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Abstract

A number of researchers have proposed various tools for checking secu-
rity protocols. Most of these tools work by comparing the set of possible
traces (as expressed by some model of computation) to the set of cor-
rect traces (often expressed as a set of relationships between events in
a trace). In this paper we propose a new logic of knowledge in which
one can express relationships between events, variables, and knowledge.
This logic has a precise semantics with respect to a well defined model of
computation and can be checked automatically. In addition, the fact that
We can express properties about knowledge allows us to express security
properties specific to electronic commerce, including anonymity.

1 Introduction

Computer security has become a very popular topic recently due to the rapid
growth of such entities as “the Internet” and “the World Wide Web.” As more
and more people gain access to these resources, and as more services are offered,
the importance of being able to provide security guarantees becomes paramount,.
Typically, these guarantees are provided by means of security protocols that
make use of encryption. A number of researchers have proposed techniques to
analyze these protocols in an attempt to find errors or to prove them correct.

One of the first attempts at formalizing the notion of a correct protocol was
the Logic of Authentication, more commonly known as the BAN logic (3]. This
logic proved useful in analyzing security protocols. Kindred and Wing helped
to automate the use of this logic by developing a theory generator for it [5].
However, one of the drawbacks to the logic is the lack of a formal model with
which to define the semantics of the logic.
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There has been much work recently on formal models for security protocols.
A number of researchers have used general purpose model checkers to verify
authentication protocols [6. 7. 8]. In all cases. the authors must specify the “bad
traces” and check to see if any of them are valid traces of the model. In [4],
we provide a special purpose model checking tool for verifying authentication
protocols which has a built in adversary which can construct new messages when
trying to subvert a protocol.

Bella and Paulson have used theorem proving to verify authentication pro-
tocols [1]. Their method requires that one express the set of all possible traces
by providing a set of rules that describe how to extend a valid trace. One then
describes the relationships between events that must hold true of correct traces
using the same syntax. and Isabelle tries to prove that all valid traces are also
correct traces.

What seems to be missing from all of these tools. is a logic that can be used
to specify the required properties and which also has a precise semantics. In this
paper, we propose such a logic. This logic can be used to express relationships
between events and between the variable bindings belonging to the different
agents as before. In addition, however, we can now express properties involving
knowledge. Because the manipulation of knowiedge (messages) is built into our
tool. this kind of checking is straightforward. We believe that similar extensions
could be made to the work of Bella and Paulson, for similar reasons. However, it
might prove difficult to do this for tools in which the evolution of an adversary’s
knowledge must be explicitly encoded in the model description.

The rest of this paper is organized as follows. In section 2 we review the most
commeon way in which messages are modelled when verifying security protocols..
Sections 3 and 4 describe the computation model which we use to provide the
semantics for the logic. This model is closely based on our actual tool. A more
detailed description of our tool appears in [4]. The heart of our current work can
be found in sections 5 and 6 in which we present the syntax and the semantics
of our specification logic. Section 7 provides an example of how specifications
could be written in this logic using the 1IXP electronic commerce protocol [2] as a
reference point. Section 8 concludes with some final observations and directions
for future work.

2 Messages

Typically, the messages exchanged during the run of a protocol are constructed
from smaller sub-messages using pairing and encryption. The smallest such
sub-messages (i.e. they contain no sub-messages themselves) are called atomic
messages. There are four kinds of atomic messages.

e Neys are used to encrypt messages. Keyvs have the property that every
key & has an inverse £~! such that for all messages m, {{m}x}z-1 = m.
{Note that for symmetric cryptography the decryption key is the same as
the encryption key. so k = &71)



* Principal names are used to refer to the participants in a protocol.

 Nonces can be thought of as randomly generated numbers. The intuition
is that no one can predict the value of a nonce; therefore, any message
containing a nonce can be assumed to have been generated after the nonce
was generated. ([t is not an “old” message. )

¢ Data which plays no role in how the protocol works but which is intended
to be communicated between principals,

Let A denote the space of atomic messages. The set of all messages M over
some set of atomic messages A is defined inductively as follows:

e Ifac A then a e M. (Any atomic message is a message.)

e Ifm; € M and m» € M{ then my-ma € M. (Two messages can be paired
together to form a new message.)

e If m € M and key & € A then {m}h € M. (A message M can be
encrypted with key & to form a new message.)

