Characterizing Kripke Structures in Temporal Logic

M.C. Browne, E.M. Clarke, O. Grumberg

January, 1987
CHU-CS-87-104

This research was partlally supporied by NSF Grant MCS-82-16706. The second author, O. Grumberg, is
currently on leave from Technion, Halfa and is parttally supported by a Weizmann postdoctoral fellowship.

L 4
'y

Characterizing Kripke Structures in Temporal Logic

M.C. Brbwne, E.M. Clarke, O. Grumberg
Carnegie Melion University
Pittsburgh, PA 15213

January, 1987

This research was partially supported by NSF Grant MCS-82-16706. The second author, O. Grumberg, is
currently on leave from Technion, Haifa and is partially supported by a Weizmann postdoctoral fellowship.

Table of Contents

1. Introduction .

2. The Logics CTL and CTL

3. Equivalence of Kripke Structures

4. Equivalence With Respect To Stuttering
5. Algorithm For Stuttering Equivalence
6. Conclusion

o

15
16

List of Figures .
Figure 3-1: A Kripke structure in which cvery other state is labelled A4

Characterizing Kripke Structures in Temporal Logic
M. C. Browne
E. M. Clarke

O. Griimberg
Carnegie Mellon University, Pittsburgh

1. Introduction

‘The question of whether branching-time temporal logic or linear-time temporal logic is best for r;asoning
about concurrent programs is one of the most controversial issues in logics of programs. Concurrent
programs are usually modelled by labelled state-transition graphs in which some state is designated as the
initial state. For historical reasons such graphs are called Kripke structures [8]. In linear temporal logic,
operators are provided for describing events along a single time path (i.e., along a single path bin a Kripke
structure). In a branching-time logic the temporal operators quantify over the futures tflat are possible from a
given state (i.e., over the possible paths that lead from a state). It is well known that the two types of temporal
logic have differcnt expressive powers ([4], [9]). Linear temporal logic, for examble, can express certain
Jairness properties that cannot be expressed in branching-time temporal logic. On the other hand, certain
practical decision problems like model checking ([3], [16]) are easier for branching-time temporal logic than

for linedr temporal logic.

In this paper we provide further insight on which type of logic is best. We show that if two finite Kripke
structures can be distinguished by some formula that éontains both branching-time and linear-time operators,
then the structurcs can be distinguished by a formula that contains only branching time operators.
Specifically, we show that if two finite Kripke structures can be distinguished by some formula of the logic
cTL® (i.e., if there is some CTL® formula that is true in one but not in the other), then they can be
distinguished by some formula of the logic CTL. The logic CT L ([3], [4]) is a very powerful temporal logic
that combines both branching-time and linear-time operators; a path quantifier, either A ("for all paths”) or E
("for some paths”) can prefix an assertion composed of arbitrary combinations of the ususal linear time
operators G ("always"), F ("sometimes”), X ("nexttime"), and U ("until"). CTL ([1], [2]) is a restricted subset
of CTL® that permits only branc_hing-time operators--each path quantifier must be immediately followed by

exactly one of the operators G, F, X, or U.

Our goal is to show that for any finite Kripke structure M, it is possible to construct a CTL formula F), that

This research was partially supported by NSF Grant MCS-82-16706. The third author, O. Griimberg, is currently on leave from
Technion, Haifa and is partiaily supported by a Weizmann postdoctoral fellowship.

uniquely characterizes Af. Since onc Kripke structure may be a trivial unrolling of another, we usc a notion of
cquivalence between Kripke structures that is similar to the notion of bisimulation studicd by Milner [12]. We
say that states s and s’ are equivalenl if they have the same labcelling of atomic propositions and for cach
transition from one of the two states to some state ¢ there is a corresponding transition from the other state to
astate (that is equivalent to «. Two Kripke structures are equivalent if their initial states are equivalent. It s
not difficult to prove that if two Kripke structures are cquivalent, then their initial statcs must satisfy the same

CTL.

An obvious first attempt to construct £, is simply to write a CTL formula that specifies the transition

relation of M. For each state s in M we include in F), a conjunct of the form

AG(L(s)= /_\EXL(s,-) A AX(\I/L(si)))
i
where s,, ... s, are the successors of s and L(¢) is the labelling of atomic propositions associated with state ¢.
It is easy to see, however, that this simple approach cannot work in general: several states in Af may have

exactly the same labelling of atomic propositions.

Instead, we first show that it is possible to write a CTL formula that will distinguish between two states in
the same structure that are not equivalent according to the above definition. Two inequivalent states may have
ekactly the same labelling of a_tomié propositions, they may even have corresponding successors, but the
computation trees rooted at those states must differ at some finite depth. The difference in the computation
trees can be exploited to give a CTL formula that distinguishes between the sét&. Since equivalent states
satisfy the same CTL" formulas, it follows that if two states can be distinguished by a cr.’ formula, they can
be distinguished by a CTL formula. Once we can distinguish between inequivalent states in the same
structure, we can write a single CTL formula that encodes the entire Kripke structure; this formula is the F. M

that we seek.

