Arithmetic Strengthening for Shape Analysis*

Stephen Magill', Josh Berdine?, Edmund Clarke!, and Byron Cook?

! Carnegie Mellon University
2 Microsoft Research

Abstract. Shape analyses are often imprecise in their numerical reason-
ing, whereas numerical static analyses are often largely unaware of the
shape of a program’s heap. In this paper we propose a lazy method of
combining a shape analysis based on separation logic with an arbitrary
arithmetic analysis. When potentially spurious counterexamples are re-
ported by our shape analysis, the method constructs a purely arithmetic
program whose traces over-approximate the set of counterexample traces.
It then uses this arithmetic program together with the arithmetic analy-
sis to construct a refinement for the shape analysis. Our method is aimed
at proving properties that require comprehensive reasoning about heaps
together with more targeted arithmetic reasoning. Given a sufficient pre-
condition, our technique can automatically prove memory safety of pro-
grams whose error-free operation depends on a combination of shape,
size, and integer invariants. We have implemented our algorithm and
tested it on a number of common list routines using a variety of arith-
metic analysis tools for refinement.

1 Introduction

Automatic formal software verification tools are often designed either to prove
arithmetic properties (e.g. is x always greater than 0 at program location 35%)
or data structure properties (e.g. does p always point to a well-formed list at
program location 457). Shape analyses are developed to reason about the linked
structure of data on the heap, while arithmetic analyses are designed to reason
about the relationships between integer values manipulated by a program. Since
integers can be stored in the heap and certain properties of data structures (such
as the length of lists) are integer valued, there is non-trivial interaction between
the two theories. Thus, combining a shape analysis and an arithmetic analysis
is not just a matter of applying each analysis separately.

* This research was sponsored by the International Collaboration for Advancing Se-
curity Technology (iCAST), the Gigascale Systems Research Center (GSRC), the
Semiconductor Research Corporation (SRC) under grant TJ-1366, the National Sci-
ence Foundation (NSF) under grant no. CCR-9803774, the Office of Naval Research
(ONR), the Naval Research Laboratory (NRL) under contract no. N00014-01-1-0796,
the Defense Advanced Research Projects Agency, the Army Research Office (ARO)
under contract no. DAAD19-01-1-0485, and the General Motors Collaborative Re-
search Lab at CMU. The views and conclusions contained in this document are those
of the author and should not be interpreted as representing the official policies, either
expressed or implied, of any sponsoring institution.

H. Riis Nielson and G. Filé (Eds.): SAS 2007, LNCS 4634, pp. 419 2007.
© Springer-Verlag Berlin Heidelberg 2007

420 S. Magill et al.

We propose a new technique for combining a shape analysis based on separa-
tion logic [25] with an arbitrary arithmetic analysis. The combination technique
operates by using the arithmetic analysis as a back-end for processing abstract
counterexamples discovered during the shape analysis. Our shape analysis is
based on those described in [4] and [22]. It is an application of abstract interpre-
tation [I1] where the abstract domain uses a fragment of separation logic. As in
[4], we assume that the shape analysis supports arithmetic reasoning in its sym-
bolic execution engine, but does not maintain enough arithmetic information in
its widening step. To refine this widening step will be the job of the arithmetic
analysis tool.

The shape analysis communicates with the arithmetic analysis via counterex-
ample programs—integer programs that represent the arithmetic content of the
abstract counterexamples. Because the language of communication consists of
integer programs, any integer analysis tool can be used without modification to
strengthen our shape analysis. Viewed another way, this technique allows any
tool targeting integer programs to be applied—again without modification—
to programs that manipulate the kinds of heap-based data structures that our
shape analysis supports.

In summary, we present a new combination of shape and arithmetic analyses
with the following novel collection of characteristics:

— Any arithmetic analysis can be used. The combination is not tied to any
particular verification paradigm, and we can use tools based on abstract
interpretation, such as ASTREE[T7], just as easily as those based on model
checking, such as BLAST[19], SLAM[2], and ARMC|[24].

— The arithmetic analysis explicitly tracks integer values which appear quan-
tified in the symbolic states but are absent in the concrete states, such as
list lengths. This use of new variables in the arithmetic program to reason
about quantified values makes soundness of the combination technique non-
obvious. This conjunction under quantifiers aspect also makes it difficult to
see the combination technique as an instance of standard abstract domain
constructions such as the direct or reduced product, or as a use of Hoare
logic’s conjunction rule.

— The shape analysis which will be strengthened explores the same abstract
state space as the standard one would. That is, we do not explore the carte-
sian product of the shape and arithmetic state spaces. In this way the com-
bined analysis treats the shape and arithmetic information independently (as
in independent attribute analyses) except for the relations between shape
and arithmetic information identified by the shape analysis as critical to
memory- or assert-safety.

— Arithmetic refinement is performed only on-demand, when the standard
shape analysis has failed to prove memory safety on its own.

— Because we track shape information at all program points, our analysis is
able to verify properties such as memory-safety and absence of memory leaks.

Arithmetic Strengthening for Shape Analysis 421

2 DMotivating Example

Consider the example code fragment in the left half of Figure [[l This program
creates a list of length n and then deletes it. Neither an arithmetic static analysis
nor a traditional shape analysis alone can prove that curr is not equal to NULL
at line 15. As we will see, our analysis is able to prove that this program is
memory-safe.

Consider how a shape analysis without arithmetic support would treat this
program. Using symbolic execution and widening, the analysis might find an
invariant stating that, at location 4, curr is a pointer to a well-formed singly-
linked and NULL-terminated list and ¢ is a pointer to a single heap cell. In
separation logic, we would express this invariant as 3k, v. lsk(curr7 NULL)*i +— v
where [s is a recursively-defined list predicate and k represents the length of the
list. Note that the shape analysis has not attempted to infer any invariance
properties of the integer values k and v.

