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1. INTRODUCTION

In the traditional approach to concurrent program verification, the proof that a
program meets its specification is constructed by hand using various axioms and
inference rules in e deductive system such as temporal logic [9, 13, 15]. The task
of proof construction is in general quite tedious, and a good deal of ingenuity
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may be required to organize the proof in a manageable fashion. Mechanical
theorem provers have failed to be of much help due to the inherent complexity
of testing validity for even the simplest logies.

We argue that proof construction is unnecessary in the case of finite-state
concurrent systems, and can be replaced by a model-theoretic approach which
will mechanically determine if the systemn meets a specification expressed in
propositional temporal logic. The global state graph of the concurrent system
an be viewed as a finite Kripke structure, and an efficient algorithm can be
given to determine whether a structure is a model of a particular formula (i.e., to
determine if the program meets its specification). The algorithm. which we call
a model checker, is similar to the global flow analysis algorithms used in compiler
optimization, and has complexity linear in both the size of the structure and the
size of the specification. When the number of global states is not excessive (i.e.,
not more than a few thousand), we believe that our technique may provide a
useful new approach to the verification of finite-state concurrent systems.

Our approach is of wide applicability, since a large class of concurrent program-
ming problems have finite-state solutions, and the interesting properties of many
such problems can be specified in propositional temporal logic. For example,
many network communication protocols (e.g., the Alternating Bit Protocol [2])
can be modeled at some level of abstraction by a finite state system. A typical
requirement for such systems is that every transmitted message must ultimately
be received; this can easily be expressed in the logic we use.

Our specification language is a propositional, branching-time temporal logic
called computation tree logic (CTL) and is similar to the logical systems described
in [1], [3], and [4]. Since our goal is to specify concurrent systems, we must be
able to assert that a correctness property only holds on fair execution sequences.
It follows from the results of [4] and [5] that CTL cannot express such a property.
The alternative of using a linear time logic is ruled out because any model checker
for such a logic must have high complexity [18]. We overcome this problem by
moving fairness requirements into the semantics of CTL. Specifically, we change
the definition of our basic modalities so that only fair paths are considered. Our
previous model checking algorithm is modified to handle this extended logic
without changing its complexity.

Our paper is organized as follows: Section 2 contains the syntax and semantics
of our logic. In Section 3 we describe the basic model checking algorithm and
illustrate its use to establish absence of starvation for a solution to the mutual
exclusion problem. An extension of the model checking algorithm which only
considers fair computations is given in Section 4. Section 5 describes an experi-
mental implementation of the extended model checking algorithm and shows
how it can be used to verify the correctness of the Alternating Bit Protocol. In
Section 6 we consider extensions of our logic that are more expressive and
investigate the complexity of model checkers for these logics. The paper concludes
with a discussion of related work and remaining open problems.

2. THE SPECIFICATION LANGUAGE

The formal syntax for CTL is given below. AP is the underlying set of atomic
propositions.
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 2, April 1986.
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(1) Every atomic proposition p € AP is a C'TL formula.
(2) If fy and f> are CTL formulas, then so are T, A fe, AXSe, EXH, AR U 2,
and E[f, U f,].

The symbols A and — have their usual meanings. X is the nexttime operator;
the formula AXf (EXF,) intuitively means that f; holds in every (in some)
immediate successor of the current program state. U is the until operator; the
formula A[f, U L)E[f; U f5]) intuitively means that for every computation path
(for some computation path) there exists an initial prefix of the path such that
fo holds at the last state of the prefix and f; holds at all other states along the
prefix.

We define the semantics of CTL formulas with respect to a labeled state-
transition graph. Formally, a CTL structure is a triple M = (S, R, P) where

(1) S is a finite set of states.

(2) R is a binary relation on S(R C S x §) which gives the possible transitions
between states and must be total; that is, Vx € § 3y € Sl(x, v) € R].

(8) P:S — 2°7 assigns to each state the set of atomic propositions true in that
state.

A path is an infinite sequence of states (s0, 81, 82, ...) such that Vi[(s;, si,) €
R]. For any structure M = (S, R, P) and state s, € S, there is an infinite
computation tree with root labeled s, such that s — ¢ is an arc in the tree iff
(s, t) € R. Figure 1 shows a CTL structure and the associated computation tree
rooted at s,.