The above construction requires the use of the nexttime operator in specifying F.. In reasoning about
concurrent systems, however, the nexttime operator may be dangerous, since it refers to the global next state
instead of the local next state within a process [10]. What happens if we disallow the nexttime operator in
CTL formulas? The proof, in this case, requires another notion of equivalence--equivalence with respect to
stuttering. We say that two state sequences correspond if each can be partifioned into finite blocks of
identically labelled states such that each state in the i-th block in one sequence is equivalent to each state in
the i-th block of the other sequence. Thus, duplicating some state in a sequence any finite number of times
will always result in a corresponding sequence. We say that two states are equivalent if for each state sequence
starting at onc there is a corresponding state sequence that starts at the other. Under this second notion of

equivalence the proof of the characterization theorem becomes much more complicated, since it is possible

‘i

for two incquivalent states to have exactly the same finite behaviors (modulo stuttering), but different infinite

behaviors.

Equivalence under stuttering turns out to be quite uscful for reasoning about hicrarchically constructed
concurrent systems. In determining the correctness of such a system by using a technique like temporal logic
model checking ([2], (3], (11}, {13], (16], [17]), it is often desirable to replace a low level module by an
cquivalent structure with fewer states. Our results show how this can be done while preserving all of those
properties that are invariant under stuttering. We give polynomiél algorithms both for determining if two
structures are equivalent with respect to stuttering and for minimizing the number of states in a given

structure under this notion of equivalence.

Finally, our results have some inte;’esting implications for the problem of synthesizing finite state
concurrent systems from temporal logic specifications ([2], [14]). In order to guarantee that any Kripke
structure can be synthesized from a specification in linear temporal logic, Wolper [18] was forced to introduce
more complicated operators based on regular expressions. Our results show that (at least in theory) no such
exiension is necessary for branching-time temporal logic. Any Kripke structure can be specified directly by a

formula of branching-time logic.

The expressive power of various temporal logics has been discussed in several papers; see ([4], [9]) for
examf)le. Hennessy and Milner (7], Graf and-Sifakis [6], and Pnueli [15] have all discussed the relationship
between temporal logic and various notions of equivalence between models of concurrent programs.
However, we believe that we are the first to show that it is possible to characterize Kripke models within

branching-time logic and to investigate the consequences of this result.

Our paper is organized as follows: In Section 2 we describe the logics CTL and CTL". In Section 3, we state
formally what it means for two states in a Kripke structure to be equivalent and prove that equivalent states
satisfy exactly the same CTL" formulas. Section 3 also contains the first of the two main results of the paper:
we show how to characterize Kripke structures using CTL formulas with the nexttime operator. Section 4
introduces the second notion of equivalence (equivalence with respect to stuttering) and shows that if the
nexttime operator is disallowed, then equivalent states again satisfy exactly the same CTL® formulas. We also
extend the characterization theorem of Section 3 to Kripke structures with the néw notion of equivalence. In
Section 5 we give a polynomial algorithm for determining if two states are equivalent up 1o stuttering. The
paper concludes in Section 6 with a discussion of some remaining open problems like the possibility of

extending our results to Kripke structures with fairness constraints (i.e., Biichi Automata).

2. The Logics CTL and CTL"

There are two types of formulas in CTL": siate Jormulas (which are true in a spccific state) and parh
Jormulas (which arc true along a spccxﬁc path). Let AP be the set of atomic proposition names. A state
formula is either:

o A, if Ae AP,
o If fand g are state formulas, then = f and f'vg are state formulas.
e If f is a path formula, then E(f) is a state formula.

A path formula is either:

e A state formula.

e If fand g are path formulas, then = £ fvg, X [and f U g are path formulas.
CTL" is the set of state formulas generated by the above rules.

CTL is a subset of CTL" in which we restrict the path formulas to be:

¢ If fand g are state formulas, then X fand f U g are path formulas.
o If fis a path formula, thensois = f

We define the semantics of both logics with respect to a structure M = <S5, R, L), where

e 5 is a set of states.
® RGSXS is the transition relation, which must be total. We write s, — 5, to indicate that (s,,5,) € R.
o L: §— P(AP) is the propositian labeling. :

Unless otherwise stated, all of our results apply only to finite Kripke structures.

We only consider transition relations where every state is reachable from the initial state. We define a path
in M to be a sequence of states, 1 = s,5, . .. such that for every i2 0, 5i— i+, m will denote the suffix of =

starting at s;.

We use the standard notation to indicate that a state formula / holds in a structure: M,sk=fmeans that f
holds at state s in structure M. Similarly, if f is a path formula, M,z k= fmeans that /f holds along path = in
structure M. The relation = is defined inductively as follows (assuming that /] and £ are state formulas and
g,and g, are path formulas):

l.skA = Ael(s).
2.5F==f = sk f.
skE=five = skE=fors=f.

4. 5= E(g) = there cxistsla path = starting with s such that = = g,.
S.mkEf = sisthe first state of 7 and 5= £,

6. m k=g = wkg.

