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Abstract. Compositional verification provides a way for deducing
properties of a complete program from properties of its constituents.
In particular, the assume-guarantee style of reasoning splits a specifi-
cation into assumptions and guarantees according to a given inference
rule and the generation of assumptions through machine learning makes
the automatic reasoning possible. However, existing works are purely
focused on the synchronous parallel composition of Labeled Transition
Systems (LTSs) or Kripke Structures, while it is more natural to model
real software programs in the asynchronous framework. In this paper,
shared variable structures are used as system models and asynchronous
parallel composition of shared variable structures is defined. Based on
a new simulation relation introduced in this paper, we prove that an
inference rule, which has been widely used in the literature, holds for
asynchronous systems as long as the components’ alphabets satisfy cer-
tain conditions. Then, an automating assumption generation approach is
proposed based on counterexample-guided abstraction refinement, rather
than using learning algorithms. Experimental results are provided to
demonstrate the effectiveness of the proposed approach.

1 Introduction

Compositional verification provides a way for deducing properties of a complete
program from properties of its constituents and it is a promising technique to
address the state explosion problem. In particular, the assume-guarantee rea-
soning splits a specification into assumptions and guarantees [1]. A typical rule
for assume-guarantee reasoning has the form of 〈ϕ〉P 〈φ〉, where the assumption
ϕ constrains the behavior of the environment and the guarantee φ specifies the
behavior of the component P when ϕ is ensured. The rule means that in any
execution where the environment behaves according to ϕ, it is guaranteed that P
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behaves according to φ. For example, the following inference rule was proved in
[2] for synchronous composition of Kripke Structures against properties ACTL*.

M1 ‖ A |= G (〈A〉M1〈G〉)
M2 � A (〈〉M2〈A〉)

M1 ‖ M2 |= G (〈〉M1 ‖ M2〈G〉) (1)

To prove that M1 ‖ M2 |= G, where ‖ denotes the synchronous parallel com-
position operator, it is first to show that G is satisfied in M1 ‖ A, assuming
that its environment satisfies the assumption A. Then, the assumption A will
be discharged on the other component M2 by checking if M2 � A, where � is a
strong simulation relation between two components. If the assumption is much
smaller than M2, checking M1 ‖ A |= G and M2 � A might be more efficient
than directly checking M1 ‖ M2 |= G.

However, in earlier works, human intervention was required to get an as-
sumption satisfying an assume-guarantee rule. As it requires the interaction
with an expert user, devising a proper assumption is not easy, even if not im-
possible, to accomplish for nontrivial verification problems. The pioneering work
[3] presented an automatic assume-guarantee reasoning framework, in which the
weakest assumption [4], represented as a finite-state automaton, is automati-
cally learned using the L* algorithm [5]. Since then, the problem of generating
assumptions automatically has been extensively studied.

Prior work can be categorized according to the following three dimensions:
system model, compositional pattern and learning algorithm used.

– System Model. Most of existing works [3,6,7,8,9,10] use Labeled Transition
Systems(LTSs) as system models. In [11],Kripke Structures are used instead.

– Compositional Pattern. Existing works are focused purely, as least as we
know, on the synchronous composition of LTSs or Kripke Structures. For
LTSs, synchronous composition1 usually allows the non-common actions be-
tween parallel components to be interleaved, while the executions of common
actions must be synchronized [3,6,7,8,9,10]. Similarly, all components are
forced to make transitions simultaneously in the synchronous composition
of Kripke Structures [11].

– Learning Algorithm. As only safety properties are considered in most of ex-
isting works, the assumptions can be modeled as finite state automata and
the L* algorithm and its variants are used for learning a regular set through
membership and equivalence queries [3,6,7,8,9,10]. As a Kripke Structure
is normally defined through its initial and transition predicates, the CDNF
algorithm [12] is employed to learn Boolean functions in [11]. The CDNF
algorithm can exactly learn a Boolean function by continuously asking mem-
bership and equivalence queries to a teacher, who can precisely answer every
query.

1 It should be noted that some authors called it as asynchronous composition of LTSs.
In this paper, we only think a definition allowing interleaving on common actions as
an asynchronous composition.
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In this paper, for asynchronous systems, we propose an alternative approach for
the automatic assumption generation based on predicate abstraction and inter-
polation, instead of using learning algorithms. That we are focused on asyn-
chronous systems here is because real software programs are more naturally
modeled as asynchronous systems, while synchronous models are more amenable
to hardware systems. A concise example will be provided in the next section to
demonstrate the differences between synchronous and asynchronous composi-
tions. On the other side, the reason we propose an alternative to traditional
learning-based approaches is that learning algorithms normally have a very high
computational complexity. The running time of L* is bounded by a polynomial
of n and m [5], where n denotes the number of states of the target automaton
and m denotes the length of the longest counterexample, and CDNF bounded by
a polynomial of the minimal CNF and DNF size of the target formula. However,
in the assume-guarantee reasoning of asynchronous systems, the parameter n
and the minimal CNF or DNF size are exponential in the number of global and
local variables in the worst case.

