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Abstract

We significantly reduce the complexity of BDD-based symbolic verification by
using partitioned transition relations to represent state transition graphs. This
method can be applied to both synchronous and asynchronous circuits. The times
necessary to verify a synchronous pipeline and an asynchronous stack are both
bounded by a low polynomial in the size of the circuit. We were able to handle
stacks with over 10%° reachable states and pipelines with over 10! reachable states.

1 Introduction

Although methods for verifying sequential circuits by searching their state transition
graphs have been investigated for many years, it is only recently that such methods have
begun to seem practical. Before, the largest circuits that could be verified had about
108 states. Now it is easy to check circuits that have many orders of magnitude more
states [3, 5, 6, 7). The reason for the dramatic increase is the use of special data structures
such as binary decision diagrams (BDDs) (2] for encoding the state transition graphs of
such systems.

In this paper, we show how to process state transition graphs more efficiently than
in our previous work [5, 6]. Our new approach involves using multiple BDDs, which
are implicitly conjuncted or disjuncted, to represent the graphs. We call this kind of
representation a partitioned transition relation. The BDDs that make up the partitioned
transition relation are derived in a natural way from the structure of the circuit being
verified. We illustrate the power of the technique by verifying an asynchronous stack [10]
and a synchronous pipeline circuit [5]. Using a partitioned transition relation, we were able
to verify a stack 32 bits wide and 2 cells deep. For comparison, we were unable to verify a
stack only 1 bit wide and 1 cell deep when using a single BDD to represent the transition
relation because the transition relation required more than 350,000 BDD nodes. For a
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pipeline with 4 registers, each 32 bits wide, the partitioned transition relation required less
than 2.500 BDD nodes, while using a single BDD required nearly 340,000 nodes, a savings
of nearly a factor of 140. On a Sun 4, the verification time improved from approximately
14.000 seconds (projected) to 995 seconds, a factor of about 14. We were also able to
handle example pipelines with over 10'%° reachable states.

There are several other methods that use BDDs in the verification of sequential cir-
cuits. Bryant and Seger [3] use a symbolic switch-level simulator to check pre- and post-
conditions specified in a restricted form of temporal logic. The logic allows boolean
conjunction and the next time modality (X). Coudert, Berthet, and Madre describe a
svstem for showing equivalence between deterministic finite automata [7]. Their system
performs a symbolic breadth-first search of the state space reachable by the product of the
two automata. None of these methods can easily handle nondeterministic systems. With
transition relations, it is very natural to model examples like the cache coherency protocol
for the Encore Gigamax, which McMillan has recently investigated [11]. A major feature
of the Gigamax architecture is an asynchronous, and hence nondeterministic, intercon-
nection network. The use of abstraction to hide certain details of the cache replacement
policy also gives rise to nondeterminism in this example.

2 Symbolic verification

Given a circuit, let V' be its set of boolean state variables. We identify a boolean formula
over V' with the set of valuations which make the formula true. A valuation of the variables
corresponds in a natural way to a state of the circuit; hence the formula may be thought
of as representing a set of circuit states. The BDD for the formula is in practice a concise
representation for this set of states. In the remainder of the paper, we will denote sets of
states using 5 and T. We denote the BDD representing the set S by S(V), where V is
the set of variables that the BDD depends on. In addition to representing sets of states of
a circuit, we must represent the transitions that the circuit can make. To do this, we use
a second set of variables V’. A valuation for the variables in V and V’ can be viewed as
designating a pair of states in the circuit, and we can represent sets of pairs using BDDs
as above. We will refer to sets of pairs of states as transition relations. If N is a transition
relation, then we write N(V, V') to denote the BDD that represents it.