7. mkE=g Vg, = wkgormkg,

8.7k=Xg - = kg

9. w k=g Ug, = there existsa k20 such that 7%= g and forall 0sj<k, o/ 8-

We will also use the following abbreviations in writing CcrL® (and CT1.) formulas:

* fAg = —(=fV-y) oFf = irue Uf
e A(f) = —~E(~f) ¢ Gf = ~F—f.

3. Equivalence of Kripke Structures
Given two structures M and M’ with the same sct of atomic propositions 4P, we define a sequence of

equivalence relations Ey, £, ... on SXS’ as follows:

o sE;s” ifand only if L(s)=L(s’).

esE,, s’ ifand onlyif

o L(s)=L(s"),
o Vsfs—s5 = ds[s’ — s{As E,si]) and
o Vsils — s = ds[s— 5,45, E,]

Now, we define our notion of equivalence between states: sEs’ if and only if sE;s’ for all i20.

Furthermore, we say that M with initial state 5 1s equivalent to M’ with initial state 5 iff 5, E's;.
Lemma 1: LetsEs’, then for every path, s.s,, . . ., there exists a path, s’,s{, ... such that Vi[s,-Esﬂ.

Proof: Note first that £, © E,. Since £, is finite, there must be a & such that E;,, = E, = E.Thus,

we can substitute £ for £} in the definition of E; | giving sEs’ ifand only if
o L(s)=L(s"),
o Vsls— s,= ds/[s’ = 5{ As, E, s’]}, and

o Vsils = 5= le[s—o sAs E, st

The remainder of the proof is a straightforward induction on the length of the path. O

Theoren 2 Ifs£'s’. then Vfe CTLs=f=s" =1

This theorem is a consequence of the following lemma:

Lemma 3: Let h be either a state formula or a path formula. Let 7w = s5,... be a path in M and

n' =s's]. ... beapath in M’ such that sE's’ andVi{siEsﬂ. Then

sE=hes s'E=h, if his astate formula and
m=he o/ E=h if hisapath formula.

Proof: We prove the theorem by induction on the structure of h.
Base: h = A. By the definition of E,sEEA=s = A

Induction: There are several cases.

1. h=—h,, a state formuia.
se=he sk h
= s’ K= h, (induction hypothesis)
=s'Fh

The same reasoning holds if ~is a path formula.
2. h=hVh, astate formula.

Without loss of generality,
sk he=skE=horskEh
=skE=h
= s’ k= hy (induction hypothesis)
=s'F=h
The argument is the same in the other dircction. We can also use this argument if 4 is a path

formula.

3. h=E(h,), a State formula.

’
r

Suppose that sF= h. Then there is a path, 7, starting with s such that 7, = k. By Lemma 1, there
is a corresponding path #{ in M/’ starting with s’. So by the induction hypothesis, 7, F= hy
= ! = h,. Therefore, sF= E(h) = s’ =E(h). We can use the same argument in the other

direction, so the lemma holds.

4. h=h,, where # is a path formula and 4, is a state formula.

Although the lengths of 4 and A, arc the same, we can imagine that 4 = path(h,), where path is an
operator which converts a state formula into a path formula. Therefore, we are simplifying & by

dropping this path operator. So now:
TEh =sEh
= s’ = h, (induction hypothesis)
=7'F=h

The reverse direction is similar.
2 r=X 4, 2 nath formula

By the definition of the next-time operator, »' k= h,. Since = and =’ correspond, so do = and

n’!. Thereforc, by the inductive hypothesis, #/! k= h, so 7/ k= h.
We can use the same argument in the other direction.
6. h=h,U h,, a path formula.

Suppose that 7 = h U h,. By the definition of the until operator, there is a & such that 7%= h,
and forall 0<j< &, = hy. Since 7 and #/ correspond, so do w’ and #'/ for any j. Therefore, by
the inductive hypothesis, =’ k= h, and 7’ = h, for alt 0 < j< k. Therefore #’ k= A.

We can use the same argument in the other direction. O

Another property of two equivalent states is that they both have corresponding computation trees. For
every s€S, Tr,(s) is the computation tree of depth n rooted at s. Formally, Try(s) consists of a single node
which has the same label as 5. Tr,,(s) has as its root a node m with the same label as 5. If s has successors
5,5, in the Kripke structure, then node /n will have subtrees Tr,(s,), ..., Tr(s,).

L4

Two trees Tr,(s) and Tr,(s”) correspond (denoted Tr,(s) = Tr,(s’)) if and only if both of their roots have
the same label and for every subtree of depth n—1 of the root of one, it is possible to find a corresponding

subtree of the root of the other.

Lemma 4: s£ s’ if and only if Trj(s)ETrj(s’) forall j<n.

Lemma 5: Given a finite sct of states s,5, there exists a ¢ such that if two states s5; and s; are not

[-cquivalent then Tr,(s;) and Tr,(s;) will not correspond.
We will cail the value of ¢ for S the characteristic number of the structure.

We associate a CI'L formula with a tree Tr(s) as follows:
o HTr(s)=(pA ... Ap) A(DgA ... —g,) where .L(s):_{pl, coopgyand AP-L(s)={q, ... q,}.