We would also like to generalize the notion of messages to message tem-
plates. A message template can be thought of as a message containing one or
more message variables. To extend messages to message templates we add the
following to the inductive definition of messages:

e Ifvisa message variable, then v € M.

Because keys have inverses, we take this space modulo {{m}s}e-1 = m.
It is also important to note that we make the following perfect encryption
assumption. The only way to generate {m}s is from m and k. In other
words. for all messages m,my, and ma and keys £, {m}x # my - ms, and
{mh ={mlo=sm=m Ak =4

We also need to consider how new messages can be created from already
known messages by encryption, decryption, pairing (concatenation), and pro-
Jection. The following rules capture this relationship by defining how a message
can be derived from some initial set of information /.

L. If me [ then [+ m.

2.IfI+Fm, and [ F ma then [ F my - m,. (pairing)

3. If I+ my - my then I+ my and I - ™My. (projection)

4. If I'tm and I+ k for key k, then [ F {m}x. (encryption)

on

I I+ {m}y and [ F k=1 then [ - m. (decryption)

(V5]



This defines the most common derivability relation used to model the ca-
pabilities of the adversary in the literature. Given some base set of messages
I, we can define all the messages that can be derived from [ as 1, the closure
of I under the rules above. For example. if I is some finite set of messages
overheard by the adversary. then T, represents the set of all messages known to
the adversary.

In general. / is infinite. but researchers have taken advantage of the fact
that one need not actually compute T. It suffices to check m € T for some finite
number of messages m. However. checking if m € T must still be decidable. For
a detailed discussion of this question, see [4].

3 The Model

We model a protocol by the asynchronous composition of a set of named com-
municating processes which model the honest agents and the adversary. We
would like to model an insecure and lossy communication medium, in which a
principal has no guarantees about the origin of a message, and where the ad-
versary is free to eavesdrop on all communications. Therefore, in the model.
we insist that all communications go through the adversary. In other words.
all sent messages are intercepted by the adversary and all messages received by
honest agents were actually sent by the adversary. In addition, the adversary is
allowed to create new messages from the information it gains by eavesdropping,
in an attempt to subvert the protocol.

In order to make the model finite, we must place a bound on the number
of sessions that a principal may attempt. A session will be modelled as an
incarnation of a principal’s role in the protocol. Each incarnation is a separate
copy or instantiation of a principal and consists of a single execution of the
sequence of actions that make up that agent’s role in the protocol, along with
all the variable bindings and knowledge acquired during the execution. An agent
can have multiple incarnations. but each incarnation is executed once. When
we combine these with a single incarnation of the adversary, we get the entire
model for the protocol.

Each incarnation of an honest principal is modelled as a 5-tuple (N, S, I, B, P)
where:

e N € names is the name of the principal.

o S is a unique session [D for this incarnation.

B: vars{N) — M is a set of bindings for vars(/N), the set of variables
appearing in principal N, which are bound for a particular session as it
receives messages.

e [ C M is the set of messages known to the principal to the session 5.

P is a process description (similar in style to CSP) given as a sequence
of actions to be performed. This actions include the pre-defined actions



send and receive. as well as user defined internal actions such as commit
and debit.

The model of the adversary,  has some similarities; however, the adversary
is not bound to follow the protocol and so it doesn’t make sense to include either
a sequence of actions P or a set of bindings B for the adversary. Instead, at
any time, the adversary can receive any message or it can send any message it
can generate from its set of known messages /q.

