A Parallel Algorithm for Constructing Binary Decision Diagrams

Shinji Kimura

Dept. of Electronics Engineering
Kobe University

Kobe, 657 Japan

Abstract

Ordered binary decision diagrams [1] are widely used for rep-
resenting Boolean functions in various CAD applications. This
paper gives a parallel algorithm for constructing such graphs and
describes the performance of this algorithm on a 16 processor En-
core Multimax. The execution statistics that we have obtained
for a number of examples show that our algorithm achieves a
high degree of parallelism. In particular, with fifteen processors
our algorithm is almost an order of magnitude faster on some
examples than the program described in [5]. When we construct
a binary decision graph, our parallel algorithm follows the syn-
tactic structure of the Boolean formula. First, the level of each
Boolean operation is determined. Operations in the same level
can be performed in parallel. If there are few operations at some
level, then these operations are divided into a sequence of sub-
operations that can be processed in parallel.

1 Introduction

The ordered binary decision diagram (1] is an acyclic graph rep-
resentation for Boolean functions. Because this representation
provides a canonical form (i.e. two functions are logically equiv-
alent if and only if they have the same form) and is quite succinct
in most cases, it has become widely used in CAD applications.
However, the construction of binary decision diagrams for certain
large or particularly complex Boolean functions can be very time
consuming. Consequently, it is important to find ways of speed-
ing up the construction process. This paper describes a parallel
algorithm for this task. The algorithm has been implemented on
a 16 processor Encore Multimax and tested on several standard
examples.

Our approach to binary decision diagrams uses some simple
ideas from finite automata theory. An n-argument Boolean func-
tion can identified with the set of Boolean vectors that make it
true. If we associate a Boolean vector as a string, then f can be
represented by a finite set of strings. Since all finite languages are
regular, there is the minimal finite automaton that accepts the
set. This automaton provides a canonical representation for the
original Boolean function. Logical operations on Boolean func-
tions can be implemented by set operations on the languages ac-
cepted by the finite automata, and standard constructions from
elementary automata theory can be used to build the binary de-
cision diagram for the result of logical operations.

In the construction of a binary decision diagram corresponding
to a Boolean function, a parse tree of the function is used, where

°The second author was partially supported by NSF grant CCR-87-226-33
and by the Defense Advanced Research Projects Agency ARPA Order No.
4976.

CH2909-0/90/0000/0220$01.00 © 1990 IEEE

220

Edmund M. Clarke

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

leaf nodes correspond to input variables, and non-leaf nodes cor-

respond to Boolean operations. The level of each node is defined
from leaf nodes to the top of the tree, and operations at the
same level are performed in parallel. If there are only a few op-
erations in some level, these operations are divided into several
sub-operations to extract additional parallelism.

2 Binary Decision Diagrams

We start with some simple definitions on finite automata and
binary decision diagrams. A string is a sequence of symbols over
some alphabet £. In this paper, the alphabet will always be
¥ = {0,1}, where 0 represents False and 1 represents True. The
length of a string is the number of symbols in the string.

A finite automaton M is a 5-tuple (Q, L, 8, qo, F'), where @ is
a finite set of states, ¥ is the alphabet for strings, é is the state
transition function from @ x ¥ to @, go is the initial state in Q,
and F' is a set of final states in Q). M accepts a string a;4;...a,
where each a; € T if and only if there exists a sequence of states
40,41, ---1qn such that ¢; = 6(gi—1,a;) and ¢, € F. The set of
strings accepted by M is called the language of M and will be
denoted by L(M).

For example, M = ({q0, 91,92, 93,94, 95, L}, {0, 1}, 6, g0, {gs})
accepts {010, 110, 111}, where ¢ is defined as 6(go,0) = ¢1,
6(q0,1) = g2, 8(q1,0) =L, 6(q1,1) = g3, 8(g2,0) =1L, 6(ga,1) =
a1, 6(g3,0) = g5, 6(g3,1) =1, 6(qs,0) = g5, 6(qu,1) = g5,
6(¢gs,0) =1, 6(gs,1) =1, é(L,0) =1, and &(L,1) =L. Lis
called a sink state. The representation of § as a directed graph
is shown in Figure 1. The sink state is not shown in the figure
for simplicity.

A Boolean function f with n-variables is a function from
{0,1}" to {0,1}. The set of elements in {0, 1}" for which f
is 1 can be used to represent f. If we associate the n-tuple (a;,
az, ..., @y) with the string aja;...a,, then each set of n-tuples
from {0, 1}™ will correspond to a set of strings over ¥ = {0,1}
with length n. This correspondence allows us to associate a finite
language contained in £" = {0, 1}™ with each n variable Boolean
function f. Since all finite languages are regular, there is the

minimal finite automaton accepting the language corresponding
to f. The minimal automaton provides a canonical form for f:
two n-variable Boolean functions will have the same minimal au-
tomaton if and only if they are logically equivalent. Since each
node in the state-transition graph for a Boolean function will
have at most two successors (one for each value of ¥), we can
view this graph as a binary decision diagram for the function.