We use the standard notation to indicate truth in a structure: M, sp = f means
that formula f holds at state s, in structure M. When the structure M is
understood, we simply write s, = f. The relation = is defined inductively as
follows:

so = p iff p & P(sy).
So = f iff not(se = f).
soEfi A f iff sy f; and so = f,.
so = AXf iff  for all states ¢ such that (sy, t) € R, ¢ = fi.
so E EXf, iff for some state ¢ such that (se, t) € R, t k= fi.
so = Alf, U f3] iff for all paths (s, 51, ...),
Aiz0AsFLHLAV0=j<i—sEf].
so = Elfi Uf] iff for some path (s, 54, ...},
JWiz0AsELAV0s]<i-—sl=f].
We also use the following abbreviations in writing CTL formulas:

AF(f) = A[True U f] intuitively means that f holds in the future along every
path from sp; that is, f is inevitable.

EF(f) = E[True U f] means that there is some path from s, that leads to a
state at which f holds; that is, f potentially holds.
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So

(a) (b)
(a) A structure. (b) The corresponding tree for start state S,.

(@
®)

(c)
Fig. 2. (a) AGp: p is invariant. (b) AFp: p is inevitable. (c)

Fig. 1.

EG(f} = 7AF(—f) means that there is some
every state.

AG(f) = “EF(-f) means that
that is, f holds globally.

path from s, on which f holds at

f holds at every state on every path from sg;

Figure 2 shows how some

simple correctness properties would be represented
using these operators.
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Fig. 3. Global state transition graph for the two-process mutual exclusion problem.

The global state transition graphs of many concurrent programs can be modeled
as CTL structures. For example, Figure 3 shows the CTL structure for a simple
solution to the mutual exclusion problem for two processes P; and P,. In this
solution each process is always in one of three regions of code:

N; the Noncritical region,
T; the Trying region, or
Ci the Critical region.

Note that we only record transitions between different regions of code; moves
entirely within the same region are not considered at this level of abstraction.
Also, each transition is due to the execution of a step of exactly one process. It
is easy to see, in this case, that AF(C,) is true in state one and that EF(C; A C;)
is false in state zero.

3. MODEL CHECKER

Assume that we wish to determine whether formula f; is true in the finite
structure M = (S, R, P). We design our algorithm to operate in stages: the first
stage processes all subformulas of f, of length 1, the second stage processes all
subformulas of length 2, and so on. At the end of the ith stage, each state will be
labeled with the set of all subformulas of length less than or equal to i that are
true in the state. We let the expression label(s) denote this set for state s. When
the algorithm terminates at the end of stage n = length(fy), we see that for all
states s, M, s I= fiff f € label(s) for all subformulas f of f;.

We use the following primitives for manipulating formulas and accessing the
labels associated with states:

— argl(f) and arg2(f) give the first and second arguments of a two-argument
temporal operator; thus, if fis Al f; U fu], then argl(f) = f, and arg2(f) = fa.

— labeled (s, f) will return true (false) if state s is (is not) labeled with formula f.

~ add_label (s, f) adds formula [ to the current label of state s.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 2, April 1986.
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Our state labeling algorithm (procedure label_graph(f)) must be able to
handle seven cases, depending on whether fis atomic or has one of the following
forms: 1, /i A fo, AXf,, EXf,, Alf, U fol, or E[f; U f,]. We only consider the
case in which f = A[f, U f) here, since all of the other cases are either
straightforward or similar. For the case f=Alfi Uf.], our algorithm uses a depth-
first search to explore the state graph. The bit array marked[1: nstates] is used
to indicate which states have been visited by the search algorithm. ST is an
auxiliary stack variable introduced for the proof of correctness of the algorithm.
The boolean procedure stacked(s) indicates whether state s is currently on the
stack ST

procedure label_graph(f)
begin

{main operator is AU}
begin
ST := empty_stack;
for all s € S do marked(s) := false;
L: for all s € S do
if “marked(s) then aulf, s, b)
end

end

The recursive procedure au(f, s, b) performs the search for formula f starting
from state s. When au terminates, the boolean result parameter b will be set to
true iff s = f. The annotated code for procedure au is shown below:

