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Abstract. Multiple sequence alignment (MSA) is important in functional, struc-
tural and evolutionary studies of sequence data. While MSA construction has tradi-
tionally been an interactive process, the rapid growth of genetic sequence data has
engendered a need for automated sequence analysis without human intervention.
This requires more accurate methods based on rigorous mathematical models that
reflect sequence biology in a realistic way. Focusing on MSA as an optimization
problem, we examine the problem of unifying mathematical tractability with bio-
logical accuracy in cost function design. In particular, we consider tree alignment,
which is often viewed as the most “biological” of the rigorous approaches to MSA.
We point out several important pitfalls in current optimization approaches to MSA
and identify characteristics for good cost function design. Design issues specific to
approximation algorithms are also addressed. We hope these ideas will lead to fu-
ture research on a biologically realistic and mathematically rigorous approach to
MSA.

1 Introduction

Multiple sequence alignment (MSA) is a formal method for identifying shared
features in a set of related nucleic acid or protein sequences, such as the se-
quences of a gene of interest (e.g., myoglobin) in several different species or
the sequences of a family of related genes (e.g., myoglobin, the α-globins and
the β-globins) in a single species. The goal is to align the sequences in such
a way that biological relationships between sequence elements are revealed.
MSA’s are used to build evolutionary trees, extract information about the
function and structure of proteins, identify patterns for data base searching
and motif recognition and to design probes and primers for laboratory experi-
ments. In some of these applications, such as evolutionary tree reconstruction,
the MSA will be used as input to another program.

To state the MSA problem formally, we represent each biopolymer, P1,
P2, . . . , Pk, as a string of symbols chosen from an alphabet, Σ, where Σ =
{A,C,G, T} for nucleic acid sequences and Σ contains the twenty amino

? To appear in Biological Evolution and Statistical Physics, M. Lässig and A. Val-
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acids for protein sequences. Then an MSA is a set of sequences P̂1, P̂2, . . . , P̂k
drawn from Σ ∪ { }, where is called a blank, such that Pi is the string
derived by removing all blanks from P̂i. Additionally, each P̂i should be of
the same length. We will call P̂1[j], . . . , P̂k[j] the jth column of the MSA.
The standard interpretation of blanks is that they represent mutations in
the form of insertions or deletions, and therefore they are sometimes called
indels. However, the sequences P1, . . . , Pn need not be evolutionarily related,
a fact which we will explore further below. As an example, an MSA of four
amino acid sequence fragments, taken from human, rabbit, pig and chicken
albumin, is shown in Fig. 1. Two indels have been inserted after the central
valine in the first three sequences to reveal several conserved features in the
alignment such as the KSE motif starting at column 31.

HUMAN MKWVTFISLL FLFSSAYSRG V--FRRDA-H KSEVAHRFKD LGEENFKALV

RABBIT MKWVTFISLL FLFSSAYSRG V--FRREA-H KSEIAHRFND VGEEHFIGLV

PIG --WVTFISLL FLFSSAYSRG V--FRRDT-Y KSEIAHRFKD LGEQYFKGLV

CHICK MKWVTLISFI FLFSSATSRN LQRFARDAEH KSEIAHRYND LKEETFKAVA

Fig. 1. A multiple alignment of four partial albumen sequences

Columns in an MSA should share a target biological feature. The fea-
ture sought depends on the application of the alignment. For example, if the
multiple alignment is used to illustrate evolutionary relationships, then the
residues in each column should have a shared evolutionary history. If the mul-
tiple alignment is used to determine structure or function, then the residues
in each column should have a shared structural or functional role. It is ex-
actly this kind of feature extraction that is the goal of MSA computation, the
underlying assumption of which is that the sequences of a molecule contain
enough information to extract the feature.