For example, a binary decision diagram in Figure 1 represents
f(z1,22,23) = (~21 A2 Az3) V (21 A 22), the one in Figure 2
represents fy(z1,...,2,) = 1 for all inputs, and the one in Figure 3
represents f(z1,...,2n) = ;.

U]
o
q

Gi-20
gi-1 0,1
Fig.1 A binary decision diagram g !
accepting {010, 110, 111}. 0.1
%410

90
0,1
¢11i ’
gn~1 -
IO, 1
qn

Fig.2 A binary decision diagrams
accepting all strings.

Gn-1C
ZO, 1
n

Fig.3 A binary decision diagram
corresponding to z;.

3 Boolean Operations

Let Ml = (Qly {01 l}a 617 qés Fl) and M2 = (Q'h {0, 1}7 627 qga
F3) be the binary decision diagrams for two n-variable Boolean
functions f; and fz, Ly be the sink state in @1, and Lj be the

sink state in Q2.

We consider the AND operation first. The set of strings over
{0,1} that satisfy fi A f, corresponds to the intersection of sets
accepted by M; and M. The standard construction of a finite
automaton M that accepts L(M;) N L(M3) may be used in this
case. M = (Q1xQ2 U {L}, {0, 1}, 6, (48,43); F1 X F2), where L
denotes the sink state for the product automaton. &, is defined as
8a((q1,02), @) = (62(qn, @), 62(2,0)) if 61(q1, @) # L1 and &x(g2, @)
Ly, and L otherwise.

The OR operation is similar. The OR of two Boolean func-
tions represented by My and Ms corresponds to the union of sets
accepted by M; and M. The standard construction for such an
M can also be used in this case. M = (@1 x @2 U {1}, {0,
1}, bv, (g}, @), (F1 x Q2) U (Q1 X F2)), where &y is defined as
6u((a1,92), @) = (61(q1,0), 82(g2, @) if 61(q1,0) # Ly or 65(g2,0)
L1, and L otherwise.

The NOT operation corresponds to the set difference. Let U be
the set of all strings with length n, then U — L(M;) corresponds
to the negation of the Boolean function represented by M;. A
finite automaton accepting U — L(My) can be constructed from
My = (QUv {07 1}7 v, q(l]lv FU) and My as M = (QU X Ql U
{1}, {0, 1}, 6=, (5, 0d), Fu x (Q1 — F1)), where 8- is defined in
the same manner as for the OR operation. The EXOR operation
@ is also similar to the OR operation. The finite automaton for
this operation is given by M = (Q1 x Q2 U {L}, {0, 1}, bg,
(@, q8), Fi x (@2 — F2) U (@1 — F1) x F,), where §g is defined
in the same manner as for the OR operation.

Note that determining the state set of the finite automaton
for each of these four operations involves a product construction
M; x M. Also note, that in each case the resulting automaton
M may not be minimal, even if both M; and M, are minimal.
Consequently, a final minimization stage is needed.

4 Product Automaton Generation

In generating the product automaton for the result of some two-
argument Boolean operation applied to M; and Mg, the initial

221

MinM,
(Product machine)

My 0 M,
(Minimized)

Fig.5 Product generation and minimization.

product state s given by (g3, g2) where g} is the initial state of My
and g2 is that of M,. The successors of this state are determined
for the inputs 0 and 1, and this process is repeated until no new
state pairs are generated. The process is shown in Figure 4.

Let the initial pair be (g, ¢3);
Put the pair in the queue §, and allocate a new state for it;
While (S is not empty) Do Begin
Dequeue a pair (g1,¢2) from S;
For symbol a € {0,1} Do Begin
Compute (81(q1, a), 62(q2,0));
If this pair is new, then
add the pair to 5, and allocate a new state.
Connect the a-edge from a state
corresponding to (gi,¢2) to
the state corresponding to (61(g1,@),02(g2,a));
End;
End;

Fig.4 Construction of the product automaton.

Note that there are only two places where we need to take into
account the types of the Boolean operation: the computation
of (81(q1,0), 62(g2,0)) and (&1(g1,1),62(g2,1)). The most time-
consuming part of this procedure is deciding whether a pair is
new or not. By using a hash table with chaining, we can make
this test take essentially constant time. The hash function that
we use is given by

hash(q1,q2) = mod(q, * (hash_size[2) + g3, hash _size),

where g; and go are integer values for the state pointers.