procedure au(f, s, b)

begin

{Assume that s is marked. If s is already labeled with £, we set b to true and return.
Otherwise, if s is on the stack, then we have found a cycle in the state graph on which
argl(f) holds but f is never fulfilled (see Lemma 3.2 in Appendix 1). Thus we set b to false
and return. Otherwise, we have already completed a depth-first search from s, and [ is
false at s; so we must also set b to false and return in this case. Note that there is no need
to distinguish between the last two cases, since the action is the same in each case.}

if marked(s) then
begin
if labeled(s, f) then
begin b := true; return end;
b := false; return
end;

{Mark state s as visited. Let f = Alf U] If f, is true at s, f is true at s; so label s with !
and return true. If f; is not true at s, then f is not true at s; so return false.}

marked(s) := true;
if labeled(s, arg2(f)) then

begin add_label(s, f); b := true; return end
else if —labeled(s, argl(f)) then

begin b := false; return end;
{Now we know that f, is true at s and that f2 is not. Check to see if f is true at all successor
states of s. If there is some successor state s1 at which f is false, then fis false at s also;
hence remove s from the stack and return false, If f is true for all successor states, then f
is true at s; so remove s from the stack, label s with £, and return true. (We remind the
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reader that ST is an auxiliary variable which is used in the correctness proof given in
Appendix 1.)}
push(s, ST);
for all s1 & successors(s) do
begin
aulf, s1, b1):
if b1 then
begin pop(ST); b := false; return end
end;
pop(8T); add _label(s, f); b = true; return

end of procedure qu.

A formal proof of the correctness of this part of the algorithm is given in
Appendix 1. Assuming that the states of the graph are already correctly labeled
with f; and f,, it is easy to see that the above algorithm requires time O(card(S)
+ card(R)). The time spent by one call of procedure au, excluding the time spent
in recursive calls, is a constant plus time proportional to the number of edges
leaving the state s. Thus all calls to au together require time proportional to the
number of states plus the number of edges, since au is called at most once in any
state.

To handle formulas of the form f = Elfi U], we first find all of those states
that are labeled with f,. We then work backwards using the converse of the
successor relation and find all of the states that can be reached by a path in
which each state is labeled with f1. All such states should be labeled with f.
Formal proof of this case is left to the reader.

We next show how to handle CTL formulas with arbitrary nesting of subfor-
mulas. Note that if we write formula f in prefix notation and count repetitions,
then the number of subformulas of f is equal to the length of £. (The length of f
is determined by counting the total number of operands and operators.) We can
use this fact to number the subformulas of /. Assume that formula f is assigned
the integer i. If f is unary (ie., f = (op f1)), then we assign the integers i + 1
through i + length(f;) to the subformulas of fi. If f is binary (i.e., f = (op f1f2)),
then we assign the integers from i + 1 through i + length(f,) to the subformulas
of f; and i + length(f,) through i + length(f,) + length(f,) to the subformulas of
fo. Thus, in one pass through f, we can build two arrays nf[1:length(f)] and
sf[1:length(f)] where nf[i] is the ith subformula of f in the above numbering and
sf[i] is the list of the numbers assigned to the immediate subformulas of the ith
formula. For example, if f=(AUNOT X)(OR Y Z )), then nf and sf are given
below:

nf[1] (AU (NOT X) (OR Y Z)) sf[1] (2 4)

nfl2] (NOT X) sf12] (3)
nf[3] X s3] nil
nf[4] (OR Y Z) sfl4] (5 6)
nfl5] Y sf15] nil
nfl6] Z sf[6] nil
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Fig. 4. Global state transition graph after termination of the model checking algorithm.

Given the number of a formula f we can determine in constant time the
operator of f and the numbers assigned to its arguments. We can also efficiently
implement the procedures “labeled” and “add _label”. We associate with each
state s a bit array L[s] of size length( /). The procedure add _label(s, fi) sets
Lis][ fi] to true, and the procedure labeled(s, f7) simply returns the current value
of L{s]| fi].