¢ HTr,, (s)]= (/\h‘(O}[Tr,,(s,-)]) A AX(VI Tr,,(si),]) A F[Try(s)], where s; is a successor of s.
!]
Lemma 6: sk=%(Tr,(s)] for all n> 0.
Lemma 7. If sE=F[Tr,(s’)}, then Tr(s)=Tr,(s’).

Proof: The proof is by induction on n. The basis case is trivial. Thus, we assume that n > 0. Let 5.5,s

be the sons of s in Tr(s) and s7.5;,55 be the sons of s” in Tr,(s").
It is easy to see that sand s’ have the same labelling of atomic propositions.

We must show that Tr,,_,(:';%) corresponds to some Tr,.,(s7). Since ;i=‘.F[Tr,,(s’)l

b
Tr,,_‘(sio) =Tr, 1(5‘2,) by our inductive hypothesis.

sl=:\X(\}(€F[Tr_n_l(sj)]). Since s; is a successor of s, S'br-_-g[Tr""l(s;b)] for some j. Hence,

Finally, we must show that Tr,,_l(sj-o) corresponds to some Tr,_,(s;). Since sE=F[Tr,(s')],
sk= AEX?[Trn_l(sj-)]. Since sjo is a successor of s/, sF= EX?F[Tr,,_l(s;b)]. Therefore, there exists an f, such
J
that S, =9 Tr,,_l(sjo)]. Hence, Tr,,_l(s,-o) =Tr,- l(sj-o) by our inductive hypothesis. O

Lemma 8: If 5 is a state in a Kripke structure M, then there is a CTL formula, C(M,s) that determines s up
to E-equivalence within M, i.e. C(M,s) is true in s and every state in M that is E-equivalent to s but false in
every state in M that is not equivalent to s.

Proof: We choose C(M.5)=F[Tr.(s)] where c is the characteristic number ot; M. C(M,s) is true in 5 and
hence in all states E-equivalent to s. Let s’ be a state that is not £-equivalent t0's; then Tr.(s)ZETr . (s7).
Hence, by lemma 7, s’ k= C(M.s). O

Theorem 9: Given a Kripke structure M with initial state s, there is a CTL formula F(M.s) that
characterizes that structure up to E-equivalence, i.e. M’ sy = F(M.s) = s Es.

Proof: For any state s in M. lets,, ... s, be the successors of 5. We define
G(M.s) = AG(C(M.5) = AEX C(M.s) A AXV C(M.5))
! i
G (M.s) describes all of the possible transitions from s. F(M.s,) is the formula C(3.5) A AG(Ms). If two
5

structures .5, and M’.s, are equivalent then by thcorem 2 they satisfy the same formulas. Since

M.sy k= F(M.5), so does M’ 5.

For the other direction we show by induction on n that if M’ 5o F= F(M.s,) then Tr () =Tr(s)) for all '

n2 0. By lemma 4, the two structures are then E-equivalent. O

Corollary 10: Given two structures M and M’ with initial states s, and s, respectively, 5, £s) if and only if
VieCTL M5 =fo M s, =11 _

Corollary 11: Given two structures M and M’ with initial states s, and s} respectively, if there is a formula
of CTL" that is true in one and false in the other, then there is also a formula of CTL that is true in the one

and false in the other.

We illustrate our method of characterizing Kripke structures with the example in figure 3-1.

%

' -’
Figure 3-1: A Kripke structure in which every other state is labélled A4

The characteristic number of this structure is 1, since Try(s) 2 Try(s,), Try(s,) 3= Tri(sy), and Tr,(s5) 2 Tr,(s).
Let

e C(M s5)=aA ~bAEX(aA =) AEX(ma A b) AAX(@A =bV maAb)

o C(M.s)=aA =bAEX(@A =b) A AX(a A =b)

10

o C(Ms,)==aA bAEX(aA —~b) A AX(a A D)
We can now state the formula that characterizes this structure:

AM.s,) = C(M.s) A
AG(C(M.5)= EXC(M.5)) A EXC(M.5) A AX(C(M,5) V C(M.5))) A
AG(C(M.s) = EXC(M.5) A AXC(M.5)) A
AG(C(M.s) = EXC(M.5) A AXC(AM.5,)

4. Equivalence With Respect To Stuttering
We first define what it means for two Kripke structures to be equivalent with respect to stuttering. Given
two structures A and M’ with the same set of atomic propositions, we define a sequence of equivalence

relations £y, E,,... on SXS’ as follows:

e sE,s’ if and only if L(s)=L(s").

esE, . s’ ifand only if

1. for every path # in M that starts in s there is a path #/ in M’ that starts in s/, a partition
BB,... of m, and a partition B{ B} ... of #” such that for all jeN, B; and B} are both
non-empty and finite, and every state in Bj is E,-related to every state in Bj, and

2. for every path o/ in M’ starting in s’ there is a path = in M starting in s that satisfics the
same condition as in 1.

Our notion of equivalence with respect (o stuttering is defined as follows: sEs’ if and only if sE, ;s forall

i20. Furthermore, we say that M with initial state s, is equivalent to M’ with initial state s; if 5 £ s5.