An example illustrating this phase is shown in Figure 5, where
the intersection of M; and M, is computed (corresponding to
the AND operation in the original formula). M; corresponds
to (=z3 A -z3) V 2y, and M, corresponds to (~zy A zg A z3) V
(~21A-z2) V (®1AZ2) V (21 A~Z2 A-z3). The result of the AND
operation is (~z1 A ~z2 A-23) V (1 A-zz Anea) V (21 Azg). In
the example, states are generated in the order gi4, 15, .-+, g21-

5 Minimization

After the product generation phase, we must minimize the result-
ing automaton. In the minimization phase, states are processed

level 3

O,
/\

level 2

@ @ é\ — level 1
alolalalolo

Fig.7 Levels of Boolean operations for
(za Az2) V (E3Azg)V (=21 A 24).

level 0

starting at bottom level working upward, since the determination
of whether two states should be merged into an equivalence class
is based on the equivalence of their successor states. First, the
final states (the bottom level nodes) are processed. Next, the
states which have an edge to the final state are processed, and
so on. Thus the order in which the states are processed in this
phase is the reverse of the order in which they were generated
during the product phase.

For the product automaton in Figure 5, the states are pro-
cessed in the order of g2, 20, ..., q14. In the following, the edge-
pair of q denotes the ordered-pair (6(g,0),6(g,1)). At first, go; is
processed and is registered as a unique final state. Next, g0 is
processed and is registered as a unique state, since the edge-pair
(g21, q21) of goo is unique. ¢q9 is also registered as unique. It is
impossible to reach the final state from ¢is, thus g5 is deleted.

qi7 is marked as the same as giq, since the edge-pair of these
states are the same. g6, q15 and q14 are also processed, and a
minimal finite automaton as shown in Figure 5 is obtained.

The minimization algorithm is summarized in Figure 6. The
same hash function is used as in the product generation phase.
To reduce the memory consumption, we keep a global binary
decision diagram whose states represent equivalence classes of
states of the reduced automaton.

For each state of the product automaton,
starting at the bottom and working upward, do Begin
Check whether the state has already been registered
as a global state;
If the state is new, then register the state
as a global state;
Otherwise, mark the state as previously registered,
and store a pointer to the corresponding global state;
End;

Fig.6 Minimization algorithm.

6 Parallel Implementation

We now describe how the basic algorithm outlined in the previous
section can be implemented on a shared memory multiprocessor.
To illustrate the procedure we consider the following example:
f($1,22,$3,$4) = (Z] A 3:2) Vv (za A .1?4) \% (‘\Zl A .’D4)
The first step is to determine the level of each node in the parse
tree for the formula (see Figure 7). The leaf nodes of the tree
are input variables; the non-leaf nodes correspond to the Boolean

222

Product Construction Phase
Processor

Minimization Phase

P
Q14
N
915 qi6
P,
0
g21

Fig.8 Decomposition of an operation.

operations that occur in the formula. The level of each node is
determined by the rule:

1. The level of an input variable is 0.
2. The level of a non-leaf node is maz(iy,l;) + 1,
where Iy and I, are levels of its operands.

Since we initially generate binary decision diagrams for input
variables, we can process operations at level 1 immediately. Af-
ter the level 1 operations have been completed, we can process
Boolean operations at level 2, and so on. In general, we can
process level ¢ nodes as soon as the level ¢ — 1 nodes have been
completed. Operations at the same level in the tree can be per-
formed in parallel, since they do not conflict.

Some levels have only a few operations that can be performed
in parallel. We divide operations on such levels into several sub-
operations so that there will not be as many idle processors. The
method is as follows.

In the product generation and minimization phase correspond-
ing to a Boolean operation, the 0- and 1-successors of the initial
pair (g3, ¢2) are generated. Then the product generation and
minimization are done for these two successors. After the mini-
mization for these two successors is performed, the minimization
of the root state corresponding to the initial pair is done. Thus
the product and minimization phase for each of these two suc-
cessors (the 0- and 1-successors of (g}, ¢2)) can be performed
in parallel. Note that the minimization phase guarantees the
uniqueness of global states.

An example of this procedure is shown in Figure 8. First,
processor Py expands the 0- and 1-successors of the initial pair.
Processor P, takes the 0-successor (g2, 4s), generates the product
automaton and minimizes this automaton. Processor P; takes
the 1-successor and does the same thing. After P, and P; have
completed the minimization phase for their product automata,
processor P; minimizes q4.

If, in the example, we compute the 00-, 01-, 10- and 11-
successors of the initial pair, then the original operation can be
divided to four parts with three merges. In a similar manner we
can divide a single operation into 8 parts, 16 parts, etc.

In the implementation, all processors execute the same pro-
gram:

Table 1 Evaluation of multiplier examples on Multimax.