The contribution of our paper is the following. First, we prove that the infer-
ence rule (1) holds for asynchronous systems with a redefined simulation relation
between two components. The standard simulation relation in assume-guarantee
reasoning, such as [9,10], is defined as the inclusion of trace languages, implying
that, if M1 � M2, the projection of every behavior of M1 on the alphabet of M2

is also a behavior of M2. Under the asynchronous circumstances, the trace lan-
guage inclusion induced simulation relation will be not monotonic with respect
to the parallel composition operator, i.e. M1 � M2 �⇒ M1 ‖ M3 � M2 ‖ M3,
which is essential for proving the inference rule (1), as a component can transit
to an arbitrary state because of jumps in which shared variables are modified by
other components while local variables are left untouched. The simulation rela-
tion introduced in Section 3 requires that the simulation relation is maintained
between two components even if they make jumps, rather than real transitions.

Second, a method automating the assumption generation is proposed. The as-
sumption A starts with the coarsest predicate abstraction, which is defined over
a set of predicates over variables ofM2, such thatM2 � A. Then, the assumption
A will be refined in a series of iterations. In each iteration, M1 ‖ A |= G will be
checked first. If it holds, we will have M1 ‖ M2 |= G. Otherwise, a finite coun-
terexample will be returned as a result ofM1 ‖ A �|= G. Then, we will check if the
counterexample’s projection on A is also feasible in M2. If so, the algorithm can
terminate as a real counterexample is found. Otherwise, a refined assumption,
denoted as A′, will be generated based on a new predicate obtained through
counterexample analysis, using interpolation techniques. At the same time, the
refinement ensures that: 1) M2 � A′. 2) A′ contains strictly less behaviors than
A in the sense that the counterexample will be not feasible in M1 ‖ A′. When
the algorithm terminates, an assumption satisfying the two premises of rule (1)
is obtained, implying the property holds, or a real counterexample is found.

Finally, experimental results are provided to demonstrate that the proposed
approach outperforms typical learning approaches based on CDNF.
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Related Work. Since the first approach for automatic assume-guarantee rea-
soning based on automata learning was proposed [3], there have been extensive
studies on the automatic assumption generation for compositional verification.
These include devising new inference rules [6], extensions and optimizations of
the L* algorithm [13,14], automatic refinement of the assumption’s alphabet
[15], symbolic methods for assume-guarantee reasoning [16,17], implicit learning
based on CDNF [11] and minimal separating automata-based reasoning [18,19].
However, as discussed before, all these works are focused only on the synchronous
parallel composition of LTSs or Kripke Structures, while it is more natural to
model real software programs in the asynchronous framework. The rules that
have been used for synchronous systems might not hold when asynchronous
composition is considered. The reasoning framework must also be changed ac-
cordingly.

Our assumption generation method given in Section 4 is essentially based
on the CEGAR(CounterExample Guided Abstraction Refinement) [20]. In [21],
the authors also present a CEGAR-based method for assume-grantee reasoning,
instead of using learning algorithms. Similarly, a CEGAR-based method for the
assume-guarantee reasoning of probabilistic systems is given in [22]. However,
those works are also focused on the synchronous parallel composition of LTSs.

2 Preliminary Definitions

In this section, preliminary definitions and notations used in the rest of the paper
are given. LTSs are not selected as system models because it is more natural to
model an asynchronous system with shared variable structures.

Shared Variable Structures. An SVS M = (η, ζ(η), τ(η, η′)), simplified as
(η, ζ, τ), consists of the following components:

– η = {u1, · · · , um}: A finite set of Boolean variables, containing data and
control variables. The set of states of M are the valuations over η, denoted
as 2η. For a state s ∈ 2η, we use the notation s�η1 , with η1 ⊆ η, to denote
the projection of s on η1. For a set S ⊆ 2η, then S�η1 = {s�η1 |s ∈ S}.

– ζ(η): The initial predicate characterizing the initial states. All valuations
over η such that the initial predicate evaluates to true are the initial state
of M .

– τ(η, η′): The transition predicate relating the values η of state s ∈ 2η to the
values η′ in a successor state s′ ∈ 2η. There is a transition from s to s′,
denoted as s → s′, if and only if τ(s, s′) evaluates to true.

Parallel Composition. We also need to decide how to combine those processes
into a concurrent system. Let M1 = (η1, ζ1, τ1) and M2 = (η2, ζ2, τ2) be two
SVSs. The asynchronous and synchronous parallel compositions of M1 and M2

are denoted as M = M1 ‖a M2 and M = M1 ‖s M2, respectively. They agree on
the definitions of η and ζ as follows:

– η = η1 ∪ η2. The variables of the combined system are union of those of the
components. The set of states of M is 2η1∪η2 . It should be noted that we use



264 Q. Yang et al.

s ∈ 2η1∪η2 to represent a state of M instead of (s1, s2), with s1 ∈ 2η1 and
s2 ∈ 2η2 , as (s1, s2) is a state of M only if they agree on the shared variables
in η1 ∩ η2.

– ζ = ζ1 ∧ ζ2. For a state s of M , it is the initial state of M if and only
if s�η1 and s�η2 are the initial states of M1 and M2, respectively. That is,
ζ1(s�ζ1 ) = true and ζ2(s�ζ2 ) = true.

As for the transition predicate τ , it is respectively defined as follows:

– In asynchronous composition, τ = τ1∨τ2. For states s and s′ of M1 ‖a M2,
s → s′ if and only if τ1(s�η1 , s

′
�η1 ) or τ2(s�η2 , s

′
�η2 ). During the transition, ex-

actly one component, eitherM1 orM2, will make a move. If only τ1(s�η1 , s
′
�η1 )

(τ2(s�η2 , s
′
�η2 )) evaluates to true, we say that s → s′ is resulted from a tran-

sition of M1 (M2). If both τ1(s�η1 , t�η1 ) and τ2(s�η2 , t�η2 ) evaluates to true,
then M1 or M2 will be non-deterministically selected to make a move.