Numerous programs are available to construct MSA’s, many of them
based on heuristic approximations. A traditional approach has been to use
such software to generate an initial multiple alignment and then adjust that
alignment “by hand”. Under this paradigm, highly accurate methods are not
needed. However, as sequence data bases grow in the era of whole genome
sequencing, the need to generate large numbers of MSA’s automatically is
also growing. Methods that can construct reliable MSA’s without human
oversight are required. Such methods must depend on formal models that
accurately reflect the biology of sequences.

A number of formal, mathematical models of MSA have been proposed
and a wealth of papers elaborating on these models has appeared in the the-
oretical computational molecular biology literature in the last ten to fifteen
years. These approaches generally formulate MSA as an optimization prob-
lem, by defining a cost function over the set of all possible MSA’s and then
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seeking the MSA which optimizes1 the cost. A multiple sequence alignment
may be viewed as a hypothesis concerning the true relationship of a set of
biopolymers, be that relationship evolutionary, structural or functional. A
cost function is a method for evaluating the quality of such hypotheses and
may be used to compare alternate alignments, whether generated by exact
algorithms or by heuristics. The advantage of this optimization approach is
that the cost function makes explicit the assumptions upon which the opti-
mization is based. Because they are explicit, these assumptions are open to
scrutiny and falsification.

The success of this approach depends on the assumption that it is pos-
sible to design a cost function such that the MSA with optimal cost is also
the best explanation of the biological relationships between the sequences.
In the face of genome scale data, research that attempts to unify biological
and mathematical notions of accurate alignment is needed. The goal of the
current paper is to examine the optimization approaches currently in use and
identify problems that must be addressed on the path to robust, reliable MSA
for automatic analysis of genomic data. In Section 2, we examine several pop-
ular cost functions that have received widespread attention in the literature,
including sum-of-pairs, star and tree alignment. We focus primarily on tree
alignment, the most biologically motivated of the three. We explore math-
ematical aspects of cost function design in Section 3. In particular, design
issues related to approximation algorithms are discussed. Important biologi-
cal considerations that must be addressed by any sound optimization criterion
are elucidated in Section 4. Here we also specifically address the biological
reasonableness of tree alignment for MSA computation. Biological validation
of multiple sequence alignments is discussed in Section 5. We conclude that
while optimization and approximation offers the best hope for well founded
MSA computation, the current crop of optimization criteria are seriously
wanting. We suggest some avenues of attack in correcting the situation.

2 Optimization Criteria

The desired output of an MSA computation is the column relationships of
the alignment. Thus, it is natural to focus on optimization criteria which
associate a score with each column, and most criteria in the literature take
this approach. We will not give a comprehensive survey of multiple sequence
alignment algorithms here. Such surveys can be found in [1] and in the intro-
duction to [2]. Statistical approaches, such as hidden Markov models to MSA
are discussed in [3]. These approaches are used primarily for local multiple
alignments. An experimental comparison of multiple sequence algorithms is
described in [4]. The column score expresses how well matched the residues

1 We will interchangeably minimize and maximize the function in our examples,
as needed.
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in the column are. The score of the MSA is then the sum of the scores of its
columns. We seek a set of P̂ maximizing

D(A) =
∑

j

d(P̂1[j], . . . , P̂k[j]),

for column scoring function d(·). The choice of the column scoring function,
d(P̂1[j], . . . , P̂k[j]), should reflect the application of the alignment. Residues
that maximize d(P̂1[j], . . . , P̂k[j]) should belong together. Note that in our
formulation, the scores of columns are completely independent. However, in
some formulations, the cost of a gap might depend on the length of the gap
in many ways. For example, for so-called affine gap penalties, the cost of a
gap of length l is α + βl for some constants α and β. This separation of the
gap penalty into α, a gap initiation cost, and β, a gap extension cost, reflects
the assumption that whole pieces of sequence can be deleted in single events.
Such gap functions typically are used for pairwise alignments and for multiple
alignments that are heuristically constructed from pairwise alignments, and
they will not be considered further here.