There are many finite state verification methods that can make effective use of this
representation [5, 7]. For our purposes, the important property of these algorithms is that
the basic step is performing computations of the following form:

S'(vy=3J [S(V) ANV, V.

veV

(The notation above indicates a series of nested existential quantifications, one for each
variable in V.) This expression, called a relational product, gives the set of states S5’
reachable in one step from the set of states S in a circuit with transition relation N. It
is crucial to be able to do this computation efficiently. A special algorithm is typically
used to do this operation in one pass over the BDDs S(V) and N(V,V’). By using such
an algorithm, it is possible to avoid building the BDD for S(V) A N(V, V'), which would
often be impractically large. Unfortunately, the BDD N(V, V’) itself is often very big. Up
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to this point, being forced to construct this BDD has been the major stumbling block in
trving to verify complex circuits. In the following sections, we describe how to overcome
this problem by using a partitioned transition relation to represent V.

3 Deriving transition relations

The first step in verifying a circuit is to derive its transition relation. Our goal is to
reflect the structure of the circuit in the structure of the transition relation, so that the
transition relation can be stored and manipulated more efficiently.

For a synchronous circuit with n state variables, we let V = {vo,...,v,_1} and V' =
{th,....v._,}. For each state variable v;, there is a piece of combinational logic which
determines how it is updated. Let f; be the function computed by this logic. Then the
value of v; in the next state is given by

vi = fi(V).
These equations are used to define the relations
NV, V') = (vp & fiV)).

In a legal transition of the circuit, each N; must be true; hence the transition relation for
the circuit 1s

NIV, V'Y = No(V, V'Y A+ A Ny (V, V).

Thus, the transition relation for a synchronous circuit can be expressed as a conjunction
of relations.

In practice, each N; can often by represented by a small BDD (typically fewer than
100 nodes). However, the size of the BDD representing the entire transition relation may
grow as the product of the sizes of the individual parts, and thus may be prohibitively
large. In the past, this has been the major limitation of symbolic model checking. For
our new method, we instead represent the transition relation by a list of the parts, which
are implicitly conjuncted. We call this representation a conjunctive partitioned transition
relation.

Asynchronous circuits can be modeled with a conjunctive partitioned transition re-
lation, like synchronous circuits, and can also be represented by a disjunctive partioned
transition relation. To simplify the description of how these forms of transition relation
are computed, we assume that all the components of the circuit have exactly one output,
and have no internal state variables. It is straightforward to generalize the method to
handle cases where this assumption does not hold.

In asynchronous circuits, there can be an arbitrary delay between when a tran51t10n
is enabled and when it actually occurs. We can model this by allowing each component
to nondeterministically choose whether to transition its output, resulting in a conjunctive
partitioned relation with n parts, all of the form

Ri(v, V/) = Ni(vv VI) V (U: = 'Ui),
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where Ny(V, V') = (v; & f,(V)) gives the quiescent value of the output of each component.
For some components, such as C-elements and flip-flops, the function fi(V) may depend
on the current value of the output of the component, as well as the inputs.

The above model for asynchronous circuits allows wires to transition concurrently. We
can also use an interleaving model, which allows only one wire to transition at a time.
This idea can be used to construct a disjunctive partitioned transition relation, as follows.
First, apply distributivity to the conjunction of the R;, giving a disjunction of 2" terms.
Each of these terms corresponds to the simultaneous transitioning of some subset of the
n wires in the circuit. Second, keep only those terms that correspond to exactly one wire
transitioning. This results in a disjunction of the form

NV V) =Qo(V, V') V-V Quy(V, V)
where
Qi(V. V') = (vy & vo) A A(Vi_y & vis) ) ANV, VA (VL & vip) A A(v] ) & va_y).

We represent the full transition relation as a list of the Q.;(V,V’), which are implicitly
disjuncted.

4 Computing relational products

As noted earlier, computing relational products is a fundamental operation in many sym-
bolic verification methods. This section describes how relational products can be com-
puted using the representations described in the previous section. These techniques sig-
nificantly increase the size of circuits that can be verified compared to previous methods.