From this point the analysis might explore the path 4 — 12 — 13 — 14 —
15, obtaining

Jk. Is"(curr, NULL)ANj =0Aj <n (1)

1 List * curr = NULL; 1 curr = 0;

2 int i = malloc(sizeof(int)); 2 skip;
3 *i = 0; 3 int v = 0;
int k = 0;
4 wywhile(*i < n) { 4 while(v < n) {
5 t = (List*) malloc(sizeof (List)); 5 t = nondet();
6 t->next = curr; 6 skip;
7 t->data = addr; 7 skip;
8 addr += next_addr(addr); 8 addr += next_addr (addr);
9 curr = t; 9 curr = t;
10 *i = *i + 1; 10 v=v+ 1;
k =k + 1;
12 free(i); 12 skip;

13 int j = O;
14 while(j < n) {

13 int j = 0;

|

|

|

|

|

|

|

|

|

|

|

|

11 % | 11 3}

|

|

| 14 while(j < n) {
|
|
|
|
|
|
|
|
|

15 t = curr->next; 15 if(k > 0)
b := nondet();
t := b;
else error();
16 free(curr); 16 skip;
17 curr = t; 17 curr = t;
18 jH; 18 s
k=k-1;
19 } 19 }

Fig. 1. Left: Example showing motivation for combined shape and arithmetic reason-
ing. Right: Arithmetic counterexample program produced by the shape analysis.

422 S. Magill et al.

At line 15, the program looks up the value in the next field of curr. But if the
list is empty, then curr = NULL and the lookup will fail. Because () does not
imply that curr # NULL, this case cannot be ruled out and the analysis would
report a potential violation of memory safety.

However, this case cannot actually arise due to the fact that the second loop
frees only as many heap cells as the first loop allocates. To rule out this spurious
counterexample, we need to strengthen the invariants associated with the loops,
essentially discovering that the value stored in the heap cell at i tracks the
length of the list being created in the first loop and j tracks the length of the
unprocessed portion of the list in the second loop. Our algorithm achieves this
by generating a counterexample program representing all paths that satisfy the
shape formulas and could lead to the potential memory error.

The program we generate for this counterexample is given in the right half
of Figure [l We have numbered each line with the line number in the original
program from which it is derived. Newly added commands are un-numbered. The
counterexample program involves two new variables, k and v, which represent
the length of the list and the value pointed to by i, respectivelyﬂ New variables
are added whenever the shape analysis encounters an integer value, such as the
length of a list or the contents of an integer-valued heap cell.

Note that the control flow of the counterexample program is reminiscent of
the control flow of the original program. The only difference here is that the
counterexample program has an additional branch at location 15. This corre-
sponds to a case split in the shape analysis—the memory access at location 15
in the original program is safe provided that k (the length of the list) is greater
than 0. Also note that heap commands have been replaced by purely arithmetic
commands that approximate their effect on the arithmetic program’s stack vari-
ables. Two examples of this are the command at location 5, where allocation
is replaced by nondeterministic assignment, and the command at location 10,
where the heap store command that updates the contents of i is replaced by a
command that updates the integer variable v.

Another unique aspect of our counterexample programs is that they may con-
tain looping constructs. As such, they represent not just a single counterexample,
but rather a set of counterexamples. Returning to the example in Figure [II, re-
call that the loop invariant at location 4 is Jk. Is*(curr, NULL). To evaluate the
memory safety of the command at location 15, we start with this invariant and
compute postconditions along the path from 4 to 15. We then discover that the
resulting postcondition is too weak to prove memory safety at location 15 and
wish to generate a counterexample. Because the error state in the counterexam-
ple follows from the loop invariant at location 4, the counterexample can contain
any number of unrollings of this loop. Rather than commit to a specific number
and risk making overly specific conclusions based on the counterexample, we in-
stead include a loop in the counterexample program. As we will see, this makes
the set of paths through the counterexample program correspond to the full set

! The role of the third new variable, b, is more subtle. It arises due to expansion of a
definition during theorem proving. This is discussed in detail in Section 1

Arithmetic Strengthening for Shape Analysis 423

of abstract counterexamples. This ensures that the arithmetic tool generates a
strengthening that rules out all spurious counterexamples (i.e. it is forced to
discover a strengthening that is also a loop invariant) and is key to making the
collaboration between the shape analysis and arithmetic analysis tool work.

Now let us look at this collaboration in more detail. While trying to prove
that error() in the counterexample program (Figure [I)) is not reachable, an
arithmetic analysis tool such as ASTREE[7], BLAST [19], or ARMC [24] might
prove the following arithmetic invariant at location 15: k = n— j. The soundness
theorem for our system establishes that this invariant of the arithmetic coun-
terexample program is also an invariant of the original program. As such, it is
sound to conjoin this formula with our shape invariant at this location, obtaining
Jk. Is"(curr, NULL) Ak = n— j. Note that the arithmetic invariant is conjoined
inside the scope of the quantifier. This is sound because the variables we add to
the counterexample program (such as k) correspond to the existentially quanti-
fied variables and their values correspond to the witnesses we used when proving
those existential formulas. We formally prove soundness in Section

Now, armed with the strengthened invariant, the shape analysis can rule out
the false counterexample of NULL-pointer dereference at location 15. We will
have the formula lsk(curr, NULL)ANk =n—jAj <mn, from which we can derive
k > O0—a sufficient condition for the safety of the memory access.

3 Preliminaries

Our commands include assignment (e:= f), heap load (z:=[e]), heap store
([e]:=f), allocation (x:=alloc()), disposal (free(e)), non-deterministic assign-
ment (x := ?), and an assume command, which is used to model branch condi-
tions. Note that brackets are used to indicate dereference. We use C' to denote
the set of commands and the meta-variable ¢ to range over individual commands.
The concrete semantics are standard (see [25]) and are omitted. We present only
the concrete semantic domains and then move directly to a presentation of the
abstract domain and its associated semantics.