– In synchronous composition, τ = τ1 ∧ τ2. For states s and s′ of M1 ‖s M2,
s → s′ if and only if τ1(s�η1 , s

′
�η1 ) and τ2(s�η2 , s

′
�η2 ). The components M1

and M2 will make a move simultaneously .

P1 ::
l10 : x1 = 1;
l11 : x2 = 1;
l12 :

P2 ::
l20 : x1 = 0;
l21 :

Fig. 1. Process P1 and P2

(l10, l20,⊥,⊥)

(l11, l20, 1,⊥)

(l12, l20, 1, 1)

(l12, l21, 0, 1)

(l11, l21, 0,⊥)

(l10, l21, 0,⊥)

(l11, l21, 1,⊥)

(l12, l21, 1, 1)

Fig. 2. Composition of M1 and M2

With the short program provided in Fig. 1, we give a sense of SVSs and demon-
strate the difference between synchronous and asynchronous compositions. The
Boolean variable x1 is shared between the two processes P1 and P2. P1 has also a
local Boolean variable, named x2. We can construct two SVSs M1 = (η1, ζ1, τ1)
and M2 = (η2, ζ2, τ2) to receptively represent P1 and P2 as follows:

– η1 = {x1, x2, pc11, pc12} and η2 = {x1, pc2}, where pc11, pc12 and pc2 are
variables introduced to encode the program counters of P1 and P2. The
term !pc11∧!pc12 corresponds to l10, pc11∧!pc12 to l11, !pc11∧pc12 to l12, !pc2
to l20, and pc2 to l21.

– ζ1 =!pc11∧!pc12 and ζ2 =!pc2, The valuation 00 of pc12 and pc11 corresponds
to l10, 01 to l11, and so on.

– τ1 = ((!pc11∧!pc12 ∧ pc′11∧!pc′12 ∧ x′
1 ∧ x′

2 = x2) ∨ (pc11∧!pc12∧!pc′11 ∧ pc′12 ∧
x′
2 ∧ x′

1 = x1)) and τ2 = (!pc2 ∧ pc′2∧!x′
1).
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Let ⊥ denote an arbitrary value of 1 or 0. The only path ofM1 can be represented
as (l10,⊥,⊥) → (l11, 1,⊥) → (l12, 1, 1), where the first element of each state
records the value of PC1 and the other two elements record the values of x1 and
x2. M2’s only path is (l20,⊥) → (l21, 0). The parallel composition of M1 and M2

is given in Fig. 2, in which a dotted edge represents a transition that could only
occur in the asynchronous composition. However, the synchronous composition
does not have any transitions because there is no state in M1 ‖s M2 such that
x1 evaluates to true and false at the same time.

Interpolant. Let (C1,C2) be a pair of sets of clauses, where a clause is a dis-
junction of literals and a literal is either a Boolean variable or its negation. If
C1 and C2 are inconsistent, meaning that the conjunction of C1 and C2 is un-
satisfiable. An interpolant for an inconsistent pair (C1, C2) is a formula I with
the following properties:

– C1 ⇒ I.
– I ∧ C2 is unsatisfiable.
– I is defined over the common variables of C1 and C2.

In practice, an interpolant can be generated from a proof by resolution that C1

and C2 are inconsistent. Several SMT solvers, such as MathSAT [23] and iZ3 [24],
have included supports for interpolant generation. The generation procedure is
actually very simple and can be finished in linear time [25].

3 Compositional Verification of Asynchronous Systems

Let M1 = (η1, ζ1, τ1) and M2 = (η2, ζ2, τ2) be shared variable structures with
η2 ⊆ η1

2. We define a simulation relation (�) between two shared variable
structures, using which we show that the inference rule (1) is sound and complete.
One fundamental requirement of this is that the simulation relation should be
compositional, i.e. whenever M1 � M2, we have that M3 ‖ M1 � M3 ‖ M2

for any other shared variable structure M3 (maybe under some suitable extra
assumptions). For simplicity, we will use ‖ to denote ‖a from here on.

Let H ⊆ 2η1 × 2η2 . First, we consider strong simulation3 [26], which is widely
used in compositional reasoning, and show that it is not compositional for asyn-
chronous systems.

Definition 1 (Strong Simulation [26]). H is a strong simulation w.r.t a set
of observable variables ηo ⊆ η2 iff for s ∈ 2η1 , t ∈ 2η2 , H(s, t) implies

– s�ηo = t�ηo , and
– for every s′ ∈ 2η1 with τ1(s, s

′), there exists a t′ ∈ 2η2 such that τ2(t, t
′) and

H(s′, t′).
2 This assumption comes naturally from the target application of assume-guarantee
reasoning.

3 A less restricted version of it appears in [11]; we will comment on it later in the
section.
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M1 �ηo M2 iff there is a strong simulation H such that for every s01 ∈ 2η1 with
ζ1(s

0
1), there exists s02 ∈ 2η2 with ζ2(s

0
2) and H(s01, s

0
2).