For a disjunctive partitioned transition relation, the relational product computed is of
the form

SV = [S(V) ANV, V) VooV Nay (V, V).
vEV

This relational product can be computed without ever constructing the BDD for the full
transition relation by rewriting S'(V’),

SV =3 [SV)AN(V, V)] Veeov T [S(V) A N (V. V)]
veV veV

Thus, we are able to reduce the problem of computing S’(V’) to one of computing a
series of relational products involving relatively small BDDs. This technique was used
previously for verifying asynchronous circuits [5]. Much larger asynchronous circuits could
be verified using this method than with a monolithic transition relation.

For a conjunctive partitioned transition relation, the relational product computed is
of the form

SV = J [SV)A(No(V, V') A=+ A Nuca(V, V)] (1)
eV

The main difficulty in computing S’(V’) without building the conjunction is that con-
junction does not distribute over existential quantification. The method given below
overcomes this difficulty.
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Our new technique is based on two observations. First, circuits exhibit locality, so
many of the N;(V, V') will depend on only a small number of the variables in V' and V",
Second. although conjunction does not distribute over existential quantification, subfor-
mulas can be moved out of the scope of existential quantification if they do not depend
on any of the variables being quantified. We will take advantage of these observations by
conjuncting the N;(V, V') with S(V') one at a time and quantifying out each variable v
when none of the remaining N;(V, V') depend on v. More formally, the user must choose
a permutation p of {0,...,n — 1}. This permutation determines the order in which the
Ni(ViV7) are ¢ ancted. For each ¢, let D; be the set of variables in V' that N;(V, V)
depends on. Ao, let

n—1
Ei= Doy = U Do)
k=141
Thus, E} is the set of variables contained in D,;y that are not contained in D, for any &
larger than i. The FE; are pairwise disjoint and their union is equal to V. The relational
product in equation 1 can be computed as

Sihv) = 3 [S(V) A Nygoy(V, V)]

Sy (V, V') = E}lﬂ [S1(V, V') A N,y (V, V)]

S VY= F [Sact (V. V) A Ny (V V)]
veEE,
The ordering p has a significant impact on how early in the computation state variables
can be quantified out. This affects the size of the BDDs constructed and the efficiency
of the verification procedure. Thus, it is important to choose p carefully, just as with
the BDD variable ordering. In practice, we have found it fairly easy to come up with
orderings which give good results.

In the previous section, we described how a circuit could be represented by a set of
N;(V, V"), each depending on exactly one variable in V’. While this is almost always more
efficient than constructing the full transition relation, it may not be the best choice. As
long as the BDDs do not get too large, it is better to combine several of the Ny(V,V’)
into one BDD by forming their disjunction or conjunction.

5 Verifying asynchronous circuits

Asynchronous circuits can be verified in two steps. First, compute the set of states the
circuit, composed with an environment, can reach from a given set of initial states. Then
check that no hazard can occur in any of the reachable states. Finding the reachable
states is the most computationally expensive of these two steps. In practice, checking for
hazards is usually done as the reachable states are computed. This is similar to Dill’s [9]
method for verifying safety properties of asynchronous circuits.
The set of reachable states is found by computing the least fixed point S of
SV =S(V')v J [S(V) ANV, V)],

veV
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where S is the initial set of states and V is the transition relation of the circuit. We use
frontier set simplification to speed up the computation of this fixed point (5, 7]

There are significant differences in the complexity of doing reachability analysis us-
ing conjunctive and disjunctive partitioned transition relations. Consider two uncoupled
systems M and M" with disjoint sets of state variables V' and V”. Let M be the com-
position of these two systems. This is an unrealistic example, but it helps illustrate what
happens when computing the reachable states of loosely coupled systems. The BDD S(V)
representing the set of reachable states of M is equal to S'(V’) A S”(V"), where S'(V')
(S"(V")) is the BDD for the reachable states of M’ (M"), and V = V'UV". An efficient
way to order the BDD variables of the combined system in this case is to have all the
variables of one component (say M’) before any of the variables in the other component.
Then the number of BDD nodes in S(V) is equal to the sum of the nodes in S/(V') and
S”(V"), independent of whether conjunctive or disjunctive partitioning is used. However,
the sizes of the BDDs representing the intermediate state sets are potentially different for
the two methods.