The concrete semantic domain consists of pairs (s, k), where s is the stack and
h is the heap. Formally, the stack is simply a mapping from variables to their
values, which are either integers or addresses.

def

Val = Int U Addr

Stack < Var — Val

The heap is a finite partial function from non-null addresses to records, which
are functions from a finite set of fields to values: Record < Field — Val, and
Heap = (Addr — {0}) = Record. We also have a state abort which is used to
indicate failure of a command. This may occur due to a failed assert statement
or an attempt to dereference an address that is not in the domain of the heap.

Our analysis uses a fragment of separation logic [25] as an abstract representa-
tion of the contents of the stack and the heap. We have expressions for denoting
addresses and records. Address expressions are simply variables or the constant

424 S. Magill et al.

NULL, which denotes the null address. Integer expressions include variables and
the standard arithmetic operations. Value expressions refer to expressions that
may denote either integers or addresses. Record expressions are lists of field
labels paired with value expressions.

Address e, f,g =z | NULL

Integer Expressions m,n =z |i|vy +v2 | v —v2 ...
Value Expressions v, k:=e|m

Record p = label: v,p | e

Our predicates are divided into spatial predicates, which describe the heap, and
pure predicates, which describe the stack. The predicate emp denotes the empty
heap, and e — [ly: v1,l2: va, ..., 1, v,] describes the heap consisting of a single
heap cell at address e that contains a record where field I; maps to value vy,
lo maps to vg, etc. The atomic pure predicates include the standard arithmetic
predicates (<, <, =, etc.) and equality and disequality over address expressions.
Spatial formulas are built from conjunctions of atomic spatial predicates using
the * connective from separation logic. Intuitively, P * Q) is satisfied when the
domain of the heap described by P is disjoint from that described by . Thus,
(e — p1) * (f — p2) implies that e # f.

We also allow existential quantification and adopt the convention that un-
mentioned fields are existentially quantified. That is, if a record always contains
fields s and ¢, we write e — [s: v] to abbreviate 3z. e — [s: v, t: z].

From the atomic predicates we can inductively define predicates describing
data structures, such as the following predicate for singly-linked list segments.

Is*(e,) = (k>0A32. e [n: 2] lsk_l(ac’,f)) V (empAk=0Ae=f)

The length of the list is given by k, while e denotes the address of the first cell
(if the list is non-empty) and f denotes the address stored in the “next” field
(n) of the last cell in the list. If the list is empty, then k=0 and e = f.

Our implementation actually uses a doubly-linked list predicate. However,
in this paper we will use the simpler singly-linked list predicate in order to
avoid letting the details of the shape analysis obscure the arithmetic refinement
procedure, which is our main focus.

Our abstract states are drawn from the following grammar, where we use the
notation ¥ to represent a list of variables.

Spatial Form % :=e — p|ls¥(e, f) | emp | Sy * Sy
Pure Form Il :=zxz|e< fle=f|-P|PiANP;
Memory Mua:=32. XANIT|T

The formula T is satisfied by all concrete states, including abort, and is used
to indicate failure of a command. Elements of IT are called pure formulas, while
elements of X are called spatial formulas. We take terms from M as the elements
of our abstract domain and refer to them as abstract state formulas. We will use
the meta-variables S, P, and @ to refer to such formulas.

Arithmetic Strengthening for Shape Analysis 425

In the left column of Figure [3, we give the postcondition rules for our com-
mands. These are given as Hoare triples { P} ¢ {Q}, where P and @ are abstract
state formulas. To take the postcondition of state S with respect to command c,
we search for an S’ such that S = S and {5’} ¢ {Q} is an instance of the rule
for ¢ in Figure [3l The formula @ is then the postcondition of the command. If
we cannot find such an S’; this corresponds to a failure to prove memory safety
of command ¢ and the abstract postcondition is T. For more on this process,
see the discussion of the “unfold” rule in [22] and the section on “rearrangement

rules” in [13].
4 Algorithm

A shape analysis based on separation logic, such as those in [22] and [13], will
generate an abstract transition system (ATS), which is a finite representation of
the reachable states of the program given as a transition system (A) with states
labeled by abstract state formulas. Such formulas are either formulas of separa-
tion logic or T, which indicates a potential violation of memory safety. If a path
from the initial state to T is found (a counterexample to memory safety), our al-
gorithm translates this path into an arithmetic program (Tr(A)). This arithmetic
program is then analyzed to obtain strengthenings for the invariants discovered
during shape analysis. The results of the arithmetic analysis are then combined
with the shape analysis results to produce a more refined ATS (/1) A particular
property of this combination is that if T can be shown to be unreachable in the
arithmetic program, then the original program is memory safe.

Definition 1. An abstract transition system is a tuple (Q,L,t, ~) where
Q is a set of states, 1 € Q 1is the start state, and L: Q — S is a function
that labels each state with a separation logic formula describing the memory
configurations associated with that state (or T). The last component, ~ is a
labeled transition relation. The labels are either program commands (c) or an
empty label (€). Thus, ~ C Qx (CU{e})x Q. For convenience, if t € (C'U{e})
and q,q" € Q, we will write q A q' to abbreviate (q,t,q') € ~ .

We assume that quantified variables in the state labels are a-renamed to be
disjoint from the set of variables present in the commands labeling the edges.
We will refer to the edges labeled with commands as postcondition edges and the
edges labeled with € as weakening edges. The reason for these names can be seen
in the following definition of well-formedness, which we require of our ATSs.