Three cost functions commonly used to evaluate each column are sum-of-
pairs (SP), tree alignment (TA) and star alignment (SA), shown graphically
in Fig. 2. The sum-of-pairs cost [5,6] of a column P̂1[j], . . . , P̂k[j] is the sum
of the costs of all unordered pairs in the column

dSP (P̂1[j], . . . , P̂k[j]) =
∑

p<q

δ(P̂p[j], P̂q[j]),

for some binary cost function δ(x, y). This definition is mathematically nat-
ural but not biologically intuitive.

Tree alignment [7,8] is based on the assumption that the residues in the
columns of the multiple sequence alignment share an evolutionary history
and that this history can be expressed as a single tree for all columns. Under
this model, a column is scored by computing the cost of the underlying tree.
The score of the tree expresses the strength of our belief, under some model
of evolution, that these residues are related in the manner described by this
tree.

In order to use this approach, several issues must be resolved. First, a
tree topology is needed. In general, the underlying tree is not known. In
fact, multiple sequence alignments are generally used to estimate evolutionary
trees and not vice versa. Second, it is generally assumed that every column in
the alignment has the same underlying tree topology. As we shall see below,
this may not always be the case. Third, in order to compute the branch costs
of the tree, we need to know the ancestral sequences associated with the
internal nodes. Fourth, given a tree topology with ancestral sequences at the
nodes, a cost must be associated with each branch of the tree. This implies
an underlying model of evolutionary change. The appropriate model will vary
with the data.
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Let us consider how to infer the ancestral sequences and compute the
branch costs when the topology is known. The k extant sequences are as-
sociated with the k leaves of the tree. Sequences for the internal nodes are
selected so that the tree is the best estimate of the true tree under some model
of evolutionary change. The model in use is maximum parsimony, in which
it is assumed that the true tree required a minimum number of evolutionary
steps. Under this model, the cost of an edge (Xi, Xj) in the tree is the mini-
mum number of mutations required to transform sequence Xi into sequence
Xj . That is, internal nodes are selected such that the sum of edge costs, i.e.
the total number of mutations required along the branches of the tree, is
minimized. This assumption that evolution is parsimonious, is a subject of
much debate.

The above approach assumes that the topology of the evolutionary tree
is known, e.g. from morphological data. If the tree topology is not known,
then the tree which yields the best score must be found. Since the number of
trees with k leaves grows exponentially with k, this approach rapidly becomes
prohibitively expensive if exhaustive enumeration is used. In general, no fast
algorithm is known.

A variant on tree alignment is star alignment (SA), in which it is assumed
that the underlying tree is a star. Restricting the topology makes this ap-
proach much more tractable, and it has been used as an underlying structure
in many algorithms and analyses (e.g., [9,10]).

Altschul and Lipman [9] pointed out that SP, TA and SA costs for the
same column can be very different, as shown in Fig. 2. SP overcounts mu-
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Fig. 2. Comparison of alignment costs for a multiple sequence alignment column,
(A,A,A,A,C,C), under three different cost functions. Edges representing mutations
are shown in bold

tations in a column because it considers that a separate mutation occurred
between each pair in the column. In some sense, it is a “least parsimonious,”
or profligate, model of mutation. In contrast, TA has been traditionally used
with the maximum parsimony criterion. For most data sets the true answer
is somewhere in between.
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Efficiency considerations The MSA problem has been shown to belong to the
class of NP-compete problems [11,12], for both sum-of-pairs and tree align-
ment. Problems in this class, which could be described colloquially as “offi-
cially hard problems,” have the property that the only known way to obtain
an optimal solution to the problem is to generate all possible solutions and
compare them. (See, for example, [13], for a discussion of NP-completeness.)
Since the number of possible MSA’s increases exponentially with the number
of sequences, the time required to find the optimal solution grows exponen-
tially with the number of sequences as well. While no one has been able
to prove that it is necessary to examine every possible solution to an NP-
complete problem to find the optimum, no one has been able to solve any
NP-complete problem exactly without enumerating all solutions. Since any
NP-complete problem can be converted into any other NP-complete prob-
lem, a fast method to solve just one of these problems would provide a fast
solution to all of them. Proving or disproving the existence of fast solutions
to NP-complete problems is considered one of the most important unsolved
mathematical challenges of our time. Since this problem has been the subject
of intense scrutiny, without definitive resolution, by the theoretical computer
science community for the last thirty years, we should not hope for a fast,
exact MSA algorithm anytime soon.