In other words, every transition in M1 is simulated by some transition of M2.
If this is everything, compositionality may not hold of asynchronous systems
because a transition in M3 ‖ M1 resulting from a transition in M3 can change
the values of some variables common between M1 and M3

4.
To see this, let us consider a simple example. Let η1 = η2 = ηo = {x1, x2}.

Let ζ1 = ζ2 = (!x1∧!x2). Also, let

τ1 = (!(!x1 ∧ x2) ∧ (!x′
1∧!x′

2))

∨ ((!x1 ∧ x2) ∧ (x′
1 ∧ x′

2)),

τ2 = (!x′
1∧!x′

2).

It is easy to see that M1 �ηo M2 with H = {(〈0, 0〉, 〈0, 0〉)} as the strong
simulation. Now, let M3 = (η3, ζ3, τ3) with η3 = {x2}, ζ3(0) and τ3 = x′

2.
Consider M3 ‖ M1 and the initial state 〈0, 0〉. If M3 takes a step, M3 ‖ M1

goes from 〈0, 0〉 to 〈0, 1〉. This step can also be taken in M3 ‖ M2. Now, let M1

take a step and from τ1 defined above, M3 ‖ M1 moves to 〈1, 1〉. But the only
transitions from 〈0, 1〉 in M3 ‖ M2 are to either 〈0, 0〉 (if M2 takes a step) or
〈0, 1〉 (if M3 takes a step), neither of which is compatible with 〈1, 1〉.

To fix this problem, we add a condition to the definition of simulation relation
resulting in the following.

Definition 2 (Strong Jump Simulation). H is a strong jump simulation
w.r.t. a set of observable variables ηo ⊆ η2 iff for s ∈ 2η1 , t ∈ 2η2 , H(s, t) implies

– s�ηo = t�ηo , we also say that s and t are compatible on ηo, and
– for every s′ ∈ 2η1 with τ1(s, s

′), there exists a state t′ ∈ 2η2 such that τ2(t, t
′)

and H(s′, t′), and
– for every s′ ∈ 2η1 such that s′ �η1\ηo

= s �η1\ηo
, there exists a state t′ ∈ 2η2

such that t′ �η2\ηo
= t �η2\ηo

and H(s′, t′).

M1 �J
ηo

M2 iff there is a strong jump simulation H such that for every s01 ∈ 2η1

with ζ1(s
0
1), there exists s02 ∈ 2η2 with ζ2(s

0
2) and H(s01, s

0
2).

When the context is clear, �J
ηo

will be written as �J . Thus, in addition to being
a strong simulation, a strong jump simulation needs M2 to simulate any jump
in M1 which keeps the values of the variables in η1 \ ηo, where \ denotes the set
minus operator, intact while changing the remaining variables arbitrarily. Such
a jump effectively models any asynchronous transition in a system which M1 is
part of.

Now, it is not hard to see that in the example considered above, M1 �� M2.
This is because a jump in M1 from 〈0, 0〉 to 〈0, 1〉 can not be simulated by a
similar jump in M2 as the only transition from 〈0, 1〉 in M2 is back to 〈0, 0〉.
4 This is not possible in synchronous composition [11], because such a transition would
be synchronized in both M3 and M1.
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In fact, �J is compositional as we show below. The left part of Fig. 3 shows the
relation between η1, η2 and η3, in general. We observe that when M3 ‖ M1 takes

a step, the variables in the region marked
?
= ∅ can be changed for which there

may not be a corresponding step in M3 ‖ M2 to a compatible state. For this
reason, this region is assumed to be empty, leading to the assumption η1∩η3 ⊆ η2
(note that this also holds in the above example); see the right part of the figure.
As we will see soon, this is not an unreasonable assumption.

η1 η3

η2

η2

η1 η3

?
= ∅ 1 2 23 3

Fig. 3. Inclusion Relationships between Sets

Lemma 1. If M1 �J
η23

M2 and η1 ∩ η3 ⊆ η2, where η23 = η2 ∩ η3, then M3 ‖
M1 �J

η3
M3 ‖ M2.

Proof. The assumption η1 ∩ η3 ⊆ η2 divides the space of the state variables
into the four disjoint regions shown in Fig. 3 and given a state, we identify the
corresponding components of the state by using the notation in the figure for
subscripts. For example, the components for a state s in M3 ‖ M1 are identified
as s1, s2, s23 and s3.

Let H12 be a strong jump simulation between M1 and M2 satisfying the condi-
tion for the initial states. We show thatH = {(s, t)|s ∈ 2η1∪η3 , t ∈ 2η2∪η3 , H12(s23·
s2 · s1, t23 · t2), s3 = t3} witnesses M3 ‖ M1 �J

η23
M3 ‖ M2, where · denotes that

concatenation of two state vectors. Let H(s, t). We need to first show the three
conditions of Definition 2 for H to be a strong jump simulation. Note that the
target simulation relation is respect to η3. So, any jump in M3 ‖ M1 or in M1

needs to only keep the variables in η1 \ η3 intact.
By the assumption on H , s3 = t3 and H12(s23 · s2 · s1, t23 · t2). As H12 only

has compatible pairs, the latter implies that s23 = t23. Together, s�η3 = t�η3 .
Let s → s′ be a transition in M3 ‖ M1. This can be due to a step in M1 or in

M3.
In the first case, we have that s23 · s2 · s1 → s′23 · s′2 · s′1 in M1. As H12(s23 · s2 ·

s1, t23 ·t2), there is a transition t23 ·t2 → t′23 ·t′2 in M2 with H12(s
′
23 ·s′2 ·s′1, t′23 ·t′2).

This transition in M2 also means the transition t → t3 · t′23 · t′2 = t′ exists in
M3 ‖ M2. As s3 = t3, clearly H(s′, t′).