Definition 2. An ATS (Q,L,t, ~) is well-formed iff for all q,q' € Q and
c€C,i)q~5 q implies that {L(q)}yc{L(¢')} is a valid separation logic triple
and ii) q ~> ¢’ implies (L(q) = L(q')) is a valid separation logic entailment.

This ensures that the annotations associated with the abstract states are con-
sistent with the commands labeling the edges. That is, if ¢ ~ ¢’ and ¢ terminates

426 S. Magill et al.

when executed from a state satisfying L(g), then it terminates in a state sat-
isfying L(q"). Well-formedness also ensures that the weakening edges are valid
entailments. The algorithms defined in [22] and [I3] automatically construct an
abstract transition system that satisfies this condition.

In order to focus on the specifics of generating arithmetic programs from coun-
terexamples, which is the main contribution of this paper, we assume that the
abstract transition system has already been generated by running a separation
logic based shape analysis on the input program. The interested reader can refer
to [22] and [I3] for details on how the ATS is generated.

An example of the abstract transition system that the shape analysis might
generate is given in Figure [2 This ATS corresponds to the program discussed
in Section 21 Dotted lines are used for weakening edges, while solid lines denote
postcondition edges. We abbreviate assume(e) as a(e). Note that the shape anal-
ysis has discovered an invariant for the loop at control location 4, indicated by
the cycle at the bottom of the second column of states.

At control location 15, the system splits based on the value of k, the length
of the list. This is the one non-standard modification we make in our separation
logic shape analysis. Such an analysis would ordinarily try to execute curr :=
[curr.next] at location 15 given the precondition Jk. Is®(t, NULL). Since this
precondition does not imply that the command is memory safe (the list could be
empty), the analysis would simply conclude T. Instead, our shape analysis will
check to see if there is some condition under which the memory access would be
safe. More precisely, our theorem prover internally performs case splits and if one
of these cases results in safe execution, it returns this condition to the analysis.
The analysis then splits based on this condition and continues exploring the safe
branch (the unsafe branch remains labeled with T). For our definition of lists,
this condition is always a check on the length of the list. This is a key component
of our technique as it makes explicit the way in which size information about
data structures affects the safety of the program. It will then be the job of
the arithmetic analysis tool to show that the unsafe branch is infeasible due to
arithmetic constraints among the variables.

4.1 Generating Arithmetic Programs

The arithmetic program is generated by converting edges in the ATS to com-
mands that do not reference the heap. This translation involves making use of the
information about heap cells that the shape analysis has provided. For example,
given the state © — [data: y+ 2], we know that the command z = [x.datal will
result in z containing the value y + 2. We can achieve the same effect with the
command z = y + 2, which does not reference the heap but instead exploits the
fact that the shape analysis has determined the symbolic value for the contents
of the data field of x.

The fact that our formulas can involve existential quantifiers makes the com-
bination more expressive, and the translation more involved. Given the formula
Jy. x — [data: y + 2], it is clearly no longer sound to replace the command z
= x->data with the command z := y + 2. Since y is not a program variable,

Arithmetic Strengthening for Shape Analysis 427

4: 3x. t ~ next: NULL, data: —
curr := NULL; «imxacur=t
i =malloc(...) — a(/én}

3:i~ 0 A curr=NULL 4-10

14: 3k, IsK(t,NULL) A curr =t aG=n)

a(j< n)l

[15: k. IsK(t,NULL) A curr =t Aj<n]

ak= o’)/ \::\(k >0)

15: 3k. Is(t,NULL) A curr = t] [15: 3k. IsK(t,NULL) A curr =t]
\

0

.

Y= Ol
4:curr=NULLA T~ O

a(izn) a(ti<n)

5: curr = NULL
Ai=OAO<n

a(i = n); free(i); j

4: 3x.t - next: t, data: — «
t' ~ next: NULL, data: — A
simXAcCUr=tA..

T

Aj<nAk=0 Aj<nAk>0

4: 3k, x. ISKENULL) + i - x A
curr =t

t := [curr.next] l t := [curr.next] l

lines i
4-10 / T

i
1
|
i
1
i
i
i
|
i
i
i
i
i
i
I
i
1
|
i
1
|
i
i
i
i
! 16: 3k. curr - next: x, data: — =
i /

1

i

i

1

i

i

i

|

i

i

i

i

i

1

I

i

1

i

i

1

|

L

t := malloc(...)|

1s*1(t,NULL)
Aj<nAa>0

/
6:t—-*in0 4: 3k, x. t ~ next: t', data: —

Acurr=NULLAT<n 1sK(t,NULL) + i ~ X A curr = t A

free(curr)

[t.next] := curr

17: 3k. 1s* (¢, NULL)

7:tw next: curr «i~0
Aj<nAa>0

Acurr=NULLAT<N

4:t-next:curr’ « i ~ 1 A data: addr'
acurr'=NULL acurr=tA ...

18: 3k. Is*(curr,NULL)
Aj<nAa>0Acurr=t

Fig. 2. Sample ATS after shape analysis

its value is not specified from the point of view of the arithmetic analysis tool.
We must therefore ensure that the arithmetic program we generate contains a
variable y, corresponding to the quantified variable in the formula and that in
executions of the arithmetic program, y’s value is constrained in such a way that
it satisfies the separation logic formulas we received from the shape analysis.

We can formalize this idea of using the arithmetic commands to enable rea-
soning about quantified variables with the following definition, which describes
the properties the arithmetic command (¢’ in the definition) must have.

Definition 3. Let ¢ 5 ¢ be an edge in an ATS (Q, L,t, ~). Let L(q) = 3. P
and L(q') = 3y. Q be abstract state formulas. A command ¢ is a quantifier-
free approximation (QFA) of the edge q ~ ¢ iff for any pure formulas P’
and Q', the triple {P'} ¢ {Q'} implies the triple {32. PAP'} ¢ {37. Q A Q'}.