In the face of this harsh reality, there are three approaches to MSA con-
struction. For small data sets, typically eight to ten sequences of length at
most 500 elements, it is possible to enumerate all alignments and select the
optimal one. An optimal alignment of k sequences of length at most N can
be obtained using dynamic programming in O(2kNk) evaluations2 of the SP
cost function using O(Nk) space [15]. An exact tree alignment algorithm
for a given tree topology has been presented by Sankoff [7]. This requires
O(M(2N)k) steps, where M is the number of internal nodes.

For larger data sets, one may turn to one of the numerous heuristic ap-
proaches that generate MSA’s with no optimality guarantee. Many of these
are based on the progressive alignment approach, in which an optimal pair-
wise alignment is computed for every pair of sequences in the data set. These
pairwise alignments are then merged to obtain a multiple alignment. Pro-
gressive alignment was first introduced by Taylor [16] and is the approach
upon which the widely used CLUSTALW program [17] is based. The various
progressive alignment methods differ in the rules used to determine in what
order the pairwise alignments should be merged. Since the time required to
compute an optimal pairwise alignment is O(N 2) and the number of pairwise
alignments is O(k2), the time required to compute a progressive alignment
grows quadratically with the size of the input in comparison with the expo-
nential time required to compute an optimal MSA.

2 O-notation is used to describe the asymptotic behavior of a program in terms of
the size of it’s input. Colloquially, O(f(n)) refers to a function whose behavior is
proportional to f(n) for large n. For a full treatment of O-notation, see [14].
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Typically, it is possible to analyze up to 5000 sequences using a progres-
sive alignment heuristic. However, progressive alignment will not, in general,
give an optimal solution and will generate different solutions depending on
the order in which the pairwise alignments are merged. This is illustrated in
the multiple alignment of the sequences ACTCCAT, AGTCCT and ACGT-
CAT in Fig. 3. Consider a sum-of-pairs cost function where the cost of an

(1) ACTCCAT

(2) AGTCC-T

(2) A-GTCCT

(3) ACGTCAT

(1) AC-TCCAT

(3) ACGTC-AT

(1,2) + (2,3)
(1) A-CTCCAT

(2) A-GTCC-T

(3) ACGTCA-T

(1,2) + (1,3)
(1) AC-TCCAT

(2) AG-TCC-T

(3) ACGTC-AT

Fig. 3. Multiple alignment of the sequences CTCCAT, AGTCCT and ACGTCAT.
Pairwise alignments these sequences are shown on the left. Two different progressive
multiple alignments appear on the right, showing that the final form of the multiple
sequence alignment depends on the order in which the pairwise alignments are
merged

indel is i = 2 and the cost of a substitution is s = 3. The costs of the three
optimal pairwise alignments shown in Fig. 3 are s + i = 5, s + i = 5 and
2i = 4, respectively. The progressive alignment algorithm requires that we
select one pairwise alignment as the seed of the multiple sequence alignment.
At each step of the procedure, a new pairwise alignment is selected that con-
tains one sequence not yet included in the growing MSA. The new sequence
is added to the MSA using the pairwise alignment as a guide. The juxtaposi-
tion of the elements of the sequences in partial multiple alignment from the
previous iteration must remain fixed. These elements may not be rearranged
later to improve the score as additional sequences are added to the MSA.
This restriction is responsible for both the increase in speed and the loss in
accuracy associated with the progressive alignment heuristic. Fig. 3 shows
two MSA’s, both using the alignment of Sequences 1 and 2 as the seed. In
the first MSA, the third sequence is added by aligning it with Sequence 2.
In the second, the third sequence is aligned with Sequence 1. As the figure
shows, two different MSA’s result. The SP cost for the first alignment is
(s+ i) + (s+ i) + (2s+ 2i) = 4s+ 4i = 20, while the second alignment costs
(s+ i) + (s+ 3i) + (2i) = 2s+ 5i = 16.