Lemma 12: Given two Kripke structures M and M, there exists an [such that VsV s’ [sE;s! iff sSEs’]

Proof: By the definition of E;,,, sE;, s’ =sE;s’,s0 E,2D E DE,.... Since M and M’ are both
finite, E, must be finite as well, so only a finite number of these containments can be proper. Let E; be the
last relation that is properly included in £)_,. By the definition of proper containment, Vmz1 [E;= E,] s0
sEis’ =sE,s’, for m21. Since sEjs’ =sE_ s’ =sE,_,s’ ..., we have SEis' = Vm(sEys’], so

sE;s’ = sEs’. The other direction is trivial. [J
, » . .
Theorem 13: If sEs’, then for every CTL formula f without the nexttime operator, s#= f iff s/ F=f.

The proof is similar to that of theorem 2.

Lemma 14: Given a Kripke structure M, for every state se M, there is a CTL formula C(M,s) such that
VieM1E=C(Ms)iff sE1).

11

Proof: Ve will prove by inducton on f;

o If —(sf;i), then there is a CTL formula dj(st) such that VveM[sE[v= vE=di(st)] and
(= d(s,t).

»

e For every state se M, there is a CTL formula C;(M.s) such that for every te M, tF=C/(Ms) iff
SE[I.

di(st) is a formula that distinguishes betwcen ¢ and states equivalent to s within the structure M, and

C,(M.s) is a formula that characterizes Ej-equivalence to state s within M.

If we let C,(M.s) be a conjunction of C,_, (M,s5) and dj(s,7) for every ¢ that is not E;-related to s, the second
assertion follows easily. By lemma 12, this condition implies that the lemma is true. Now it is necessary to

show how to construct d,(s,/) by induction on /

Basis (1=0): Let {p;} be the set of atomic propositions in L(s) and {g,} be the set of atomic propositions in
AP=L(s). Now, let
Co(M.5)=dy(s)= ApAA g,
It is clear that this formula ;s onlyjtrue in states with the same labelling of atomic propositions as s. Therefore,

the base case is established.
Induction: Assume that the result is true for . We will show it for /+ 1.

Since =(sE,., #), either there is a path from s without a corresponding path from ¢, or vice versa. In the
latter case, we will use the argument below to find a d; ., (15) such that (=4, (15) and sF= dj,,(1.5). We

can negate this formula to get the desired 4, (s.0).

If there is a path from s without a corresponding path from 1, we can divide this path into blocks (B8,5,...)
such that:
Vilxe B;= x k= C/(M firsu(B;))and first(B,) b= C;(M.first(B;))].
Now, there are two cases: either there is a finite path from one state without a corresponding path from the
other, or there is an infinite path without a corresponding path, but every finite prefix of this path has a

L4

corresponding path. .\

In the first case, the path from s is finite, so the blocks are finite and there are only a finite number of them

(say n). Consider the CTL formula:

dy . (5.0)=Cy(M first(B,)) A E[C,(M first(B,)) U C;(M first(B,)) AE[... U CyM.first(B,))]...]
Itis clear that sE=d), ,(s.1) along the path B, B, ... B,. However, if =4, (s.t) then there is a path that can
be partitioned into blocks B{ B} ... B} such that Vi[ve Bi= vE=C (M first(B))]. Since every state in B,

12

satisfics C (M first(53;)), the inductive hypothesis and the definition of £, gives 8,17, B4. Therefore, this path

from ¢ corresponds (o the path fron s, a contradiction. We conclude that k= d;, (s.1).

In the sccond case, we start by showing that the path from s has only a finite number of blocks by using an
argument based on Konig's lemma. We can construct a tree rooted at ¢ such that «, . .. 1, is a path through
the trec if and only if there is a path in the Kripke structure fu, ... uphyv, ... vgh ... 1, that corresponds to a
prefix of the path from s with B] =<w, ... u,>, B} =<fv ... v,> and so on. Now, if the path from s has an
infinite number of blocks, this tree must have an infinite number of nodes. Otherwise, if the tree had n nodes,
there could be no path of length n+1, so the first n-+1 blocks of the path from s would have no
corresponding path from ¢ Since the Kripke structure is finite, we also know that this trec must be finitely
branching. Therefore, by Konig's lemma, there must be an infinite path through the tree. But this implies
that there is an infinite path from ¢ that can.bc divided into an infinite number of blocks that correspond to
the blocks of the path from s, so there is a path from ¢ corresponding to the path from s, violating our

assumption. Therefore, the path from s has only a finite number of blocks.

So, suppose that there are n blocks, all of which are finite except the last. Consider the CTL formula:
dp oy (5.0)=C(M first(B,) A E[C/(M.first(B,)) U C(M.first(B,)) AE[... UEG C/(M.first(B,))]. . .]
[tis clear that sk=d; (s/) along the path BB, ... B,. However, if tF=d,_,(s.) then there is a path that can
be partitioned into blocks B]Bj...8% such that all of the blocks are finite except B4 and
Vi [ve B} = vI=C/(M.first(B;))). Since every state in B, satisfies C,(M firsy(B;)), the inductive hypothesis and
the definition of E; gives B;E,B}. We can also divide the infinite blocks B, and B/ into an infinite set of
blocks containing one state each. Therefore, this path from 7 corresponds to the path from s, so we have a

contradiction. We conclude that 1k d;,(s,1).