Let Si(V), S{(V’) and S”(V") be the BDDs representing the states reachable in 7
steps by M, M’ and M", respectively, using non-interleaved semantics. Similarly, let
T(V), T/(V') and T}/(V") be the BDDs representing the states reachable in i steps by M,
M’ and M", respectively, using interleaved semantics. In the conjunctive case, S;(V) =
SUV')Y A SI(V"), so the size of each Si(V) is equal to the sum of the sizes of S/(V') and

STV, just as for the set of reachable states. However, for the disjunctive case,

(V) =\ TUV') A T (V).

k=0

Thus, interleaving semantics introduces an artificial correlation between the local states
of M" and M" in the T;(V)). The T;(V') are generally much larger than the S;(V), since
each T;(V') must contain 7}/(V) for all k£ < i. Because of this effect, reachability analysis
with disjunctive partitioning is less efficient than with conjunctive partitioning.

We can make disjunctive partitioning more efficient by modifying the breadth first
search used for reachability analysis. To search the reachable states of M, first compute
states reachable by transitions of wires in M’. Then compute the states reachable from
that set by transitioning on wires in M"”. This is equal to the global reachable state set,
since M’ and M" are uncoupled. Separately computing local fixed points for the two parts
of the system in this way removes the artificial correlation described above. In general, for
a circuit C divided into loosely coupled subcircuits C;, we compute the reachable states
of C' by repeatedly computing local fixed points for each C; until a global fixed point is
reached. This idea can be extended to a hierarchy with any number of levels.

6 An asynchronous stack

In this section, we compare conjunctive and disjunctive partitioned transition relations
for verifying asynchronous circuits by considering an asynchronous lazy stack due to
Martin [10]. To determine the asymptotic performance of the various methods discussed
earlier, we performed a reachability analysis for stacks with varying depth d and word
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width w. This is sufficient to determine the asymptotic complexity of verification, even
though we did not check for hazards. Hazard checking increases the times by a constant
factor.

The stack consists of an array of d cells, each cell consisting of a control part, a data
part and a completion tree. The data part of each cell consists of w storage elements.
The completion trees signal when all the storage elements in a cell have completed the
current data transfer.

The verification system that we use is written in a combination of C and LISP. The
BDD package is written in C and is roughly comparable in performance to the package
described by Brace, Rudell and Bryant [1].

We studied how verification time varied with w for four different methods:

L. Disjunctive partitioning using standard breadth first search. We combined the tran-
sition relations for the gates making up each individual control part, each of the
individual storage elements, and each completion tree.

o

Disjunctive partitioning using modified breadth first search and the same partition-
ing of the transition relation as above. At the top level, the hierarchy used for local
fixed point computation consisted of the environment and each cell as a unit. Each
cell was broken into the control part, the completion tree and the data part. The
data part was further subdivided into [lg(w)] levels, each of two parts.

3. Conjunctive partitioning using the same partitioning of the transition relation as
above. We used the following ordering p of the parts of transition relation: the
environment at the top of the stack; the control part and data parts of each cell,
ordered from the top of the stack to the bottom; the completion trees, also ordered
from the top of the stack to the bottom; and the environment at the bottom of the
stack.

4. Conjunctive partitioning using the same partitioning as above, but with the control
and data parts within each cell combined into one BDD. The p used above is modified
in the obvious way.

In all cases, we used an initial state set in which each cell could be full or empty and the
data in each cell was arbitrary. Using a more restricted set of initial states, such as having
all cells initially empty, can increase the verification time by as much as a factor of d.

A graph of the search times versus stack width for the various methods is shown in
figure 1. We found that disjunctive partitioning with breadth first search were feasible
only for small examples. Disjunctive partitioning with modified breadth first search and
conjunctive partitioning were all much more efficient. Search times using methods 2 and 3
grew slightly faster than quadratically. Method 4 gave a growth rate of roughly w'-®. Using
this method, we were able to find the reachable states of a 32 bit wide, depth 2 stack in
under an hour of CPU time on a Sun 4. This circuit had over 989 boolean state variables
and 10° reachable states.