As the above example shows, heuristic approaches will not in general yield
an optimal solution, nor indicate whether the solution presented differs from
the optimum and, if so, how. Approximation algorithms [18] offer a promis-



10 Dannie Durand and Martin Farach-Colton

ing compromise between exact, but computationally intractable methods and
the heuristics currently most often used in practice. An a-approximation is a
solution to an optimization problem that is guaranteed to have a score that
differs from the optimal score by a factor of at most a. Approximation algo-
rithms for both SP and tree alignment include those in [2,10,19–21]. Notably,
a polynomial time approximation scheme, yielding a (1+ε)-approximation for
arbitrarily small ε, has been presented by Jiang, Lawler and Wang [22,23] for
tree alignment on a fixed topology. Approximation algorithms are powerful
because they rigorously quantify the price to be paid by using an approximate
method. However, to be practically useful, we need a better understanding
of this price in biological terms. The work cited above has not, for the most
part, investigated the biological implications of the approximation factor, a.

3 Approximations and Convergence

Since any reasonable cost function for MSA will probably be NP-hard to opti-
mize [11,12], it is natural for researchers to look for approximation algorithms
which find near optimal solutions to the MSA problem. These solutions will
not be meaningful unless they satisfy (at least) the following two properties.

Smoothness: The success of the optimization approach to MSA depends on
finding a cost function such that the optimal solution with respect to that
cost function is close enough to the true solution. The definition of “true”
solution depends on the application (e.g., reconstructing phylogeny, deter-
mining structure or function), as will be discussed in the next section. So
the cost function should reflect the application in some way. Unlike problems
such as the Traveling Salesman Problem, where the cost function (total dis-
tance traveled) is directly related to the problem under consideration (finding
the shortest tour), mathematical cost functions used in MSA often have little
relationship to the solution sought.

For approximation, stricter constraints on the properties of MSA cost
functions are required. Intuitively, an MSA that is close in score to the opti-
mal MSA should also be similar biologically. We call this notion smoothness.
Unfortunately, “biologically similar” is a vague notion. It would be useful to
make this notion concrete, for approximation algorithms are only meaning-
ful if we understand the behavior of the cost function in the neighborhood
of the optimal solution. What mathematical properties does a cost function
require in order to exhibit smoothness? Under tree alignment, for example,
it is not generally true that MSA’s with similar scores have similar biological
interpretation, since it is possible for many different trees to have the same
parsimony score.

Consistency: Biological wisdom holds that MSA computation should get eas-
ier as more sequences are introduced, and harder as the sequences get longer.
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Roos [24] and McClure, Vasi and Fitch [4] have described specific instances of
this behavior in their research. By contrast, phylogeny computation is held to
get harder as the number of species increases but easier as the length of the
sequences describing the species increases. Our optimization criteria should
capture this varied dependence of problem instance difficulty on the size of
the data set if they have any hope of capturing the underlying biology.

Ideally, the maximum of our optimization criterion should cöıncide with
the “true” or biological alignment. A weaker notion, and one inspired by the
considerations above, is that as the number of sequences being considered
increases, the maximum of our optimization criterion should converge on the
true alignment. This idea of converging on the true answer as we observe
more data is basically the notion of consistency [25,26]. For concreteness, we
define an algorithm to be consistent with respect to some parameter k of data
size (e.g., number of species for MSA or sequence length for phylogeny) if it
converges to the true solution as k goes to infinity. Similarly, a cost function
is consistent if an algorithm that outputs its maximum is consistent. Notice
that for MSA we would not expect a cost function to be consistent with
respect to sequence length.