Now, these d;,,(s.7) describe the existence or nonexistence of a single path along which some C; formulas
hold. By the definition of s £}, v, every path from s has a corresponding path from v along which the same C,

formulas hold and vice versa. Therefore, sE;,, v=vE=d,, (s1).

Therefore, the lemma is true. O

Theorem 15: Given a Kripke structure M with initial state 5 there is a CTL farmula F(M.s,) that
characterizes that structure up to £-equivalence with respect to stuttering, i.e. M’ sy = F(M.5) = $Es.

Proof: For any state s in M, let s,, ... Sp be the extended successors of s, where an extended successor is a
state that is not E-related to s and is reachable from s along a path consisting entirely of states that are

E-equivalent to 5. Next, we construct G(M,s), which describes all of the transitions from s in M. In this

13

construction, it is convenient to usc the weak until operator. Al Wel=—El-g U-f A —g], which differs from
the ordinary until in that it permits an infinitc path along which every state satisfics the first argument. SO
now: ¢

GO AE[C(M,s)U C(Ms)IN A[C(M.s) WV CMs)I A EG C(M.s) if sk= EG C(M.s)
7(Ms) = { i i
/'\E[C(M,s) U C(MsIA A[C(M.s) WVC(M.SI)] A —EG C(M.s) otherwise

i i

Let F(M.s,) be the formula C(M.55) A /}AG (C(M.s)= G(M.s)).
'ﬁ1e correctness of F(M.s,) is an casy consequence of the next two lemmas and L.heorem 13.0
Lemma 16; sE= F(M.s).
Lemma 17: If sk= F(M.1) an§ s’ = F(M,0), thep sEs’.

Proof of Lemma 16: Since every state is trivially equivalent t0 itself, sE=C(M.s) is true by lemma l4.
Therefore, if sk F(M.s) then there is a (e M such that skF= EF(C(M,I)/\“'G(M,I)). Let v be the state
reachable from s that satisfies C(M.DHA=G(M,1). By lemma 14, this condition implies tEv, so and v must
satisfy the same CTL formulas (theorem 13). We will show that (5= ~G(M.¢), giving a contradiction. There
are four cases. ’ |

1. (= E[c(M.0).U C(M,w)], for some extended successor of £, w. By the vdeﬁnition of extended
SUCCessor, there is a path from (to w and the states on this path are E-related to ¢ By lemma 14,
these states must satisfy C(M.1). Since wF C(M,w) is trivial, this path satisfies C(M.t)U C(M.w)

which is a contradiction.

7. (= EG C(M,1). Since EG C(M.t) is a conjunct of G(M.1) if and only if (= EG C(M.1), we have

an immediate contradiction.

3. (= ~EG C(M.1). Since EG —~C(M.t) is a conjunct of G(M.1) if and only if t#=EG C(M.t), we

have-an immediate contradiction.

4. 1= AlCM.) WYV C(Mow))). In this case, (= E[C(M.1) U(—C(M.O) A /1\-|C(M;wi))]. Let ;... 1,
1 .
be this path, where £, 1= ~C(M.0) A A =C(M.w;) and Vien[=C(M0} By lemma 14
1
~(t,E1) and Vi<n[t;E 1] Therefore, iy is an extended successor of & But since 1, = C(M.1,) is

wivially true, £, = /A ~C(M.w;) cannot be true, so we have a contradiction.
i

Therefore, the lemma is true. 0

14

Proof of Lemma 17: Since sEs’ if and only if s£;s’ for all {20, we will prove sk= (M) and

s’ = [7(M.1) implies s £;s” by induction on /.

Basis (1=0): Since. sk=F(M.1), sF=C(Mt) and therefore sk=Cy(M.r). Similarly, s/ F=Cj (M), so
L(s)=L()=L(s"). Therefore, sE;s’.

Induction: Assume that the result is true for . We will now show it for [+ 1.

We want to show that every path, =, from s has a corresponding path, #’ from s. (The proof of the dual is
identical.) We will use induction on the length of 7 to prove the slightly stronger result:
If |m|<n, then therc is a correéponding path =’ 'such that for some vel,
last(w) = F(M,v) and last(7 /) = F(M.v).
Basis (|w | =1): In this case, w =<s>. Let B,=<s>and 7’ = B{ =<s’ >. By the outer inductive hypothesis,
sk= F(M,t) and s’ = F(M.t) imply sE;s’, so B, E; B]. Therefore, the paths correspond. Since the last states
of each path satisfy F(M.,t), the base case is true.

Induction: Assume the result for |#|<n. Suppose that m=ss5,...s, a path of length n+1. Now,
55,5, .. . S4—y is a path of length n, so by the inner inductive hypothesis, there is a corresponding path #/ such
that last(#’) = F(M.,v) and s,.,F=F(M,v) for some ve M. Let BB,...B, and B{B;... B, be the

partitions that show that these paths correspond. There are three cases.