7-bit 8-bit 9-bit 10-bit
of variables 14 16 18 20
of operations || 478 620 878 1048
of levels 32 38 45 51
1 processor 32.6 sec | 98.1 sec | 339.6 sec | 1465.8 sec
2 processors 16.4 sec | 50.3 sec | 178.0 sec | 732.1 sec
3 processors 11.0 sec | 34.0 sec | 122.3 sec | 499.9 sec
6 processors 5.9 sec 18.1 sec | 66.6 sec 265.5 sec
9 processors 4.4 sec 12.9 sec | 47.4 sec 196.2 sec
12 processors 3.7 sec 10.9 sec | 38.4sec | 163.2 sec
15 processors 3.0 sec 9.2 sec | 32.4 sec 140.6 sec

take one operation;
wait until the operands have been calculated;
do the operation: product generation & minimization;

Operations (including divide and merge operations) are ordered
from smaller levels to larger levels.

7 Performance Evaluation

Our program for constructing binary decision diagrams is im-
plemented in C and uses the C-threads package [4] for parallel
programming under the Mach operating system. Interlocks are
used for process synchronization instead of general semaphores
in order to avoid the expense associated with system calls. The
program is organized so that locks are only needed for the global
hash table and the global tree nodes. Consequently contention
for shared memory is light. The performance statistics that we
describe below were obtained for an Encore Multimax with 16
processors and 96 megabytes of shared memory. Each proces-
sor is a National Semiconductor 32332 and is rated at roughly 2
MIPS.

Two dimensional adder array multipliers were used to evaluate
the program since the binary decision diagrams for these circuits
are known to grow quite rapidly (exponentially in the size of the
operands, in fact). Table 1 shows the execution time to construct
binary decision diagrams for multipliers with 7 to 10 bits (14 to
20 Boolean variables). In the evaluation, a hash table with 8191

decision diagrams. The algorithm treats binary decision graphs
as minimal finite automata. The automaton for a Boolean func-
tion with AND as its main operation (OR operation) is obtained
by forming the intersection (union) of the regular sets associated
with its operands. The union and intersection operations are im-
plemented by a product construction on the minimal automata
for the regular sets. After each product construction step the
automaton must be re-minimized.

The parallel algorithm is designed so that it is possible to find
the minimal representations for several Boolean operations in
parallel. The level of each operation is determined. Operations
at the same level can be performed in parallel without any com-
munication between processors. If there are relatively few oper-
ations in one level, then we divide the product generation step
into several sub-operations and merge the results. Preliminary
experiments show that our parallel algorithm is roughly 10 times
faster than with a single processor.

We plan to use this algorithm as part of a verification system
for finite state concurrent systems (hardware controllers, commu-
nications protocols, etc.) that uses a technique called Symbolic
Model Checking [2, 3]. Since constructing binary decision dia-
grams is the most time consuming part of the verification proce-
dure, we should be able to handle even larger finite state systems
in the future.

References

[1] Randal E. Bryant. Graph-Based Algorithms for Boolean
Function Manipulation. IEEE Transactions on Computers,
C-35(8):677-691, August 1986.

J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill.
Sequential Circuit Verification Using Symbolic Model Check-
ing. In Proceedings of Design Automation Conf., 1990.

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and
J. Hwang. Symbolic Model Checking: 102° States and Be-
yond. In Proceedings of Logic in Computer Science, 1990.

E. C. Cooper. C threads. Technical Report CMU-CS-88-
154, Carnegie Mellon University, Pittsburgh, PA 15213, June
1988.

Allan L. Fisher and Randal E. Bryant. Performance of COS-
MOS on The IFIF Workshop Benchmarkes. In Proceedings
of IMEC Conference, 1989.

(2

3l

(4]

(3]

entries is used for the product generation, and a hash table with
32727 entries is used for the minimization.

The table shows that the minimum execution time on the Mul-

Speed-up Rate

Execution Time (sec)

E
g

timax with 15 processors is about 10-times smaller than the exe-
cution time with a single processor. The time for a single proces-

P

1000|

sor is roughly the same as the (sequential) program for construct-
ing binary decision diagrams that is described in [5]. A graph in

Figure 9 shows how the execution time varies with the number of
processors for 10 bit multiplier. The execution time is in reverse

ratio with the number of processors. Figure 9 also shows the
rate of speed-up (= (the execution time using 1 processor) / (the

/

400}

execution time using n processors)). The rate is almost linear

N

with the number of processors. Other examples show almost the
same graphs.

e

0

8 Summary and Future Research

This paper describes a parallel algorithm for constructing binary

223

umbe
[Execution time for 10-bit muitiplier example.

2 4 L] 8 10 12 14 16
N

o 2 4 6 8 10 12 14
r of Processars Proce

Speed-up rate for 10-bit multiplier example.

16

Fig.9 Execution time and speed-up rate for 10 bit multiplier.