The global model is then the asynchronous composition of the models for
each session, including the adversary. Each possible execution of the model
corresponds to a trace. a finite, alternating sequence of global states and actions
T =ogayo1al - -anoy, for some n € N, such that oia1 3 0 for 0 <i<nand
for the transition relation — defined in section 4,

4 Actions

The actions allowed during the execution of a protocol include the two predefined
actions SEND and RECEIVE as well as possibly some user defined actions. The
model transitions between global states as a result of actions taken by the incar-
nations. More formally, we define a transition relation + C ¥ x S x A x MxE
where ¥ is the set of global states, S again is the set of session IDs, A is the
set of action names (which includes Send and Rec), and M is the set of al]
possible messages. As at the end of section 3, we will use the notation ¢ %7 &
in place of (o,s,a,m, a’) € = when it is more convenient. In the definitions
below, we will denote the adversary as = (Na, Sa, ¢, In, #) and the incarna-
tions as ¥; = (NV;, S;, By, I;, P;). We will use ¢ = (82, ¥,,. .-, ¥,) to denote the
global state before the transition and o = (Q,W),...,¥!) to denote the global
state after the transition. In addition, we will use the notation B to denote the
obvious extension of a set of bindings B from the domain of variables to the
domain of message templates. In other words, E?(m) 1s result of substituting
B(v) for v in the message template m for all the variables v appearing in m.
T P

An incarnation with session ID s can send message m in global state o
and the new global state is ¢’ if and only if

L. Iar = InUm. (The adversary adds m to the set of messages it
knows.)

2. There is an incarnation ¥, = (Vi By, I, SEND(s-msg).P,-’) in o such
that in o/, ¥! = (N, s. By, I;, P!y and m = B;(s-msg). (There is an

incarnation that is ready to send Imessage m.)

3. ¥; =W for all § # . (All other incarnations remain unchanged.)

2-Rec'm
— o'



An incarnation with session ID s can receive message m in global state o
and the new global state is ¢’ if and only if

1. m € I. (The adversary can generate the message m.)

2. There 1s an incarnation ¥; = (N;, s, By, I;, RECEIVE(r-msg).P!) in ¢
such that in o', W) = (N;,s,B},I{,P!), I! = I; Um, and B is the
smallest extension of B; such that B’;(r-msg} = m. (There is an
incarnation ready to receive a message of the form of m and the its

bindings are updated correctly in the next state.)

3. ¥; = W' for all j # i. (All other incarnations remain unchanged.)

s Am
® 0 —r O

A incarnation with session ID s can perform some user defined internal
action A with argument m in global state ¢ and the new global state is
o’ if and only if

1. There is an incarnation ¥; = (Nj, s, B;, I;, A(msg).P!) in ¢ such that
in o, ¥ = (N;,s, By, I;, P!y and m = B;(msg). (There is an incar-
nation s that is ready to perform action A with argument m.)

2. ¥; = ¥ for all j # 7. (All other incarnations remain unchanged).

5 Syntax

We will use a first order logic where quantifiers range over the finite set of
incarnations. The atomic propositions are used to characterize states, actions,
and knowledge in the model. The arguments to the atomic propositions are
terms expressing Incarnations or messages. We begin by a formal description of
terms.

If S is a session ID. then S is an incarnation term.

e If 5 is an incarnation variable. then s is an incarnation term.
e If M is a message, then M is a message term.
e If m is a message variable, then m is a message term.

e If 5 is an incarnation term. then pr(s) is a message representing the prin-
cipal that is executing incarnation s.

e If 5 is an incarnation term and m is a message variable then s.m is a
message term representing the binding of m in the incarnation s.

e If m; and m+ are message terms, then m; - m; is a message term.

e If m; and m, are message terms, then {m;},, is a message term.



As in standard first order logic, atomic propositions are constructed from
terms using relation symbols. The predefined relation symbols are “=" “Knows”
“Send”. and “Rec”. Just as Send and Rec correspond to the send and receive
actions in the model. the user can define other relation symbols which would
correspond to user defined actions in the model.

The syntax for atomic propositions is as follows. (All relation symbols are
used infix.)

¢ If m; and m, are message terms. then m; = my is an atomic proposition.

e If 5 is an incarnation term and m is a message term, then s Knows m is
an atomic proposition which intuitively means that incarnation s knows
the message m.

e If 5 is an incarnation term, m is a message term, and Act is an action
relation symbol, then s Act m is an atomic proposition which intuitively
means that incarnation s performed action Act with message m as an
argument.