L 5, = C(M,v). Since s5,., = F(M,v), wecan infer that s,., F= A[C(M,») WV C(M,w,;)], where w; are the

i
extended successors of v. Since s,_,s, is a path and s, that doesn't satisfy C(M,v), we conclude that there must
be an extended successor of v, x, such that s, = C(M.,x). Since s, is a successor of s,..,, it must satisfy all of

the AG formulas that s, satisfies, so s, = F(M,x).

From last(w’) = F(M,v) we can infer that last(n’) = C(M,v)AE[C(M,v) U C(M,x)]. Therefore, there is a
path 515} ... 5% where 5] =last(n’), Vi<k [sj = C(M.,v)], and s E=C(M.x). Now let w=B,... B,<s,> and
7/ =B ... Bl <Bp.5y ... 5= X5 >, Since s, and si both satisfy F(M.x), the outer induction
hypothesis gives <s,> E;<s}>. Similarly, since the all the states in B,,,B%,, and <s} ... s}, satisfy F(M,v),
they are all E; related to each other. Therefore, # and =’ correspond Wjth last(w) = F(M.x) and

lasi(w’) = F(M.x).

2. 5, =C(M,v) and vF=EG C(M,v). Since s, must satisfy the same AG formulas as s,.,, s,F= F(M,v).
Now, last(#’) = F(M,v), so last(w’) = EGC(M,v). Therefore, last(#’) must have a successor, sy, which also
satisfies C(M,v). Since this statc must also satisfy all of the AG formulas, s; F= F(M,v). Therefore, by the

outer induction hypothesis, s, E;5{. So if welet B, =<s;> and B/, ., =<s{>, the paths correspond.

15

3. s,=C(My)and vB= EG C(M.v). By the rcasoning above, SpF=I(Mv), s0 s, I/ lasy(B’ m). Therefore, o

corresponds to #” with the same partition except that s, is added to B,,,

We must also show that the blocks of the partitions are finite. The only problem is case 3, in which we
might add an infinite number of states 0 a block of 7. In this case, each of the states added to B, satisfy
F(M,v), so if we add an infinite number of states to this block first(3) F= EGC(M,v) must be true. Butsince
first(B,,) = F(M,v), firsy B,,) = ﬂEGC(M v), so we have a contradiction. Therefore, all of the blocks of the

partition must be finite.
Therefore, the lemma is true. [J

Corollary 18: Given two structures M and M’ with initial states s, and s; respectively, 5, E's; if and only if
for all CTL" formulas Swithout the nexttime operator, M.s, l=f«= M s§ =f.

Corollary 19: Given two structures M and M’ with initial states s, and sy respectively, if there is a formula
of CTL" without the nexttime operator that is true in one and false in the other, then there is also a formula of

CTL without the nexttime operator that is true in the one and false in the other.

5. Algorithm For Stuttering Equivalence

[n this Section we show how to compute the relation for equivaleﬁcc with rcspectvto stuttering for states
within a single Kripke Structure M. The method that we suggest is polynomial in the number of states of M.
To determine equivalence between states in two different Kripke structures M, and M,, we form a Kripke
structure M), that is the disjoint union of these structures and check equivalence between the corresponding
states in the combined structure.

We construct a relation C on SX.S that is identical to the relation £ defined in Section 4. C=11C, where
: n

C, is defined as follows:
oGy ={(ss")| L(s)=L(s")}

¢ In order to define C,, , we must first define the set NEXT,,, (s) of extended successors of 5. We
define this set in terms of the set ST, (s) of swtering states of 5. ST, , (s) = USTﬁH(s)
where, v

o ST, (s) = {s}
o STEY1(s) = STX, (s) U {s’ | s’ €ST H(s)/\3:”€ST"+1(S)[S”—>S’]/\S C,s}
NEXT,, (s) = {s’ | s’ ¢ST,, (s) A 35 €ST, . (s)s”" —s']}

We will also use a predicate I.OOP,(s) that is true iff there is a cycle containing only states in
ST, (s).

16

Now we can define C,, | as follows:

Cpyy = {(s5") | LOOP,, (5)=LOOP,, (s') A sC,s" A
Vs eNEXT,, (5)ds] e NEXT,, (s)5, C,s{] A
Vs{ eNEXT,, (s)35, e NEXT,, (s)s, C, /]

Proof that the relation C constructed above is actually equal to the relation £ defined in Section 4 will be
given in the journal version of this paper. Since the inductive structures of the definitions of the two relations
are different, it is necessary to split the proof into two parts: the first part shows that EC_C; for every /. the

second part shows that CCE; for every i,

Computing ST, requires time O(|S|?). Computing C,,,, given C, requires time O([S[*), since at most |S|?
pairs of states must be checked and each pair requires O(|S|? time to check. The algorithm terminates as soon
as Cp = (- Since at any previous step &, [Cy,,| < |C;| and since C, has at most | S|? pairs of states, there

are at most | S|* steps in the construction of C. It follows that the complexity of the entire algorithm is O(|S|%).

If we replace each equivalence class of C by a single state, this algorithm can also be used to minimize the

number of states in the structure.