In order to handle an arbitrary CTL formula /, we successively apply the state
labeling algorithm described at the beginning of this section to the subformulas
of f, starting with simplest (i.e., highest numbered) and working backwards to .

for fi .= length(f) step — 1 until 1 do
label_graph ( fi);

Since each pass through the loop takes time Ofsize(S) + card(R)), we conclude
that the entire algorithm requires O(length(f) % (card(S) + card(R))).

THEOREM 3.1. There is an algorithm for determining whether a CTI, formula f
is true in state s of the structure M = (S, R, P) which runs in time O(length(f) x
(card(S) + card(R))).

We illustrate the model checking algorithm by considering the global state
graph for the solution to the two-process mutual exclusion problem given in Figure
3. In order to establish absence of starvation for process 1, we consider the CTI,
formula T, — AFC; or, equivalently, -7, v AFC,. In this case the set of
subformulas containg Tl V ARG, =Ty, T, AFC,, and C,. The states of the
global transition graph will be labeled with these subformulas during execution
of the model checking algorithm. On termination, every state will be labeled with
7Ty V AFC, as shown in Figure 4, Thus we can conclude that s, = AG(T, —
AFCy). Tt follows that process 1 cannot be prevented from entering its critical
region once it has entered its trying region.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 2, April 1986.
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4. INTRODUCING FAIRNESS INTO CTL

in verifying concurrent systems, we are occasionally interested only in correctness
along fair execution sequences. For example, with a system of concurrent pro-
cesses, we may wish to consider only those computation sequences in which each
process is executed infinitely often. When dealing with network protocols where
processes communicate over an imperfect (or lossy) channel, we may also wish
to restrict the set of computation sequences; in this case the unfair execution
sequences are those in which a sender process continuously transmits messages
without any reaching the receiver due to erratic behavior by the channel.

Roughly speaking, a fairness condition asserts that requests for service are
granted “sufficiently often.” Different concepts of what constitutes a “request”
and what “sufficiently often” should mean give rise Lo a variety of notions of
fairness. Indeed, many different types of fairness and approaches to dealing with
them have been proposed in the literature; we refer the reader to [8, 11,12, 17)
for more extensive treatments.

In this section we show how to extend the CTL mode] checking algorithm to
handle a simple but fundamental type of fairness in which certain predicates
must hold infinitely often along every fair path. In this case it follows from [5]
that correctness of fair executions cannot be expressed in CTL. In fact, CTL
cannot express the property that some proposition @ should eventually hold on
all fair executions.

In order to handle fairness and still obtain an efficient model checking
algorithm we modify the semantics of CTL. The new logic, which we call CTLF,
has the same syntax as CTL. But a structure is now a 4-tuple (S, R, P, F)y where
S, R, P have the same meaning as in the case of CTL and F is a collection of
predicates on S, that is, & C 25 A path p is F-fair iff the following condition
holds: for each g € F, there are infinitely many states on p which satisfy predicate
g CTLY has exactly the same semantics as CTL, except that all path quantifiers
range over fair paths.

LEMMA 4.1. Given arty finite structure M = (S, R, P), collection F = {@, . . . Gyl
of subsets of S, and state s, € S the following two conditions are equivalent:

(1) There exists an F-fair path in M starting at s,.

(2) There exists a strongly connected component C of (the graph of) M such that
(a) there is a finite path from s, to a state t € C, and
(b) for each G; there is a state LteCnaG,.

PROOF. (1) = (2). Suppose the F-fair path sy, sy, 85, . . . exists in M. Then for
each G; there is a state ¢; € G; for which there exist infinitely many s; that are
equal to £;. So for each pair t,, ¢; there is a path (which is some finite segment of
the original path) from ¢ to t;. It follows that all the ¢ lie in the same strongly
connected component C of M. Certainly, there is a path from Sp to some node ¢
€ C (take 1 = ¢,). Moreover, by the choice of the i, each t; € C N G;. Thus C is
the desired strongly connected component of (2),

(2) = (1). Suppose the strongly connected component C exists in M. Then
finite paths of the following forms are also present in M: (so, ..., t;), (¢4, ..., ta),
o o Ulesgs & v B, 00 (o o t1). We then concatenate these finite paths to get
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{i])atl]:s,;},...,t],...,t-_z,...,lk,...,tl,...,tg,..A,t,t;,...,t’.],...,t::,...,tk,
.... This path certainly starts at s,. Moreover, for each i there are infinitely
many occurrences of ¢; € G, along it. Thus this path is F-fair. [

We next extend our model checking algorithm to CTLF. We introduce an
additional proposition @, which is true at a state iff there is a fair path starting
from that state. This can easily be done by obtaining the strongly connected
components of the graph denoted by the structure. A strongly connected com-
ponent is fair if it contains at least one state from each G, in F. By the above
lemma every state in a fair strongly connected component is the start of an
infinite fair path. Thus we label a state with @ iff there is a path from that state
to some node of a fair strongly connected component.