In the second case, where the step is in M3, we have that s3 · s23 → s′3 · s′23
in M3. As s3 = t3 and s23 = t23 from above, t3 · t23 · t2 → s′3 · s′23 · t2 = t′ in
M3 ‖ M2. Now, s23 · s2 · s1 → s′23 · s2 · s1 is a jump. As H12(s23 · s2 · s1, t23 · t2),
there exists a state t′23 · t2 of M2 such that H12(s

′
23 · s2 · s1, t′23 · t2). Similarly, it

also implies that t′23 = s′23. As s
′
3 = s′3, clearly H(s′, t′).
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Finally, if there is a jump s3 · s23 · s2 · s1 → s′3 · s′23 · s2 · s1 in M3 ‖ M1. It is
the same to the second case given above.

The condition on the initial states can easily be checked. ��
Finally, we show that the inference rule (1) is sound and complete for shared
variable structures. In order to do so, we show that �J is reflexive and that it
preserves LTL properties.

Lemma 2. �J is reflexive, i.e. M �J M for any shared variable structure M .

Proof. We only have jumps and the proof is straightforward. ��
Lemma 3. Let M1 �J

ηo
M2 (with ηo ⊆ η2 ⊆ η1). Let f be an LTL formula

defined over ηo. Then, M2 |= f implies M1 |= f .

Proof. Let H be a strong jump simulation witnessing M1 �J
ηo

M2. As H is also
a strong simulation and, for H(s, t), an atomic proposition of f is labeled in s if
and only if it is labeled in t, preservation follows [27]. ��
Theorem 1 (Compositional Verification). Let G be an LTL formula defined
over ηG. Let ηI = (η1∩η2). If ηG ⊆ η1∪ηI and ηI ⊆ ηA ⊆ η2, then the inference
rule

M1 ‖ A |= G

M2 �J
ηI

A

M1 ‖ M2 |= G
(2)

is sound and complete.

Proof. Soundness. Assume M1 ‖ A |= G and M2 �J
ηI

A. Lemma 1 gives us

M1 ‖ M2 �J
η1

M1 ‖ A. From the former and ηG ⊆ η1 ∪ ηI , Lemma 3 gives us
M1 ‖ M2 |= G.

Completeness. Assume M1 ‖ M2 |= G. Let A = M2. From Lemma 2, M2 �J
ηI

M2. The other premise is what we just assumed. ��
Note that the assumptions on the variables in the above theorem are quite
reasonable and η1 ∩ η2 ⊆ ηA means that ηA should include all the common
variables of M1 and M2 which is what is expected of an assumption.

4 Automatic Assumption Generation

LetM1 = (η1, ζ1, τ1),M2 = (η2, ζ2, τ2), A = (ηA, ζ2, τ2) andG be an LTL formula
defined over the alphabet ηG. Let ηI = η1 ∩ η2 and ηG ⊆ η1 ∪ ηI . They will be
fixed in the rest of this section. Although the rule (2) holds for all LTL formulae,
we will only consider G as safety properties from here on to ensure that a finite
counterexample is returned when M1 ‖ A |= G does not hold. As discussed later,
the work presented is this paper can be easily extended to liveness properties.
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The basic idea of our algorithm is the following. The assumption A starts
with the coarsest over-approximation. Then, the assumption A will be refined
in a series of iterations. In every iteration, M1 ‖ A |= G will be model checked
first. If it holds, we will have M1 ‖ M2 |= G, as A is an over-approximation of
M2, and the algorithm terminates. Otherwise, a finite counterexample will be
returned as a result of M1 ‖ A �|= G. Then, we will check if the counterexample’s
projection on A is also feasible in M2. If so, the algorithm can terminate as
a real counterexample is found. Otherwise, a refined version of A, denoted as
A′ = (η′A, ζ

′
A, τ

′
A), will be generated based on counterexample analysis. At the

same time, the refinement has the following two properties: 1) M2 � A′, i.e. the
updated assumption is still an over-approximation of M2. 2) A

′ contains strictly
less behaviors than A in the sense that the counterexample will be not feasible
in M1 ‖ A′. Then, the algorithm enters into the next iteration. The termination
of the algorithm is guaranteed by the completeness of the inference rule (2).

Alphabet Selection. In those works on assume-guarantee reasoning of syn-
chronous compositions with systems being modeled as LTSs, the alphabet ηA
of the assumption can be a strict subset of η2 and contains only those com-
mon variables between M1 and M2 and those variable necessary to prove the
property, i.e. ηA = (ηG ∪ η1) ∩ η2. Even a smaller alphabet is used in [28] with
the help of alphabet refinement techniques. However, when M1 ‖ A |= G does
not hold and the assumption is refined based on the returned counterexample,
the counterexample analysis in an asynchronous environment, in which systems
are modeled as SVSs, requires that ηA = η2. The rational behind the alphabet
selection is the following.

Assume that ηA ⊂ η2, i.e ηA is a strict subset of η2. When a counterexample
to M1 ‖ A |= G is returned, the assumption must be refined to make the coun-
terexample infeasible in M1 ‖ A′. In any way, some transition, assuming that
s → s′, that is enabled in A will be disabled in the refined assumption A′. The
problem is that for every transition t · s → t′ · s′ of M2, where t, t′ ∈ 2η2\ηA , no
transitions in A′ are available to simulate it. In the case of LTSs, it is different
because, if a transition labelled with an action is removed from A, another tran-
sition with the same label might still exist. For the same reason, the assumption
generation approach given in [11], which uses the CDNF algorithm to learn an
assumption represented as SVS, also assumes that ηA = η2.