6. Conclusion

The results of our paper have a number of surpfising implications. For example, if a specification of a finite
state concurrent program in CT L' is sufficiently detailed so that there is only one program (modulo one of
our notions of equivalence) that meets the specification, then an equivalent specification couid have been
written in CTL instead. Another surprising consequence is that if a CTL" formula is not equivalent to any
CTL formula, then it must have an infinite number of mutually inequivalent finite models. To see that this
result is true, we first observe that since CTL" has the finite model property, it must be the case that if two
CTL" formulas have the same finite models, they must have the same infinite modeis as well. Otherwise, if £
had an infinite model M that was not a model of f, f; A =f, would have an infinite model, but no finite
models, contradicting the finite model property of CTL® [5]. Therefore, we can characterize a CTL" formula
by the set of finite models in which it is satisfied.. If a CTL" formula is satisfied by only a finite number of
equivalence classes of finite models, then the formula is equivalent to the disjuctiop of the CTL formulas that

’

characterize the individual equivalence classes.

There are a number of directions for further research. First, from our construction, it appears that the
characteristic formula of a Kripke structure might be quite large. It would be nice to have a lower bound on
the size of this formula in terms of the size of the Kripke structure. Also, we conjecture that the o(SI%
aigorithm in Section 5 can be improved significantly. Finally, it would be interesting to sce which of our

results carry over to Kripke structures with fairness constraints, i.e. Biichi automata.

17

References

L. M. Ben-Ar, A, Pnucli, Z. Manna. "The Temporal Logic of Branching Time". /ctu Informatica 20 (1983),
207-226.

1. EM. Clarke, E.A. Emerson. Design and Synthesis of Synchronization Skeletons using Branching Time
Temporal Logic. Proceedings of the Workshop on Logic of Programs, Yorktown-Heights, NY, Lecture Notes
in Computer Science # 131, 1981.

" 3. EM. Clarke, E.A. Emerson, A.P. Sistla. Automatic Verification of Finite-State Concurrent Systems using
Temporal Logic Specifications: A Practical Approach. Tenth ACM Symposium on Principles of
Programming Languages, Austin, Texas, 1983, pp. 117-126. :

4. E.A, Emerson, J.Y. Halpern. "Sometimes” and "Not Never” Revisited: On Branching versus Linear Time
Temporal Logic. Proceedings of the ACM Symposium on Principles of Programming Languages, Association
for Computing Machinery, Austin, Texas, January, 1982. to appear in JACM.

5. E. A. Emerson and P. Sisda. Deciding Full Branching-time Logic. The Sixteenth Annual ACM
Symposium on Theory of Computing, Association for Computing Machinery, Washington, D.C., May, 1984.

6. S. Grafand J. Sifakis. From Synchronization Tree Logic to Acceptance Model Logic. LNCS Vol, 193
Logics of Programs, 1985.

7. M. Hennessy and R. Milner. On Obscrving Nondeterminism and Concurrency. LNCS Vol. 85, 7th
ICALP, 1980.

8. G.E. Hughes and M.J. Creswell. An [ntroduction to Modal Logic. Methuen and Co., 1977.

9. L. Lamport. "Sometimes” is Sometimes "Not Never”. Seventh Annual ACM Symposium on Principles of
- Programming Languages, Association for Computing Machinery, Las Vegas, January, 1980, pp. 174-185.

10. L. Lamport. What Good is Temporal Logic? Proceedings of the International Fedcrauon for
Information Processing, 1983, pp. 657-668.

I1. O. Lichtenstein and A. Pnueli. Checking that Finite State Concurrent Programs Satisfy Their Linear
Specification. Conference Record of the Tweith Annual ACM Symposium on Principles of Programming
Languages, New Orleans, La., January, 1985.

12. R. Milner. Lecture Notes in Computer Science. Volume 92: A Calculus of Communicating Systems.
Springer-Verlag, 1979.

13. B. Mishra and E. Clarke. "Hierarchical Verification of Asynchronous Circuits using Temporal Logic".
Theoretical Computer Science 38 (1985), 269-291 .

14. Z. Manna, P. Wolper. "Synthesis of Communicating Processes from Temporal Logic Specifications”.
ACM Transactions on. Programming Languages and Systems 6 (1984), 68-93. .

15. A. Pnueli. Linear and Branching Structures in the Semantics and Logics of Reactive Systems.
Proceedings of the 12th [CALP, 1985. Lecture Notes in Computer Science # 194, Springer- Verlag.

16. A.P. Sistla, EM. Clarke. "Complexity of Propositional Linear Temporal Logics". Journal of the
Association for Computing Machinery 32, 3 (July 1985), 733-749.

18

17. M.Y. Vardi. P. Wolper. An automata-theorctic approach to automatic program verification. Logic In
Computer Science, Cambrideg, Massachusetts, June, 1986 .
18. P. Wolper. Spccification and Synthesis of Communicating Processcs Using an Extended Temporal Logic.

Ninth Annual ACM Symposiuin on Principles of Programming Languages, Association for Computing
Machinery, Albuquerque, New Mexico, January, 1982, pp. 20-33.

