Counterexamples:
Counterexamples as Internal Data Structures

In this section we concentrate on “internal” applications of counterexamples,
where counterexamples are not only used as output for the verification engineer,
but are essential to the verification algorithm.

4.1 Bounded Model Checking

Bounded Model Checking [76] is a relatively new approach to LTL model check-
ing which employs highly effective SAT-checkers. From a high-level perspective,
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bounded model checking can be viewed as a reduction to Boolean satisfiability.
For a given bound k, the SAT instance describes a trace counterexample of size k
whose state transitions are parameterized by Boolean variables. The SAT-checker
then verifies whether this parameterized counterexample is consistent with the
actual transitions in K. The good performance of bounded model checkers such
as BMC [[1] relies both on a subtle construction of the SAT instance, and on
the usage of state-of-the-art SAT-checkers such as CHAFF [49].

One of the main advantages of bounded model checking is that it avoids state
explosion, i.e., memory usage is kept in reasonable bounds, as the SAT proce-
dures do not generate large additional data structures. The evident disadvantage
is the incompleteness of the method, because in each run, only counterexamples
of size < k are considered. Thus, bounded model checking achieves a trade-off
between the high memory requirements of standard LTL model checking (as
indicated by PSPACE-completeness) and the possibly large running time of a
memory-efficient SAT procedure which needs to be iterated for completeness. A
recent thorough analysis of the complexity of bounded model checking can be
found in [23].

Practical experiments show that bounded model checking is a very efficient
approach to finding minimal counterexamples. In particular, there are many
cases where standard methods failed because the construction of a binary deci-
sion diagram exceeds the available memory, while the bounded model checker
quickly determined a counterexample [716]. Bounded model checkers have rapidly
found industrial applications [24].

4.2 CEGAR: Counterexample-Guided Abstraction Refinement

The methods for alleviating the state explosion problem in model checking can
be classified coarsely into symbolic methods and abstraction methods [18]. By
symbolic methods we understand the use of succinct data structures and sym-
bolic algorithms which help keep state explosion under control by compressing
information, using, e.g., binary decision diagrams or efficient SAT procedures.

Abstraction methods in contrast attempt to reduce the size of the state space
by employing knowledge about the system and the specification in order to
model only relevant features in the Kripke structure. An abstraction function
h associates the Kripke structure K with an abstract Kripke structure K such
that two properties hold:

— Feasibility. K is significantly smaller than K.
— Preservation. K preserves all behaviors of K.

Preservation ensures that every universal specification which is true in K is
also true in K. The converse implication, however, will not hold in general: a
universal property which is false in K may still be true in K. In this case, the
counterexample obtained over K cannot be reconstructed for the concrete Kripke
structure K, and is called a spurious counterexample [17], or a false negative.
An important example of abstraction is existential abstraction [19] where the
abstract states are essentially taken to be equivalence classes of concrete states;
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a transition between two abstract states holds if there was a transition between
any two concrete member states in the corresponding equivalence classes.

In certain cases, the user knowledge about the system will be sufficient to
allow manual determination of a good abstraction function. In general, however,
finding abstraction functions gives rise to the following dichotomy:

— If I/A{ is too small, then spurious counterexamples are likely to occur.
— If K is too large, then verification remains infeasible.

Counterexample-Guided Abstraction Refinement is a natural approach to
resolve this situation by using an adaptive algorithm which gradually improves
an abstraction function by analysing spurious counterexamples.

lMandap

generate initial
abstraction

— lz\?

M

model check
lﬁ =

generate
counterexample T'

lf

check whether T
is spurious

stop

T is not spurious
l T is spurious

L refinement

Fig. 6. Counterexample-guided refinement.

(i) Initialization. Generate an initial abstraction function.

(i) Model Checking. Verify the abstract model. If verification is success-
ful, the specification is correct, and the algorithm terminates success-
fully. Otherwise, generate an abstract counterexample T on the abstract
model. R

(i) Sanity Check. Determine, if the counterexample T is spurious. If a
concrete counterexample T can be generated, the algorithm outputs this
counterexample and terminates.

(iv) Refinement. Refine the abstraction function in such a way that the
spurious counterexample is avoided, and return to step 2.
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Using counterexamples to refine abstract models has been investigated by
several researchers beginning with the localization reduction of Kurshan
where the model is abstracted/refined by removing/adding variables from the
system description. A similar approach has been described by Balarin in [1].

A systematic account of counterexample guided abstraction refinement for
CTL model checking was given in [I7[22]. Here, the initial abstraction is obtained
using predicate abstraction [32] in combination with a simple static analysis of
the system description; all other steps use BDD-based techniques. The use of
tree-like counterexamples guarantees that the method is complete for ACTL.

During the last few years, the CEGAR paradigm has been adapted to differ-
ent projects and verification frameworks, both for hardware and software ver-
ification [5302726/4BITER2TI36/T3]. The major improvements to the method
include, most notably, the integration of SAT solvers for both verification and
refinement, and the use of multiple spurious counterexamples.

It is well-known that most abstraction methodologies can be paraphrased
in the framework of abstract interpretation by Cousot and Cousot [25]. Gia-
cobazzi and Quintarelli have shown that, not surprisingly, this holds true for
counterexample-guided abstraction refinement as well. The practical and com-
putational significance of such embeddings for verifying real-life systems however
remains controversial.

5 Extroverted Counterexamples:
Analysis and Debugging Tools

Despite the evident explanatory value of counterexamples as presented in this
paper, an error trace may contain much information which is irrelevant for the
error, or may be just too large for efficient manual inspection. While for hardware
the concept of an error trace is natural for engineers, the strong abstraction
methods necessary in software verification incur a perceptional gap between the
plain error trace and the original program.

Several recent papers have dealt with the question of analyzing trace coun-
terexamples. Kupferman and Vardi defined a notion of interesting witnesses
where the temporal formulas are satisfied in a non-vacuous manner [42]. Jin
et al propose an algorithm to generate an error trace divided into fated and free
segments [41]. Moreover, several approaches to compute proof-like annotated
counterexamples have been presented [35/55B458/50].

Failure Diagnosis for software invariants was proposed in the context of
NASA’s Java PathFinder [33], and Microsoft’s SLAM model checker for C [2].
In these approaches, multiple counterexamples are generated in order to extract
the real error cause from a systematic comparison of the counterexamples. The
question of mapping counterexample traces back to source code has also been
studied by the Bandera model checking frontend for Java [51]. Counterexamples
have also been used in security for generating attack graphs by Sheyner et al
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6 Conclusion

Counterexamples belong to the fundamental concepts of model checking which
have been introduced to the method early on [12]. During the last years, the
significance of counterexamples has been increasingly recognized, and counterex-
amples have been studied in their own right. Besides their significance for the
user, counterexamples play a crucial algorithmic role in algorithms for bounded
model checking and abstraction refinement.
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