Finally, well-formed formulas (wits) are built up from atomic propositions
with the usual connectives from first-order logic.

e if f is an atomic proposition, then f is a wif.

e if fis a wff. then —f is a wif.

o if f and f, are wffs, then fiA fais a wif.

e if fis a wif and s is an incarnation variable, then Vs.f is a wif.
We also use the following common shorthand:

* hiVa=s-(=fin-fa)

*h=afas-fVf

*hefh=fi-ofhAfoaf

® 35.f = ~Vs.—f

6 Semantics
Again. we begin with the terms of the logic.

® A session ID S refers to the incarnation in the model with that session ID.
® A incarnation variable s ranges over all the session IDs in the model.

* An atomic message M is an atomic message in the model.



e A message variable v varies over messages in the model and can be defined
as a binding variable in a particular principal.

e The function pr maps session IDs to principal names. If s is a session ID,
then pr(s) is the principal executing the incarnation with session 1D s.

e We use “.” as a scoping operator. If s an incarnation term and v is a
message variable. then s.v refers to the variable v bound in incarnation s.
The interpretation o(s.v) of s.v in a particular state o is B, (v), the value
bound to the variable v in incarnation s in state .

e Message terms can be concatenated using “” just as messages are con-
catenated.

e Similarly a message term m, can be encrypted with another message term
™M, just as messages are encrypted in the model.

The wifs of the logic will be interpreted over the traces of a particular model.
Recall that a trace consists of a finite. alternating sequence of states and actions
T = 0pai01 ...5,. We give the semantics of wifs in our model via a recursive
definition of the satisfaction relation |=. We will write (7,i) = f to mean that
the ith state in , satisfies the formula f. We begin with atomic propositions.

e (m i) | my = myiff oi(my) = oi(ma) (i.e. the interpretation of m; and
the interpretation of ms in the state ¢y are indeed equal).

o (i) = s Knows m iff o;(m) € I; for some incarnation ¥; in o such
that S; = s (i.e. the incarnation with session ID s can derive the message
m from its known set of messages in the state o).

e (m,i) = s A m for some action 4 (including the pre-defined actions Send

and Rec) iff a; = 5. A . m (i.e. the transition into state o; was taken
because the incarnation with session ID s took action A with argument
m).

The extension of the satisfaction relation to the logical connectives is the
same as for standard first order logic. We use the notation [f/s — so] to denote

the result of substituting every free occurrence of the incarnation variable s in
f with the session ID so.

o (mi) | ~f iff (md)  f.
o (mi) | fi A fa iff (md) | fi and (7.1) F f2
o (m,i) = Vs.f iff (m.i) = [f/s — so] for all sessions so in the model.

(o8]



7 Example

We now demonstrate how this system might be used on an example. We will
look at the 1KP Protocol from (2]. In the protocol description below, “C” refers
to the customer, “M” to the merchant, and “A” to the credit card authority.
¢ Basic Fields

DESC is the description of the goods being purchased.

PRICE is the previously agreed upon price.

CC#t is the customer’s credit card number.

€4 is the authority’s public key.

M is a hash function,

Re is a nonce generated by the customer.

IDas is the merchant’s ID.

TIDas is a transaction ID.,

SALT¢ is a random number generated by the customer.

e Starting Information:
Customer: DESC, PRICE, CC#, &£,
Merchant: DESC, PRICE, Ea

e Composite Fields:
CID = H(R¢, CC#)
Common = PRICE. IDy,, TIDas, DATE, NONCEy,, CID, H(DESC,SALT¢)
SLIP = PRICE, H(Common). CC#, Rc
Clear = IDys, TID4s, DATE. NONCE,;, #H(Common)

¢ Protocol Flows:

1. Initiate:
C — M: SALT., CID
2. Invoice:
M — C: 1Dy, TIDyy, DATE. NONCEM,?-[(Common)
3. Payment:
C — M: £,(SLIP)
4. Auth-Request;
M — A: Clear, ?{(DESC.SALTC),“,'A(SLIP]
2. Auth-Response:
A= M: Y/N, S4(Y/N. H(Common))
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6. Confirm:
M — C:Y/N, S4(Y/N.H(Common))

We first construct a model of each agent in the protocol using the incarnation
model we discussed in section 3. Each can be characterized as a sequence
of messages it sends and messages it expects to receive. Again, [4] contains
a detailed example of how to write a model from a protocol description. In
addition we might include extra actions for things such as money transfers
and commit points. For example. the credit card authority may take a DEBIT
action immediately before replying with the Auth-Response in message 5. The
customer may take a COMMIT action immediately before sending the payment
information in message 3.

Next, we specify the properties we expect the protocol to satisfy in the logic
we have described. We now consider some of the properties the designers of the
1KP protocol discuss in their paper.

e Proof of Transaction Authorization by Customer. When the credit card
authority debits a certain credit card account by a certain amount, the
authority must be in possession of an unforgeable proof that the owner
of the credit card has authorized the payment. We will assume that the
signed slip £4(SLIP) provides this proof. This is somewhat indirect; we
are not proving that £4(SLIP) is actually such a proof. We can express
this property as follows:

VAo . pr{Ae) = AA Ao DEBIT (Ag.CC# - Ao.PRICE) —
Ag Knows £4(SLIP)

This formula states that for all incarnations Ag, if Ag is an incarnation
of the authority, and Ap debits the credit card account CC# by PRICE,
then Ag can produce (knowsj the appropriate purchase slip.

e Unauthorized Payment is Impossible. We will interpret this to mean that
whenever the customer’s account is debited, the customer must be in a
state consistent with it having made a purchase whose price corresponds
to the debited amount.

YAg . pr(Ag) = AA Ag DEBIT (Ao.CCH# - Ag.PRICE) —
3Co . pr(Co) = C A Co.PRICE = PRICE

This formula states that for all incarnations Ag if A is an incarnation of
the authority 4. and Ay debits the credit card account CC# by PRICE,
then there exists an incarnation C of the customer C and the customer’s
price Cy. PRICE is equal to the debited price PRICE.

10



e Privacy. The order information and credit card numbers should not be
revealed. In other words, only the appropriate principals should know the
order information and the credit card number.

V5 VCo . (pr(Co) = C)A (S Knows Co.DESC) — [pr(S) = Cvpr(S) = M]
VS YCo . (pr(Co) = C)A (S Knows Co.CC#) — [pr(S) = CVpr(S) = A)

This first formula states that for all incarnations S , if S is knows the
customer’s description of the transaction, then S is an incarnation of either
the customer or the merchant.

The second states that for all incarnations S, if S knows the customer’s
credit card number, then § Is an incarnation of either the customer or the
authority.

® Anonymaty. We may also want to insure that the merchant does not gain
knowledge of the identity of the customer. Assuming the merchant doesn’t
know the name of the customer before execution of the protocol, then the
following specification would guarantee anonymity.

VS . (S Knows C) — [pr(S) = CVpr(S) = A)

This formula states that for all incarnations S , if S knows the customer’s

name C, then S must be an incarnation of the custormer C or the authority
A.

8 Conclusion

In this paper we have proposed a logic in which we can express relationships
between messages, variables. actions, and knowledge. This logic has a precise
semantics with respect to a well defined model of computation. We are cur-
rently implementing this extension to our already existing model checker. As
before, because we consider only finite models, it is seems clear that the decision
procedure we suggest terminates,

The 1KP example discussed in the baper suggests that reasoning about
knowledge is useful, especially for electronic commerce protocols. To our knowl-

measure of confidence for the verification.

The most obvious area of future work is to finish implementing the ideas
presented in this paper. Currently, it is not clear how much the complexity of
the model checker will increase with the mtroduction of this general logic. It
should also be interesting to test how this kind of extension might work with a
theorem proving system like the one built by Bella and Paulson.
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