Predicate Abstraction. If ηA = η2, the assumption A satisfying the premise
M2 �J A will be not “smaller” than M2. To solve the problem, we use predi-
cate abstraction to compress the states of the assumption. Let AP be a set of
predicates over η̄2 = η2 \ ηI (recall that ηI = η1 ∩ η2). Those variables in ηI are
not included because they are used for interacting with the component M1. The
equivalence relation induced from AP over the set 2η̄2 is denoted as ≡AP .

Given a set of predicatesAP over η̄2, an existential abstraction ofM2, denoted
as MAP

2 = (ηI ∪ η̄2, ζP , τP), is defined as the following:

– For s1 ∈ 2η̄2 and s2 ∈ 2ηI , ζP(s1 · s2), if there exists a state t1 · s2 of M2,
where t1 ∈ 2η̄2 , such that t1 ∈ [s1]≡AP and ζ2(t1 · s2).
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– For s1, s
′
1 ∈ 2η̄2 and s2, s

′
2 ∈ 2ηI , τP(s1 · s2, s′1 · s′2) if there exist t1, t

′
1 ∈ 2η̄2

such that τ2(t1 · s2, t′1 · s′2), t1 ∈ [s1]≡AP , and t2 ∈ [s′1]≡AP .

where [s]≡AP denotes an equivalence class of ≡AP . By introducing predicate
abstraction, we can reduce the size of M2 from 2|η2| to 2|AP|+|ηI |, where |S|
denotes the size of a set S. Normally, the size of ηI is small for a well designed
system.

Lemma 4. For a set of predicates AP over η̄2 and the induced existential ab-
straction MAP

2 of M2 from it, M2 �J
ηI

MAP
2 .

Proof. Let H = {(s, t)|s ∈ 2η2 , t ∈ 2η2 , sηI = t�ηI , s�η̄2 ∈ [t�η̄2 ]≡AP }.
Assumption Initialization. The set AP will be initialized to the empty set.
The abstraction of M2 induced from the empty set will be used as our coarsest
over-approximation.

Assumption Refinement. Let p = v0, v1, · · · , vk be a path of M1 ‖ M2, where
vi is a valuation over η1 ∪ η2. Some transitions are executed as a result of the
executions of M1, while others as a result of M2. The projection of p on M1 (M2)
is obtained by removing details about those transitions and states not related to
any transitions of M1 (M2) and projecting those remained states onto η1 (η2).
It should be noted that a projection is not necessarily a path of a component.

For example, p′ = 〈0, 0〉 P1→ 〈1, 0〉 P2→ 〈0, 0〉 P1→ 〈0, 1〉 is a path of the program
given in Fig. 1, where the labels on transitions indicate the SVS, P1 or P2, to

be executed. The projection of p′ on P1 is p′′ = 〈0, 0〉 P1→ 〈1, 0〉 � 〈0, 0〉 P1→ 〈0, 1〉,
where � denotes a jump. In the jump, the shared variable x1 is changed by P2

while the local variable x2 is left untouched. It is easy to see the jump is not
feasible in M1.

Definition 3 (η-J -Path). A projection including transitions and jumps, in
which the variables contained in η are left untouched, is called an η-J -path.

If M1 ‖ A |= G does not hold, a counterexample will be returned by a model
checker. Let ce = v0, v1, · · · , vk be the counterexample’s projection on A. As we
use the equivalence classes of ≡AP to represent the set of states of 2η̄2 , rather
than enumerating them explicitly, every state of ce belongs to 2AP∪η̄2 . From
previous discussions, we know that ce is an ηJ1-J -path, where ηJ1 = ηA \ η1.
Then, we will have to decide if ce is feasible in M2 by checking if there exists a
ηJ2-J -path p = s0, s1, · · · , sk in M2, where ηJ2 = η2 \ η1, such that:

– ζ2(s0), [s0�η̄2 ]≡AP= v0�AP , and s0�ηI = v0�ηI .
– If vi → vi+1 is a transition or an ηJ1 -jump of ce, then [si�η̄2 ]≡AP = vi�AP ,

si�ηI = vi�ηI , [si+1�η̄2 ]≡AP = vi+1�AP , si+1�ηI = vi+1�ηI , and τ2(si, si+1) if
vi → vi+1 is a real transition.

If such an ηJ2 -J -path is found, the counterexample toM1 ‖ A |= G is guaranteed
to be feasible in M1 ‖ M2, as η1 ∩ η2 ⊆ ηA ensures that all common variables
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vi−1 vi vi+1

2ηI

2η̄2

Fig. 4. Counterexample Analysis

between M1 and M2 are included in ηA. Thus, M1 ‖ M2 �|= G and the algorithm
will terminate. Otherwise, the assumption A has to be refined to exclude the
counterexample.

In reverse to the existential abstraction given before, a concretization function
γ will be defined as the following:

γ(v) = {s · t|s ∈ 2η̄2 , t ∈ 2ηI , [s]≡AP = v�AP , and t = v�ηI } (3)

In Fig. 4, the path ce is shown at the bottom, while the set of concrete states γ(vi)
corresponding to every state vi is shown above. All concrete states have the same
values over ηI , but different over η̄2. Let R0 = {s|s ∈ 2η2 , s ∈ γ(v0), and ζ2(s)}.
Thus, R0 denotes the set concrete states corresponding to the initial abstract
state. Then, Ri for i ≥ 1 is recursively defined as follows:

– if vi−1 → vi is a transition of ce, then Ri = {s|s ∈ 2η2 , s ∈ γ(vi), ∃t ∈ Ri−1 :
τ2(t, s)}.