That is, reasoning using ¢’ is an over-approximation of reasoning under the
quantifier in the pre- and postconditions of ¢. In Section [l on soundness, we
show that such reasoning can be extended to the whole program by replacing
each command in the original ATS with a quantifier-free approximation of that
command and reasoning about the ATS thus obtained.

Translating Postcondition Edges. To find a purely arithmetic QFA for each
of the heap-manipulating commands, let us first look at the rules that are used
for adding postcondition edges to the ATS. These are given in the left column of
Figure[Bl They are presented as Hoare triples where the pre- and postconditions
are abstract state formulas. We use the notation S[z'/z] to mean S with z’
substituted for x.

Note that the first three rules result in the abstract post-state having
one more quantifier than the abstract pre-state: they each have the form

428 S. Magill et al.

Shape Analysis Postcondition Rule Arith. Cmnd.
{32. 8} ==FE {32',Z. x=E[x'/z]AS]a'/x]} 2'=uz;
x:=FE[z'/z
{3z. S} =7 {32, 2. Sz’ /z]} zh=z; ©:="7
{32. S} m:=alloc() {I2', 2. S[z'/x] *x (x — [])} rhi=x; v:="7
{32. S (B [p,t: F])} x:=[E.t] {32',7Z. x = Flz'/z] A =z
(5% (B [pt: F))e'/al} wi=Fla' /2]
{32. S« (E — [p])} free(E) {3z. S} €
{32. S« (Ew—[p,t: G)} [E]l:=F {3Z2. Sx(Ew~ [p,t: F])} €
{3z. S} assume(P) {3Z. S A P} assume(P)

Fig. 3. Rules for generating arithmetic commands from abstract postcondition edges

{32. S} ¢ {3x,Z. S'}. Our goal is to find an arithmetic command ¢’ corre-
sponding to the original command ¢, and to use ¢’ to reason about c. As such,
we would like ¢ to contain the new quantified variable. To do this in a way
such that ¢’ is a QFA, we need ¢’ to record the witness for the existential in the
postcondition. As an example, consider the command for assignment.

{32. S} e:i=E {32/, Z. x = E[2' /x| A S[a’ /x]}

The variable ' in the postcondition represents the old value of x. Thus, the
value of x before the assignment is the witness for 2’ in the postcondition. We
can record this fact using the sequence of commands 2':=x; x:= E. We use the
same idea to handle the other two rules that add a quantifier.

Capturing the quantification in the new command is only part of the process.
We must also over-approximate the effect of the command on the program vari-
ables. For commands like allocation (z:=alloc()), the best we can do is replace
this with the nondeterministic assignment x:=7?. However, for lookup we can
use the technique mentioned at the beginning of this section: if the precondition
tells us that the ¢ field of cell E contains the value F, we can replace z:=[E.{]
with z:= F (and the precondition for lookup will always have this form).

The other heap commands (heap store and free) are replaced with no-ops. This
may be surprising since these commands can have indirect effects on the values
of integer variables in the abstract state formulas. Values stored in the heap can
later be loaded into variables. This case is already handled by our rule for lookup,
as can be seen by considering what happens when we translate the command
sequence [x.data] :=y + 3; z := [x.datal] to arithmetic commands. The
first command will be converted to a no-op. To translate the second command,
we need to know its precondition. Supposing we start from the state « — [], the
postcondition of the first command is « — [data: y + 3]. This means that the
translation will convert the second command to z:=y + 3, which has the same
effect on the program variable z as the original commands. So indirect updates
to program variables through the heap will be properly tracked.

Also, freeing memory cells can decrease the size of lists in the heap. To incor-
porate reasoning about the length of lists, we must talk about how we translate
weakening edges in the ATS.

Arithmetic Strengthening for Shape Analysis 429

Translating Weakening Edges. Weakening edges are added by the shape
analysis to the abstract transition system for two reasons. First, they are used to
rewrite abstract states into a form to which we can apply one of the postcondition
rules. For example, to execute x := [a.next] from the state

Jk. Is*(a, NULL) A a # NULL
we must first notice that this formula implies
Jy, k. a — [next: y] * Is"(y, NULL) A a # NULL
We can then apply the third postcondition rule to this state to get
Jy, k. a— [next: y] x Is*(y, NULL) ANa # NULLAz =y

The other use of weakening edges is to show that certain formulas are invariant
over executions of a loop. For example, suppose we start in a state

3k. Is"(a, NULL)
And after executing some commands, reach the state
3z, k. a — [next: x] Is"(x, NULL)

If both these states are associated with the same program location, then we
have found a loop invariant since the second formula implies the first. This
fact is recorded in the ATS by connecting the second state to the first with a
weakening edge.

In both cases, we need to record information about the quantified variables
so that our arithmetic analysis can discover arithmetic relationships involving
these quantified variables. As with postcondition edges, we do this by recording
the witnesses for the quantified variables.

Recall that we have a weakening edge in the ATS only if 3Z. P + 37. Q.
Our goal then is to find an arithmetic command ¢ such that for any P/, Q’, if
{P"}{Q'} then 3Z. PAP' F 3y. Q AQ'. We generate such a ¢’ by analyzing the
proof of entailment between dZ. P and Jy. (). As we are interested in tracking
the values of existentially quantified variables, it is the rules for existential quan-
tifiers that end up being important for generation of the arithmetic commands.
In Figured we present the standard rules for introduction and elimination of ex-
istential quantifiers, modified to produce the appropriate arithmetic commands.
The full details of entailment for our fragment of separation logic are omitted
for space reasons, but the system is similar to that described in [3].