The BDDs in the transition relation are all of constant size, except for those repre-
senting the completion trees. These BDDs are growing as w'¢3, but for the values of w
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Figure 1: Search times in seconds for Figure 2: Search times in seconds for
stacks of various widths, with d = 1,2 stacks of various depths, with w =1

we considered, they are still quite small. For larger w, it might be necessary to split the
completion trees into more than one BDD.

We also explored how the search time varied with the depth of the stack, using con-
junctive partitioning. The number of steps needed to compute the reachable states grows
quadratically in d. The states which require the largest number of steps to reach are
states in which internal signals within the stack control are not stable. Thus, we were
able to avoid the quadratic search depth by replacing the control part of each cell by
an abstract model having only external signals. We separately verified that the abstract
model correctly describes the external behavior of the control part. With this abstraction,
the number of steps needed to find all reachable states is linear in d, and the search time
1s cubic in d (see figure 2).

Although this kind of abstraction can greatly improve the efficiency of verifiers that
explicitly enumerate states, it is usually not nearly as helpful when used with symbolic
verifiers. For example, the search times for stacks of depth one improve only about 20
percent when the abstract model of the control part is used. The effect that abstraction
has on the search depth, as described above, is an exception to this rule.
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7 A synchronous pipeline

We also considered the verification of a synchronous pipeline circuit. This circuit, de-
scribed in an earlier paper [5], performs three-address arithmetic and logical operations
on operands stored in a register file. We experimented with a number of versions of the
pipeline with varying numbers of registers, register widths, numbers of pipe stages, and
numbers of operations. The verification times grow as low polynomials in all dimensions.
We also ran several more realistic examples. The largest of these was a pipeline with
S registers, each 32 bits wide, 2 pipe registers, and one operation. This example had
106 state variables resulting in more than 10!2° reachable states, and the verification took
4 hours and 20 minutes of CPU time on a Sun 4. Details of the verification of the pipeline
can be found in [4].

8 Discussion and future research

Using partitioned transition relations significantly improves the efficiency of symbolic
verification. We verified a stack with over 950 state variables and more than 105° reachable
states and a pipeline with more than 400 state variables and over 10'?° reachable states.
We also studied the asymptotic performance of our verification methods. This kind of
asymptotic analysis is an important way to compare different techniques.

For deterministic systems, a transition function vector can be used to represent how a
circuit transitions from one state to another. In this method, a separate BDD is used for
each state holding node of the system. This BDD represents the function computed by the
combinational logic driving the associated node. Coudert et al. [7, 8] describe a number of
algorithms for manipulating transition functions. They note that the monolithic transition
relation can require many more BDD nodes than the corresponding transition function
vector [8]. However, they report that computations with transition relations are faster
than those using transition functions. Partitioned transition relations provide the speed
of transition relations and the memory efficiency of transition functions.

Touati et al. [12] proposed another method for representing transition relations as
implicit conjunctions. They use the constrain operator of Coudert et al. [7] to eliminate
the state set S(V) in equation 1. Then they compute the resulting conjunction as a
balanced binary tree, quantifying out each variable in V when all the BDDs depending
on that variable have been combined. We believe that this method is inferior to the
one proposed here because the constrain operator may introduce dependencies on any of
the variables in S(V). This makes it impossible to compute in advance a schedule for
quantifying out the variables in V', which in turn reduces the practicality of caching results
between relational product computations. In addition, if S(V') depends on most of the
variables in V, it may not be possible to quantify out many variables before performing
the final conjunction. They also suggest having one transition relation per state variable.
In our experience, it is often better to combine parts of the transition relations to reduce
overhead; this idea is also applicable to their method. We implemented their method and
tested it on some of the examples in section 7. For a pipeline with four 8 bit registers,
one pipe register and one operation, our method was more than five times faster. In
addition, for some of the relational product computations, the intermediate BDDs using
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their method were more than an order of magnitude larger than the final result.
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