– if vi−1 → vi is a jump of ce, then Ri = {s|s ∈ 2η2 , s ∈ γ(vi), ∃t ∈ Ri−1 :
s�η̄2 = t�η̄2}.

Every set Ri actually defines those concrete states that can be reachable along
the counterexample. If the counterexample ce is not feasible in M2, there’s no
corresponding transition in M2 for some transition vi → vi+1 of ce. Then, we
will have:

Ri ∩ (τ−1
2 (γ(vi+1)) ∩ γ(vi)) = ∅ (4)

where τ−1
2 denotes the pre-image calculation. As shown in Fig. 4, there is at

least one sate s ∈ γ(vi+1) which is reachable from some states of γ(vi). However,
none of those states of γ(vi) are included in Ri.

Because two states respectively from Ri and τ−1
2 (γ(vi+1)) ∩ γ(vi) agree on

their projections on ηI , the equation (4) implies that the intersection between
Ri�η̄2 and (τ−1

2 (γ(vi+1)) ∩ γ(vi))�η̄2 is also empty. As we can symbolically com-
pute the two sets, let f1 and f2 be the Boolean formulae representing Ri and
τ−1
2 (γ(vi+1))∩γ(vi), respectively. Let F1 = ∃ηI : f1 and F2 = ∃ηI : f2. We know
that F1∧F2 is unsatisfiable. Then, let I be the interpolant of (F1,F2), which is
defined over η̄2. We will add the interpolant I into AP as a new predicate and
refine the assumption according to the augmented AP .
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Algorithm AAG(M1, M2, G)
Let AP = ∅ be a set of predicates over η̄2.
while TRUE do

Let A = MAP
2 .

Check if M1 ‖ A |= G.
if M1 ‖ A �|= G do

Let ce be the counterexample’s projection on A
Check if ce is feasible in M2.
if ce is feasible do

M1 ‖ M2 �|= G and terminate.
else

Calculate interpolant based on formula (4).
Add the interpolant to AP .

else
M1 ‖ M2 |= G and terminate.

Fig. 5. Interpolant-based Compositional Model Checking

Lemma 5. The counterexample ce will be not feasible in the new assumption.

The whole algorithm, named AAG (asynchronous assume-guarantee), is pre-
sented in Fig. 5. For the algorithm, we have the following theorem:

Theorem 2. The algorithm will terminate. When the algorithm terminates, if
M1 ‖ M2 �|= G, a real counterexample will be returned and, otherwise, an as-
sumption A such that M2 �J A and M1 ‖ A |= G will be found.

Proof. Termination. If a real counterexample or an assumption such thatM2 �J

A and M1 ‖ A |= G is found, the algorithm will terminate. Otherwise, the
assumption A converges to M2 in at most |η̄2| iterations and the algorithm
terminates.

When the algorithm terminates, M1 ‖ M2 �|= G if a real counterexample is
returned. Otherwise, an assumption satisfying the two premises of rule (2) will
be reached. The correctness of M1 ‖ M2 |= G is guaranteed by theorem 1. ��

5 Experimental Results

Our algorithm AAG, presented in Fig. 5, has been implemented in the C lan-
guage. We use NuSMV [29] to check the premise M1 ‖ A |= G and MathSAT
[23] to, given two inconsistent clauses, calculate an interpolant which will be
added to the set of existing predicates. To make a comparison with learning-
based algorithms, we also adapted the CDNF-based approach proposed in [11]
to learn the Boolean initial and transition predicates of an assumption. The work
is selected to be compared with because it also uses shared variable structures,
rather than LTSs, as system models although it is purely focused on synchronous



Assumption Generation for Asynchronous Systems 273

Table 1. Experimental Results

CDNF AAG
Problems Truth MQs EQs |ζA| |τA| Time(s) ARs |ζA| |τA| Time(s)

Inverter-1-2 T 221 45 2 9 0.49 1 2 9 0.03
Inverter-2-2 F 99 20 2 9 0.18 1 1 7 0.02
Inverter-3-2 T 211 45 2 9 0.53 1 2 9 0.04
Inverter-4-2 F 99 20 2 9 0.22 1 1 7 0.01
Inverter-1-4 T 1393 184 4 15 7.13 4 5 17 0.10
Inverter-2-4 F 749 98 2 7 2.19 1 1 9 0.03

Exclusive-3-1 T 348 53 4 11 0.17 1 2 7 0.15
Exclusive-2-2 T 5263 396 4 13 10.67 5 6 17 0.2
Exclusive-3-3 T × × × × × 8 8 22 0.66

parallel compositions. The authors also showed that their approach outperforms
interpolation-based monolithic model checking [30].