The notation P - Q(c) is used to mean that P entails @ and c is the arith-
metic command that is a quantifier-free approximation of this entailment. For
existential elimination, we simply record the new constant that was introduced
for reasoning about the quantified variable on the left. We also nondetermin-
istically assign to the constant once we are done with it to ensure that it will
not appear free in any invariants the arithmetic tool produces. For existential

430 S. Magill et al.

E-ELmm E-INTRO
3. Pla/z] - 32. Q () 3. PF 32 Qt/x] ()
Jz,¢. PF32. Q (a:=x; 5 a:=7) Jy. P+3x,2.Q (v:i=t;)

Fig. 4. Rules for generating arithmetic commands from proofs for weakening edges

introduction, we record the witness used to establish the existential formula on
the right. We do this by having our entailment checker return a witness in ad-
dition to returning a yes/no answer to the entailment question. This is possible
because the entailment procedure sometimes proves existentials constructively.
When entailment is proved without finding a witness (e.g. as happens when un-
rolling an inductive definition with a quantified body), ¢ in the premise is a fresh
logical constant, and so x:=1 is equivalent to x:=7.

As an example, suppose we want to generate arithmetic commands that
model the entailment 3k. Is"(a, NULL) A a # NULL F 3z, k. a — [next: z]
Is*(z, NULL) Aa # NULL. We first introduce a new constant b for the existential
on the left, resulting in the formula Is”(a, NULL) A a # NULL and the arith-
metic command b:=k. We then unroll the list segment predicate according to
the definition, obtaining Jz. a — [next: x]*Is*~ ' (x, NULL)Aa # NULL. Since x
arises due to the expansion of a definition, we use nondeterministic assignment in
the generated command producing z:= 7. We then apply existential elimination
again, obtaining a — [next: ¢| * Is’(c, NULL) A a # NULL and ¢:=z. Finally,
we prove the formula on the right side of the entailment, obtaining witnesses for
the existentially quantified variables z (witness is ¢) and k (witness is b—1). We
then “forget” about the constants we added with the commands b:=7; c:=7.
Thus, the full sequence of commands for this entailment is

b :=k; x :=7; ¢c :=%x; k:=b-1; b :=7; ¢ :=7

The updates to k here reflect the fact that, at this point in the execution, the
length of the list predicate being tracked by the shape analysis has decreased in
size by 1. Due to the commandsb := 7 and ¢ := 7, any quantifier free invariant
that holds after executing this sequence of commands will be expressed without
reference to b and c.

4.2 Precision

We can get a sense for the precision of this analysis by examining the places
in which nondeterministic assignment is used to over-approximate a command.
One such place is the rule for allocation. This should not concern us as the goal
is to use these arithmetic programs to discover properties of the integer values
involved in the program, whereas allocation returns a pointer value, which the
shape analysis is already capable of reasoning about. We can use this observation
to optimize our approach. If we keep track of type information we can ensure
that we only generate arithmetic commands when those commands result in the
update of integer-valued variables.

Arithmetic Strengthening for Shape Analysis 431

The other place where nondeterministic assignment occurs is in the rule for
existential elimination when the entailment checker does not return a witness.
This is actually the source of all imprecision in the arithmetic translation. It can
happen that an integer value such as 3 is stored in a list element, resulting in
the state

3k,d. x — [data: 3,next: k| * lsd(k, NULL)

If we then abstract this state to 3d. Is®(z, NULL), we lose the information about
the value stored in the data field of the heap cell at x. If this field is accessed
again, it will be assigned a nondeterministic value by the shape analysis. To
remedy this would require a notion of refinement on the shape analysis side
of the procedure. And indeed our technique would interact well with such a
shape refinement system. One could interleave arithmetic refinement and shape
refinement, calling one when the other fails to disprove a counterexample. We
leave development of such a system for future work.

4.3 Combined Analysis

Using the translation of individual edges described above, we can define the
translation of ATSs and the result of the combined analysis:

Definition 4 (Translated arithmetic program). For an ATS A =
(Q,L,i, ~), the translated arithmetic program Tr(A4) = (Q,L’,i, ~') is
an ATS defined such that if q ,\g/q/ and ¢ 1is the arithmetic command associated
with this edge, then we have q ~>' ¢'.

Definition 5 (Combination). Given an ATS A = (Q,L,., ~) and its
well-formed translation Tr(A) = (Q,L',t, ~"), where L'(q) is a pure for-
mula for each q, the combination of A and Tr(A) is defined to be the ATS
A=(Q,L,t, ~) where if L(q) = 3Z. S and L'(q) = S’ then L(q) = 3Z. SAS'.

Note that false A T is equivalent to false. So for an abstract state where the
shape analysis obtained T, indicating a potential safety violation, if an arithmetic
analysis can prove the state is unreachable (has invariant false), then it is also
unreachable in the combined analysis.

5 Soundness

The soundness result hinges on the fact that the translation for commands de-
fined in Section Ml results in a quantifier-free approximation.

Theorem 1. For each postcondition rule in Figure[3 the associated arithmetic
command is a quantifier-free approximation of the original command.

We also use the fact that the translation for weakening edges produces a
quantifier-free approximation.

Theorem 2. I[f3Z. P+ 3y. Q (¢) and {P'} ¢ {Q’'} then 3. PAP' + 3y. QN Q'.

432 S. Magill et al.

Proofs of these theorems can be found in an expanded version of this paper [21].
Given these results, we can show that invariants discovered based on analyzing

the arithmetic program can be soundly conjoined to the formulas labeling states
in the ATS.

Theorem 3 (Soundness). For an ATS A, suppose that we have run an arith-
metic analysis on Tr(A) and obtained (pure) invariants at each program point.
Then A is well-formed.