As usual, we design the algorithm so that after it terminates each state will be
labeled with the subformulas of f, true in that state. For checking only fair paths,
we consider the two interesting cases where f € sub(f,) and either f = E[/, U f,]
or f= A[f, U f,). We assume that the states have already been labeled with the
immediate subformulas of f by an earlier stage of the algorithm.

(i) f= E[/, Uf]. fis true in a state iff the CTL formula E[f, U (f, A Q)] is true
in that state, and this can be determined using the CTL model checker. Note
that since fair paths are infinite, the path satisfying f cannot simply stop
with the state satistying f,. Again, state s is labeled with fiff f is true in that
state.

(1) /= Alf1 Ufs]. It is easy to see that A[f; U fo] = ~(E[~f U (mf; A fs)] V
EG(£.)). For a state s we can easily check if s = E[f, U (7f; A —f;)] using
the previous technique. To check if s = EG(—f.), we use the following
procedure. Let Gr be the graph corresponding to the above structure. From
G eliminate all nodes v such that f, € label(v) and let G4 be the resultant
labeled graph. Find all the strongly connected components of G} and mark
those which are fair. If s is in (% and there is a path from s to a fair strongly
component of G, then s = EG(7.); otherwise, s = 7 EG(—f,). As in (i), S is
labeled with fiff f is true in s.

If n = max(card(S), card(R)), m = length(f) and p = card(F), then it is not
difficult to show that the above algorithm takes time O(n X m x p).

An obvious question is whether our approach can handle the various types of
fairness that occur in practice. In [12], three different types of fairness properties
have been identified as being particularly useful: these are called impartiality,
Justice, and fairness. We argue below that the first two of these properties can be
handled by the version of the model checker that is described above and currently
implemented. We also argue that the third property can be handled by an
extension of the above ideas which we have not yet found necessary to implement.

Impartiality requires that every process should be executed infinitely often. To
deal with this property we view an execution of a system Pr of concurrent
processes as some interleaving of the execution steps of the individual processes.
We model a system of processes by a structure (S, R, P) and labeling function
L:R — Pr, where S is the set of global states of the system, R is the single-step
execution relation of the system, and for each transition in R, L gives the process

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 2, April 1986.



254 . E. M. Clarke et al.

that caused the transition. By duplicating each state in S at most card(Fr) times,
we can model the concurrent system by a structure (S*, R*, P*, I}, in which each
state in S* is reached by the execution of at most one process, and F is
partitioning of S* such that each element in F is the set of states reached by the
execution of one process; thus card(F) = card(Fr). The fair paths of the above
structure correspond exactly to the impartial execution sequences of the system
of processes.

A computation is said to be just if every process is either infinitely often
disabled or else it is infinitely often executed. Let d, hold in a state iff process i
is not enabled in that state and let ¢, hold in a state iff that state is reached by
an execution of process i. It follows that a path is just iff for each process i the
state predicate (d; V e;) holds infinitely often on the path. Thus we see that
justice can also be directly handled by the version of the model checking algorithm
described above.

A computation is fair iff, for each process, if the process is infinitely often
enabled, then it will be infinitely often executed. Our current system does not
handle this property; however, it could easily be modified to do so. We sketch
below the changes that are necessary, and refer the reader to | 7] for details. First.
we must once again change our definition of a CTL structure. A structure will
now be a 4-tuple (S, R, P, F) where S, R, and /* have the same meaning as above;
however, F will now consist of a collection of pairs of the form (p, g) where D, q
are predicates. We say that a path is fair with respect to (p, q) if, whenever p
holds infinitely often on the path, then ¢ also holds infinitely often on the path.
A path is fair iff it is fair with respect to every pair (p, ¢) in F. The semantics of
the new logic is the same as CTL except that all path quantifiers range over
paths that are fair according to the new definition. The model checking algorithm
for CTL" given earlier in this section can be generalized to handle this notion of
fairness.