Suppose we have a cost function which is consistent. Would an approx-
imation algorithm for the function be consistent? We consider a couple of
examples. Suppose

g(φ, dk) =
{

2 if φ is the true alignment for data dk on k sequences;
1 otherwise.

Now trivially, g is a consistent cost function. But a 1/2-approximation algo-
rithm for g would be inconsistent, because any alignment yields a score at
least half the maximum, so a 1/2 approximation algorithm need not converge
on the true answer. On the other hand, suppose

h(φ, dk) =
{
k if φ is the true alignment for data dk on k sequences;
1 otherwise.

Then any constant factor approximation algorithm for h will be consistent.
This is because a 1−ε approximation algorithm for h will be forced to output
the true alignment for k > 1/(1−ε).

So we see that consistency for approximation algorithms requires more
than an understanding of the biology of MSA, but also an understanding of
the entire solution space for the cost function of choice. In particular, we need
to know what happens to the set of alignments that are within a factor of
1−ε of the best alignment, and how this set changes with k. We will say that
a cost function f is ε-consistent if the set of all solutions within 1−ε of the
optimal for f converges to the true solution as k goes to infinity. We say f
is strongly consistent if f is ε-consistent for every constant ε. In our example
above, function g is ε consistent, for any ε < 1/2, while function h is strongly
consistent.
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For phylogeny, a strongly consistent cost function was proposed in [27].
It was possible to do so in the case of phylogeny because the stochastic pro-
cess relating phylogenies to DNA sequences is relatively well understood. We
must seek such an understanding of MSA’s before we can propose meaningful
optimization criteria for this problem.

4 Evaluating Tree Alignment as a Model for MSA

How well do existing cost functions reflect biological relationships in MSA’s?
There is an unstated assumption that tree alignment is the gold standard,
the ideal cost function, for multiple sequence alignment because the residues
in each column are thought to be related by an evolutionary tree. The im-
plication is that tree alignment is not used only because it is intractable. In
this section, we present some examples that demonstrate that a tree is not
always the appropriate model for multiple sequence alignment. In considering
whether tree alignment is appropriate for a given set of sequences, two issues
must be addressed:

• Is a tree the correct model for describing the relationship between residues
in each column? A tree may not be a suitable model because the relation-
ship between residues is functional or structural rather than historical.
Even if the relationship is historical, for some data sets, no single tree
will describe all columns in the alignment.

• What is the correct mutational model for scoring the branches of the
tree? Tree alignment has historically been based exclusively upon the
parsimony criterion. Data that does not happen to be parsimonious can
favor the wrong tree model. In addition, column-oriented optimization
approaches to MSA usually assume that sequence positions are indepen-
dent and identically distributed. In general, these assumptions do not
hold for biological sequence data.

The residues in a column to not share a common ancestor: When alignment
is used to study function or structure, residues in a column do not always
share a common ancestor. The goal is to align residues that share the same
role. Although functional or structural residues usually share an evolutionary
history, sometimes functional or structural roles can migrate to neighboring
residues.

A possible example of shifting function occurs in dihydrofolate reductase
(DHFR) gene – an important chemotherapeutic target in treating cancer and
various infectious diseases. In their studies on protozoan parasites, Roos and
colleagues have sought to design drugs that inhibit a metabolic protein in the
parasite without affecting the infected host [28,29,24]. This requires identi-
fying regions of structural or functional importance that differ substantially
between protozoan and human versions of the DHFR protein.
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Early sequence alignments placed the malaria parasite DHFR residue
Phe223 downstream of structurally conserved regions of the protein (within
the linker region which joins DHFR to thymidylate synthase, forming a bi-
functional protein in protozoa and plants)[30,31]. This result was puzzling
because mutational studies had suggested that Phe223 plays an important
role in drug sensitivity. Realignment using sequences from the related par-
asite Toxoplasma gondii indicated that Phe223 is more likely homologous to
a portion of the β-sheet which comprises the enzyme backbone [24]. The
T. gondii sequence thus provided additional information that suggested an
alternative alignment. Other protozoan sequences in the alignment have sub-
stantial, and different, nucleotide biases3. The T. gondii gene, which has
relatively equal nucleotide distribution links the other protozoan sequences,
facilitating alignment. This is another example of the observation, also made
by McClure, Vasi and Fitch [4],that MSA’s are very sensitive to sequence
choice.