Proof. This follows directly from the fact that the ¢’ commands are QFAs of
the original edges. Let ¢ ~> ¢/ be any edge in A. Suppose L(q) = 3Z. P and
L(q') = 37. Q. Then L(q) = 3Z. P A L'(q) and L(¢') = 37. Q A L'(¢/). We must
show that the following triple holds

{37. PAL(¢)} ¢ {39. QAL (¢)}

Let ¢ be the arithmetic command associated with this edge in A’. Since
{L(q)} ¢ {L'(¢")} and ¢’ is a QFA of {3Z. P} ¢ {3y. Q}, our goal follows
immediately from the definition of QFA.

6 Experimental Results

We have developed a preliminary implementation of our analysis and tested it on
a number of programs where memory safety depends on relationships between
the lengths of the lists involved. For example, a function may depend on the fact
that the result of filtering a list has length less than or equal to that of the original
list. As arithmetic back-ends we have used OctAnal [23], Blast [19], and ARMC
[24]. Preliminary results show two trends. First, there is no tool among those we
tried that is strictly stronger than the others. That is, there is no tool among
these three that is able to prove memory safety for all of our sample programs.
However each program was able to be proven by some tool. In such cases, the
ability to choose any arithmetic tool allows one to prove the greatest number
of programs. Secondly, the performance characteristics of the tools are highly
dependent on the type of input they are given. As our examples are all relatively
small, OctAnal outperformed the tools based on model checking. However, for
large programs that contain many arithmetic commands which are not relevant
to proving memory safety, we would expect the relative performance of model
checking tools to improve, as these tools only consider the variables needed to
prove the property of interest. More experiments are necessary to fully explore
the advantages and disadvantages of various arithmetic provers in the context
of our combination procedure.

7 Related Work

The work presented here describes a way of lazily combining two abstract inter-
preters: the shape analysis produces abstracted versions of the input program for

Arithmetic Strengthening for Shape Analysis 433

which an arithmetic analysis is then called. More eager combination approaches
have been previously discussed in the literature (e.g. [LIT7ITE]).

Recent work [6] has described a method in which the TVLA [27] shape anal-
ysis is lazily combined with an arithmetic analysis based on BLAST. This work
reverses the strategy that we propose: they are lazily providing some additional
spatial support for what is primarily an arithmetic analysis, whereas we are lazily
providing additional arithmetic support for a shape analysis. Which approach
is better depends on the program in question. Programs that are concerned pri-
marily with integer calculations, but occasionally use a heap data structure may
be better analyzed with the approach in [6]. Programs which have as their main
function manipulation of heap data, or for which memory safety must be verified,
would be better analyzed with our approach.

Another related approach is the shape analysis in [22], which uses predicate
abstraction to retain facts about integer values during widening, but does not
provide a predicate inference scheme. Thus, these predicates must be supplied
by the user. Since our method uses a separate arithmetic tool to perform the
refinement, we inherit any predicate inference that tool may perform.

Connections between shape and arithmetic reasoning are exploited through-
out the literature (e.g. [TIBITOIRI29/TA]). Also, people have looked at ways of
combining abstract interpreters over different domains [TTJT7IIR]. For example,
one could imagine combining the shape analysis in [22] or [13] with an abstract
interpretation over the domains of convex polyhedra [I2] or octagons [23]. Our
approach has the advantage of allowing the use of any of these abstract domains
as well as arithmetic analyses that are not based on abstract interpretation. Fur-
thermore, given the way in which information about quantified values is shared
between the analyses, it is not clear that our approach can be seen as an instance
of one of the standard constructions for combinations of abstract domains.

Other shape analyses are known to support arithmetic reasoning, but typically
in only very limited ways that allow them to use naive arithmetic widening steps.
For example, the shape analysis described in [4] provides a combined analysis
that maintains arithmetic information. In this case the set of arithmetic vari-
ables in the abstract domain is extremely limited: each list-segment in the shape
analysis invariant is associated with an arithmetic variable. Furthermore, only
one inequality per variable is allowed, as the inequalties only occur between a
variable and its “old version”. Given these restrictions, the widening operation in
[4] can be naive in terms of its handling of arithmetic. Our refinement-based pro-
cedure uses arbitrary arithmetic analysis tools to strengthen the shape analysis
invariant being inferred, meaning that we have access to the most sophisticated
widening operations available. More arithmetic is supported in [9], but also with
an aggressive widening since the arithmetic reasoning is targeted to within a
loop body.

Another combination of shape and arithmetic is given in [26], which presents
a means of reasoning about size properties of data structures tracked via a shape
analysis based on reference counting and must-alias information.

434 S. Magill et al.

A number of approaches based on combining a numerical analysis with a shape
analysis based on shape graphs (such as [27]) have been explored. Examples
include [I6] and [2§]. However ours is the first attempt to carry out such general
arithmetic reasoning in a shape analysis where the abstract domain consists of
separation logic formulas.

Our method makes use of a notion of generalized path (i.e. a path through the
program where the number of unrollings through some loops are unspecified).
Uses of this concept can be found elsewhere in the literature (e.g. [2005]). In
particular, our work can be seen as fitting nicely into the framework proposed
in [5]. As in this work, we use a refinement procedure based upon analyzing
generalized paths. However, our work is unique in that the paths arise due to
a shape analysis based on abstract interpretation rather than a software model
checker. Furthermore, the way in which quantifiers in the generalized path are
expressed as variables in the translated path is not present in this other work.

8 Conclusion

Shape analyses are typically imprecise in their support for numerical reasoning.
While an analysis that fully tracks correlations between shape and arithmetic in-
formation would typically be overkill, we often need a small amount of arithmetic
information in shape analysis when arithmetic and spatial invariants interact.
We have proposed a lazy method of combining a fixed shape analysis with an
arbitrary arithmetic analysis. This method treats shape and arithmetic informa-
tion independently except for key relationships identified by the shape analysis.
Crucially, these relationships may be over values which are only present in the
abstract states. When potentially spurious counterexamples are reported by our
shape analysis, our method constructs a purely arithmetic program and uses
available invariant inference engines as a form of refinement. This new adaptive
analysis is useful when a proof of memory safety or assert-validity requires deep
spatial reasoning with targeted arithmetic support.