5. USING THE EXTENDED MODEL CHECKER TO VERIFY THE ALTERNATING
BIT PROTOCOL

In this section we consider a more complicated example to illustrate fair paths
and to show how the Extended Model Checking (EMC) system might actually
be used. The example that we have selected is the Alternating Bit Protocol (ABP),
originally proposed in [2]. Proofs of correctness of this protocol have been
constructed manually in [9] and [11]. We show, instead, how the EMC system
can be used to verify properties of this protocol automatically. The algorithm
consists of two processes, a Sender process and a Receiver process, which alter-
nately exchange messages. We assume (as in [16]) that messages from the Sender
to the Receiver are data messages and that messages from the Receiver to the
Sender are acknowledgments. We further assume that each message is encoded
so that garbled messages can be detected. Lost messages are detected by using
time-outs and are treated in exactly the same manner as garbled messages (i.e.,
as erroneous messages).

Ensuring that each transmitted message is correctly received can be tricky.
For example, the acknowledgment to a message may be lost. In this case the
Sender has no choice but to resend the original message. The Receiver must
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realize that the next data message it receives is a duplicate and should be
discarded. Additional complications may arise if this message is also garbled or
lost. These problems are handled in the algorithm of [2] by including with each
message a control bit called the allernation bit.

In the EMC system, finite-state concurrent programs are gpecified in & re-
stricted subget of the CSP programming language [10], in which only boolean
data types are permitted and all messages between processes must be signals.
CSP programs for the Sender and Receiver processes in the ABP are shown in
Appendix 2. To simulate garbled or lost messages we systematically replace each
message transmission statement by a (nondeterministic) alternative statement
that can potentially send an error message instead of the original message. *'hus,
for example, Receiver ! mess0 would be replaced by

[True — Receiver ! messO
Il
True — Receiver ! err]

A global state graph is generated from the state machines of the individual
CSP processes by considering all possible ways in which the transitions of the
individual processes may be “wiorleaved. Since construction of the global state
graph is proportional to the product of the sizes of the state machines for the
individual processes, a simple (correctness-preserving) state minimization algo-
rithin is employed to reduce the number of states in the graph. Explicit construc-
tion of the global state machine can he avoided to save space by dynamically
recomputing the successors of the current state. The global state graph for our
version of the ABP has 251 states.

Once the global state graph has been constructed, the algorithm of Section 4
can be used to determine if the program satisfies its specifications. In the case of
the ABP we require that every dala message that is generated by the Sender
process is eventually accepted by the Receiver process:

1. AG(RevMsg —» A[RevMsg U (—RevMsg A A[RevMsg U SndMsg])])

9. AG(SndMsg A Smsg —» A[SndMsg U (—SndMsg A A["SndMsg UJ RevMsg A
RmsgD1)

3. AG(SndMsg A "Smsg — A[SndMsg U (mSndMsg A A|SndMsg U RevMsg
A —Rmsg])1).

The formulas imply that sending a message (SndMsg) strictly alternates with
receiving a message (RevMsg), and that if a 0-message (1-message) is sent, then
a 0-message (1-message) is received. The conjunciion of the formulas is not true
of the global state graph obtained from the ABP because of infinite paths on
which a message is lost or garbled each time that it is retransmitted. For this
reason, we consider only those fair paths on which the initial state occurs
infinitely often. With this restriction the algorithm of Section 4 will correctly
determine that the state graph of {he ABP satisfies its specification. See
Appendix 3.

The EMC system is written in a combination of Lisp and C, and has been fully
operational since January of 1982. Recently, a counterexample facility has been
added. When the model checker determines that a formula is false, it will attempt
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to find a path in the graph which demonstrates that the negation of the formula
is true. For instance, if the formula has the form AG(/ ), our system will produce
a path to a state in which —f holds. This feature is guite useful for debugging
purposes.