Phe223 is thought to play an indirect role in enzyme activity, interacting
with His34, within the active site [32]. The residue that plays this stabilizing
role may have changed over time: a residue in a different position may pro-
vide this stabilizing effect in certain taxa (e.g. kinetoplastid parasites such
as Leishmania and Trypanosoma) [33]. In this scenario, a random mutation
allows a previously inactive residue to take on the functional role played by
Phe223 . In Roos’ alignment, the residues currently thought to provide this
stabilizing effect appear in the same column, but these residues in this column
may not all share a common ancestor.

The tree is not unique: Another case where a tree is not an appropriate
model occurs when the residues in any particular column share a common
ancestor but the columns themselves have different evolutionary histories. A
tree may describe any given column, but the columns taken together cannot
be modeled by a single tree.

One situation where this occurs is exon shuffling. Most vertebrate genes
consist of coding regions (exons) separated by DNA segments that are not
translated into proteins (introns). The discovery of this intron/exon structure
lead to the theory of exon shuffling, first proposed by Gilbert in 1978 [34]. This
theory posits that exons represent functionally and/or structurally important
subunits of proteins, that introns occur at the boundaries of these modules
and that proteins share and reüse the modules that exons encode.

The first evidence that the same exons appear in more than one gene was
found in the human low-density lipoprotein (LDL) receptor gene [35,36]. The
LDL receptor gene was shown to share exons with genes for epidermal growth
factor, blood clotting factor IX and complementation factor C9. Since then,

3 The statistical profile of the primary sequence of genes can vary substantially,
resulting in variations in, for example, the percentage of GC nucleotides. Such
differences tend to obscure similarities between related sequences.
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many such “mosaic” genes have been discovered [37–40]. In aligning mosaic
genes, a different tree may be needed for each exon. If the exon boundaries are
known, each exon could be aligned separately. However for many sequences,
the splice sites have not been determined. Detecting such boundaries would
require that the alignment already be known.

Residues with different evolutionary histories within a single gene can also
occur due to horizontal gene transfer, the transfer of genetic material between
species. For example, sequences similar to the Fn3 module in fibronectin
have been found in bacterial proteins [41]. Fibronectin is a protein found
in animals. Since Fn3 is found in both bacterial and animal proteins, one
would expect to find Fn3 modules throughout the tree of life. However, Fn3
sequences have not been found in simpler eukaryotes, plants or fungi [41],
suggesting a direct transfer of genetic material between bacteria and animals.
Thus, in an alignment of genes containing the Fn3 sequence, one would not
expect the residues in the Fn3 module to share an evolutionary history with
other residues in the alignment. More than one tree is needed to model the
sequence and, as in the case of exon shuffling, it may not be possible to know
where the module boundaries occur. Other examples of mixing of genetic
material possibly requiring more than one tree include transposition and
gene conversion.

The tree is not parsimonious: Sequence data are not generally parsimonious,
especially between distantly related sequences. Multiple substitution (e.g.,
A → C → T), coincidental substitution (e.g., A → C vs. A → G), parallel
substitution (e.g., A → C vs. A → C) and back substitution (e.g., A → C →
A), can all obscure the evolutionary history of a sequence.