The examples we consider are systems consisting of multiple threads, i.e.
M = M1 ‖ M2 ‖ · · · ‖ Mn for some finite n. We arbitrarily divide such a system
into two sub-systems, say by composing the first i threads (M1 ‖ · · · ‖ Mi) and
composing the rest of the threads (Mi+1 ‖ · · · ‖ Mn) for some 1 ≤ i ≤ n. These
two composed models serve as M1 and M2 of the inference rule (2). Several
auxiliary variables are introduced in M2 to ensure that the executions are fair in
the sense that every enabled thread ofMi+1 ‖ · · · ‖ Mn will be executed infinitely
often. We use the notation XXXX-a-b to denote the above described partition of
a verification problem, where XXXX is the name of the problem, a and b denote
the number of threads in M1 and M2, respectively. The experimental systems
used here are the asynchronous version of a ring of inverters and the semaphore-
based exclusive access, which are distributed with NuSMV. The property verified
for the first example states that any inverter will infinitely often output data and
receive data for its neighbors, while the property for the second one states that
no two processes are in the critical section at the same time.

The experimental results are summarized in Table 1. The CDNF algorithm
needs to ask membership queries (MQs) to a teacher on whether the initial pred-
icate or transition predicate evaluates to true for a given valuation to Boolean
variables. By asking an equivalence query (EQ), the learning algorithm can get
an affirmative answer, i.e. the submitted conjecture is an assumption satisfying
the premises of the inference rule, or a counterexample. In our AAG algorithm,
only abstraction refinements (ARs) are necessary. The size of generated assump-
tions are measured in the number of Boolean variables of ζA and τA, denoted
as |ζA| and |τA|, respectively. The execution time is measured in seconds. The
columns labelled with crosses indicate that the CDNF-based algorithm does not
terminate in 30 minutes. The experiments were run on a Macbook Pro laptop
with a 2.2 GHz Intel Core i7 CPU and 4GB of memory running Mac OS X.

The experiment results confirm the results presented in [10], showing that a
learning algorithm takes normally 90 percent of the time. The learning algorithms
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CDNF asks a huge amount of queries to learn a formula. Normally, answering a
membership query needs to solve a SAT problem or do a simulation check, while
equivalence queries are more specific to the application domain and tend to be
even more expensive. On the contrary, the AAG algorithm just “mechanically”
calculates an abstraction and then checks if the second premise of the inference
rule is satisfied. As discussed above, it is required that ηA = η2 in the CDNF-
based assume-guarantee learning. It is possible to obtain an assumption smaller
than M2 only when the verified property does not hold. As our algorithm intro-
duces an abstraction over not shared variables of M2, the generated assumption
can be smaller than M2 even if a property holds, as shown in some cases. It’s also
possible that the generated assumption is greater than M2 when some redundant
predicates are produced.Apredicate is redundant if it is implied by the conjunction
of some predicates that are produced later. In general, our approach outperforms
the CDNF-based assume-guarantee reasoning.

6 Conclusion

As a promising technique to tackle the state explosion problem, compositional
verification of concurrent systems based on assume-guarantee reasoning has been
studied extensively. Inference rules play a key role in assume-guarantee reasoning
as they tell how to verify a system by checking its constituents. However, the
most widely used inference rule used in the literature has only been proved for
synchronous systems. Based on a new simulation relation introduced in this
paper, we prove that the rule holds for asynchronous systems as long as the
alphabets of the components satisfy certain constraints. Then, an automating
assumption generation approach is proposed based on counterexample-guided
abstraction refinement, rather than using learning algorithms. Our approach is
compared with the CDNF-based assume-guarantee reasoning algorithm.

Although only safety properties are considered in Section 4, the inference rule
(2) allows liveness properties. The techniques given in [20] for identifying spu-
rious loop counterexamples can be used for refining abstractions when liveness
properties are taken into account. In addition, some lazy or approximate ab-
straction strategies might replace the exact existential abstraction used in our
current implementation, which is normally very expensive.
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4. Giannakopoulou, D., Păsăreanu, C.S., Barringer, H.: Assumption generation for
software component verification. In: Proceedings of the 17th IEEE International
Conference on Automated Software Engineering, ASE 2002, p. 3. IEEE Computer
Society, Washington, DC (2002)

5. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Com-
put. 75(2), 87–106 (1987)

6. Barringer, H., Giannakopoulou, D.: Proof rules for automated compositional veri-
fication through learning. In: Proc. SAVCBS Workshop, pp. 14–21 (2003)
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9. Păsăreanu, C.S., Giannakopoulou, D., Bobaru, M.G., Cobleigh, J.M., Barringer,
H.: Learning to divide and conquer: applying the L* algorithm to automate assume-
guarantee reasoning. Form. Methods Syst. Des. 32, 175–205 (2008)

10. Cobleigh, J.M., Avrunin, G.S., Clarke, L.A.: Breaking up is hard to do: An evalua-
tion of automated assume-guarantee reasoning. ACM Trans. Softw. Eng. Methodol.
17(2), 7:1–7:52 (2008)

11. Chen, Y.F., Clarke, E.M., Farzan, A., Tsai, M.H., Tsay, Y.K., Wang, B.Y.: Au-
tomated Assume-Guarantee Reasoning through Implicit Learning. In: Touili, T.,
Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 511–526. Springer,
Heidelberg (2010)

12. Bshouty, N.H.: Exact learning boolean functions via the monotone theory. Inf.
Comput. 123, 146–153 (1995)

13. Chaki, S., Gurfinkel, A.: Automated assume-guarantee reasoning for omega-regular
systems and specifications. Innov. Syst. Softw. Eng. 7, 131–139 (2011)

14. Chaki, S., Strichman, O.: Optimized L*-Based Assume-Guarantee Reasoning. In:
Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 276–291.
Springer, Heidelberg (2007)
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