6. EXTENDED LOGICS

In this section we consider logics that are more expressive than CTL and
investigate their usefulness for automatic verification of finite-state concurrent
programs. CTL severely restricts the type of formula that can appear afier a path
quantifier—only single linear time operator, F, G, X, or U can follow a path
quantifier. We consider several natural ways of relaxing this restriction. In each
case we see that the resulting logic has a model checking problem of intractable
complexity (assuming P does not equal NP). We believe that this justifies our
decision to restrict our attention to C'TL and CTLS,

The first logic, CTL*, permits an arbitrary formula of linear time logic to
follow a path quantifier. We distinguish two types of formulas in giving the
syntax of CTL*: state formulas and path formulas. Any state formula is a CTL*
formula.

(state-formula) ::= (atomic proposition) | (state-formula) A (state-formula} |
—(state-formula) | E((path -formula))

(path-formula) ::= (state-formula) | (path-formula) U/ (path-formula) |
—(path-formula) | (path-formula) A (path-formula) |
X(path-formula) | F{path-formula)

We use the abbreviation Gf for =F —f and A( f) for mE —(f). We interpret state
formulas over states of a structure and path formulas over paths of a structure
in a natural way. A formula of the form E({path formula)) is true in a state iff
there is a path in the structure starting from that state on which the path formula
is true. The truth of a path formula is defined in much the same way as for a
formula in linear temporal logic if we consider all the immediate state subformulas
as atomic propositions [5].

More precisely, let M = (S, R, P) be a structure and p = (8o, 51, . - .) denote a
path in M; p"” will represent the suffix of p starting at s;.

The truth of a state formula is defined with respect to a state of M: s = E((path
formula)) iff there exists a path p in M starting from s such that (path formula)
holds at the beginning of the path, that is, p = (path formula). A state formula
of the form A((path formula)) is treated similarly.

The truth of a path formula is defined with respect to a path in M; for example,
if the path formula is f; U fz, we require that p = f; U f, iff there exist an i = 0
such that p® = f, and for all j such that 0 <j <4, pY = f1. If the path formula
is a state formula, then we require that p = (state formula) iff s, = (state
formula), where s, is the first state on p. The other cases are similar and are
omitted.

BT* denotes the subset of the above logic in which path formulas only use the
F operator. CTL' denotes the subset in which the temporal operators X, U, I
are not nested.
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of the following conditions must hold:
(a) Vs[marked(s) — [labeled(s, f) — s = 1] (from {16]}.
(b) Vs|marked(s) — |labeled(s, f) — s = —f]} (from [17, 18]).
1t follows that
Vs|marked(s) — [labeled(s, f) <> s =7l

Because of the for loop L in the calling program for au, every state will
eventually be marked. Thus, when loop L terminates, Vs[labeled(s, f) «> s = f]
must hold.

Proof of the inductive hypothesis is straightforward but tedious and is left to
the veader. The only tricky case occurs when the state s is marked and on the
stack. In this case procedure au simply sets b to false and returns. To see that
this is the correct action, we make use of the following observation:

LEMMA 3.2. Suppose there exists a path (si, 82, .+ -5 Smy sp) in the state graph
suchthat1 <k <mand Vil =ism-—sF —fa], then s, = Al fiL U fo].

APPENDIX 2. Alternating Bit Protocol
-= Alternating Bit Protocol

-~ Variables:

= exiti - A bit has been sent and acknowledged.

i exitZ - A bit has been received.

wE Smsg =~ The bit that was sent.

el Rmsg = The bit that was received.

== Labels:

. SndMsg - The previous message has been acknowledged and & new bit
- is ready to he sent.

i RcvMsg ~ A bit has just been received and the acknowledgement 18
ot ready to be sent.

== Signals:

e dmXY - Used to send bit X with control bit V.

o amX = Used to acknowledge a bit with control bit X.

- err - Used to indicate a scrambled message.

AB :: [

exitl, exit2, Smsg, Rmsg: bool;
SndMsg, RcvMsg: label;
dm00, dm01, dmi0, dmil, err, om0, ami: signal;
L
SND, RCV: process;

~-- Sending process

SND

-= Receilving process

RCV
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sSending Process

SHD :: [ *[ true ->
exitl := false;
== Randomly choose & bit to send.
[ true -> Smsg :® true
[]
true => Smsg :» false
bk
{{SndMsg>>
== Send a bit with control bit 0.
[ Smsg -> RCV 1 dmi0

1
~Smsg -> RCV | dm00

=~ Wait for acknowledgement of the message (am0).
== If any other signal 1s received, retransmit the
== data message.