References

1. Armando, A., Benerecetti, M., Mantovani, J.: Model checking linear programs with
arrays. Electr. Notes Theor. Comput. Sci. 144(3), 79-94 (2006)

2. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.: Automatic predicate abstrac-
tion of C programs. In: PLDI’2001: Programming Language Design and Implemen-
tation, vol. 36, pp. 203—213. ACM Press, New York (2001)

3. Berdine, J., Calcagno, C., O’Hearn, P.: Symbolic execution with separation logic.
In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, Springer, Heidelberg (2005)

4. Berdine, J., Cook, B., Distefano, D., O’Hearn, P.: Automatic termination proofs
for programs with shape-shifting heaps. In: Ball, T., Jones, R.B. (eds.) CAV 2006.
LNCS, vol. 4144, Springer, Heidelberg (2006)

5. Beyer, D., Henzinger, T., Majumdar, R., Rybalchenko, A.: Path invarints. In: PL.DI
(2007)

6. Beyer, D., Henzinger, T.A., Théoduloz, G.: Lazy shape analysis. In: Ball, T, Jones,
R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 532-546. Springer, Heidelberg (2006)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Arithmetic Strengthening for Shape Analysis 435

. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,

D., Rival, X.: A static analyzer for large safety-critical software. In: PLDI’2003:
Programming Language Design and Implementation, pp. 196-207. ACM Press,
New York (2003)

. Bouajjani, A., Bozga, M., Habermehl, P., Tosif, R., Moro, P., Vojnar, T.: Programs

with lists are counter automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, Springer, Heidelberg (2006)

. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Beyond reachability: Shape

abstraction in the presence of pointer arithmetic. In: Yi, K. (ed.) SAS 2006. LNCS,
vol. 4134, Springer, Heidelberg (2006)

Choi, Y., Rayadurgam, S., Heimdahl, M.P.: Automatic abstraction for model check-
ing software systems with interrelated numeric constraints. In: Proc. of ESEC/FSE,
pp. 164-174. ACM Press, New York (2001)

Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
POPL’1979: Principles of Programming Languages, pp. 269-282. ACM Press, New
York (1979)

Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: POPL (1978)

Distefano, D., O’'Hearn, P.W., Yang, H.: A local shape analysis based on separation
logic. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006 and ETAPS 2006. LNCS,
vol. 3920, Springer, Heidelberg (2006)

Dor, N., Rodeh, M., Sagiv, M.: Cssv: towards a realistic tool for statically detecting
all buffer overflows in c¢. In: PLDI ’03: Proceedings of the ACM SIGPLAN 2003
conference on Programming language design and implementation, New York, Ny,
USA, pp. 155-167. ACM Press, New York, USA (2003)

Flanagan, C.: Software model checking via iterative abstraction refinement of con-
straint logic queries. In: CP4+CV’04 (2004)

Gopan, D., DiMaio, F., Dor, N., Reps, T., Sagiv, M.: Numeric domains with
summarized dimensions. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS,
vol. 2988, Springer, Heidelberg (2004)

Gulwani, S., Tiwari, A.: Assertion checking over combined abstraction of linear
arithmetic and uninterpreted functions. In: Sestoft, P. (ed.) ESOP 2006 and ETAPS
2006. LNCS, vol. 3924, pp. 279-293. Springer, Heidelberg (2006)

Gulwani, S., Tiwari, A.: Combining abstract interpreters. In: Ball, T. (ed.) ACM
SIGPLAN Conf. on Programming Language Design and Implementation, PLDI
2006, ACM Press, New York (2006)

Henzinger, T., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In:
POPL’2002: Principles of Programming Languages, pp. 58-70. ACM Press, New
York (2002)

Kroening, D., Weissenbacher, G.: Counterexamples with loops for predicate ab-
straction. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, Springer,
Heidelberg (2006)

Magill, S., Berdine, J., Clarke, E., Cook, B.: Arithmetic strengthening for shape
analysis. Technical Report CMU-CS-07-135, Carnegie Mellon University (2007)
Magill, S., Nanevski, A., Clarke, E., Lee, P.: Inferring invariants in separation
logic for imperative list-processing programs. In: SPACE 2006: Third Workshop
on Semantics, Program Analysis, and Computing Environments for Memory Man-
agement (2006)

Miné, A.: The Octagon abstract domain. Higher-Order and Symbolic Computation
(to appear)

436

24.

25.

26.

27.

28.

29.

S. Magill et al.

Podelski, A., Rybalchenko, A.: ARMC: the logical choice for software model check-
ing with abstraction refinement. In: Hanus, M. (ed.) PADL 2007. LNCS, vol. 4354,
Springer, Heidelberg (2006)

Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
LICS, pp. 55-74. IEEE Computer Society Press, Los Alamitos (2002)

Rugina, R.: Quantitative shape analysis. In: Giacobazzi, R. (ed.) SAS 2004. LNCS,
vol. 3148, Springer, Heidelberg (2004)

Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic. In:
TOPLAS (2002)

Yavuz-Kahveci, T., Bultan, T.: Automated verification of concurrent linked lists
with counters. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS,
vol. 2477, Springer, Heidelberg (2002)

Zhang, T., Sipma, H.B., Manna, Z.: Decision procedures for queues with integer
constraints. In: Ramanujam, R., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821,
pp. 225-237. Springer, Heidelberg (2005)

	Arithmetic Strengthening for Shape Analysis
	Introduction
	Motivating Example
	Preliminaries
	Algorithm
	Generating Arithmetic Programs
	Precision
	Combined Analysis

	Soundness
	Experimental Results
	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