*f ~exit1 => [ RCV 7 am0 => exitl := true

L)
RCV 7 ami => [ Smsg => RCV ! dmi0

[l
~Smsg => RCV | dm00 ]

[]
RCV 7 err => [ Smsg => RCVY | dmi0

[]
~Smsg => RCV | dm00 J

]
ik H
exitl := false;
== Randomly choose a bit to send.
[ true -> Smsg := true

[]

true -> Smsg := false

<25ndMsg>)
== Send a bit with control bit 1.
[ Smsg => RCV | dmii

€]
~Smeg => RCV | dm0i

== Wait for acknowledgement of the message (ami}).
== If any other signal is received, retransmit the
== data message.

®[ ~exitl => [ RCV ? aml => exiti := true

(]
RCV 7 am0 -> [ Smsg => RCV | dmii
(]
~Smgg => RCY | dm0i ]
L]
RCY 7 err => [ Smsg => RCV | dmii

(]
~Smag => RCV | dm0i J

]
]
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Receiving Process

RCV :: [ *[ true ->
oxit2 := Talse;
-~ Walt for a data message with control bit 0.
== If any other message is received, retransmit
== the acknowledgemant of the Tast message (ami).
[ ~exit2 ~> [ SND 7 dmi0 -> exit2 := true;
Rmsg = true

§
~

L]
SND 7 dm00

(]
SND 7 dmil => SND | ami

axit2 := true;
Rmsg := false

(]
SND 7 dm0i -> SNO | emi

|
SND 7 err => SND [ ami

<<{RevMsg>>
== Send & acknowledgement. At this point,
== Rmsg centaing the bit that was transmitted.
SND | am0;
exit2 := falise;
== Wait for a data message with control bit 1,
=~ If any other message is received, retransmit
== the acknowledgement of the lest message {am0).
°[ ~exit2 => [ SHD 7 dmil =-> exit2 := true;

Rmsg := true

[l
SND ? dm0i -> exit2 := true;

Rmsg := false

[]
SND ? dmi0 -> SHD | am0

[l

SND 7 dm0O => SKD | am0
{1

SHD 7 err ~> SND | am0

J:

{<RevMsg>>

== Send an acknowledgement. At this point,
== Rmsg contains the bit that was transmitted.
SND | ami
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APPENDIX 3. Transcript of Model Checker Execution

{Time is measured in 1/60 of a second. The first component measures total user
CPU time. The second component measures total system CPU time.}

% emc altbit.l
CTL MODEL CHECKER {€C version 2.0)

Taking input from altbit.1..,
Fairness constraint:

time: (318 32)

|= AG (RcvMsg -> A[RcvMsg U (~RcvMsg & Af~RcvMsg U Sndisg])]).
The equation 1s FALSE.

time: (390 44)

|= AG (SndMsg & Smsg -> A[SndMsg U (~SndMsg & A[~SndMsg U RevMsg & Rmsg])]).
The equation 1s FALSE,

time: (460 60)

= AG (SndMsg & ~Smsg-> A[SndMsg U (~SndMsg & A[~SndMsg U RevMsg & ~Rmsgl)]).
The equation {is FALSE.

time: (629 72)

[= (restart)

Fairness constraint: SndMsg.
Fairness constraint: RevMsg.
Fairness constraint: .

time: (683 76)

{= AG (RcvMsg -> A[RcvMsg U (~RcvMsg & A[~RcvMsg U SndMsg])]).
The equation 1s TRUE.

time: (506 79)

|* AG (SndMsg & Smsg ~> AfSndMsg U (~SndMsg & A[~SndMsg U Revisg & Rmsg])]).
The equation s TRUE.

time: (643 81)

I= AG (SndMsg & ~Smsg-> A[SndMsg U (~SndMsg & A[~SndMsg U RcvMsg & ~Rmsg])7).
The equation 1s TRUE, .

time: (694 83)

[= .

End of Session.
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