Convergent evolution results in a situation where the parsimony criterion
will lead to the wrong tree model. Residues that appear to be closely related
may simply be similar due selective pressure because they perform the same
function. An example of this occurs in cows and colobine monkeys, species
that independently evolved foregut fermentation [42]. In order to maximize
the nutritional benefits of foregut fermentation, the enzyme lysozyme had
to evolve in these species to function in the acidic, pepsin-rich environment
of the stomach. In other species, lysozyme is only needed in the intestines.
As a result, lysozymes in cows and colobine monkeys exhibit amino acid
substitutions not found in other species, suggesting, wrongly, that the two
species are closely related. This would result in the wrong tree for those
residues.

Tetraloops in rRNA provide another example of convergent evolution [43,44].
Tetraloops are strings of six bases that form loops at the end of helices in
rRNA structures. The two end bases bond, allowing the internal four bases
to form a loop. Although there are 256 possible inner loop sequences, only
a small number actually occur in nature. Tetraloop sequences will tend to
appear to be closely related, even when they are not.
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Sequence data is not i.i.d.: Structural constraints prevent sequence data from
being independent. Structural integrity depends on interactions between non-
adjacent residues in the sequence. For example, α-helices are characterized
by a heptad repeat, so that there are chemical interactions between every
seventh residue in helical regions. Similarly, in order to maintain the structure
of the RNA molecule, distant residues bind to form a structural interaction.
Compensatory mutations between distant residues that form structural bonds
are selectively favored.

Sequence data are not identically distributed either. Structural constraints
on protein sequences result in variations in selective pressure at different
positions, depending on whether they are located in α-helices, β-sheets or
random coils and whether they have a role in tertiary structure or biochemi-
cal function. This fact has been recognized and exploited by researchers who
developed structure-specific substitution matrices for recognizing specific sec-
ondary structures and motifs [45,46].

Additional variations in selective pressure occur at the DNA level. In
protein coding regions, substitutions can be non-synonymous (resulting in
an amino acid substitution in the protein coded for) or synonymous (re-
sulting in a different codon for the same amino acid). Due to differences in
selective pressure, synonymous changes are seen with more frequency than
non-synonymous changes. Originally, it was thought that sequence positions
could be classified as replacement sites, synonymous sites and non-coding
sites and that mutation rates within each class would be relatively constant.
More recently, evidence has emerged that suggests that selective pressure can
vary within each class, even within a single gene or intron [47,48]

5 Biological Validation of MSA

As new optimization approaches to MSA construction are proposed, how
do we determine if the resulting alignments are biologically sound? Struc-
tural and functional information has been used to validate multiple sequence
alignments. In a comprehensive study of twelve different multiple alignment
programs, McClure, Vasi and Fitch [4] measured algorithm performance by
computing a numerical score based on the ability to find known motifs in
four different data sets, for which supporting evidence from structural or
mutational studies was available. Barton and Sternberg [49] have also used
structural alignments to validate sequence-based alignments.

Structural information has also been used guide the computation of MSA’s.
Some of the earliest work in structure-based alignments was presented by Lesk
and Chothia [50], who used superposition of secondary structures to align
globin sequences. Today, there are several common approaches to structural
alignment, as surveyed in [51]. First, one may associate a secondary struc-
ture type (α-helix, β-sheet or random coil) with each residue and then impose
the additional constraint that only residues associated with the same type
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of secondary structure may be aligned (for example, [52,24]). This type of
structural alignment is often done manually. Second, structural alignments
may be performed by minimizing the root mean square distance between
the aligned α-carbons in the backbone (see [53,54], for an example). A third
approach is to minimize the difference between the distance matrices of the
two proteins, where a distance matrix represents the distance between every
pair of α-carbons in the protein (e.g., [55,56]). Structural alignments can also
be evaluated by comparing the contact maps of the aligned proteins [57]. A
contact map is a matrix describing the interactions of the amino acid side
chains within the protein.

The use of structural information to guide or validate alignments is only
possible for data sets where structural information is available. While the
fraction of biopolymers for which structural information is available is small,
the majority of newly sequenced biopolymers turn out to be members of
families for which some structure is known. Another consideration is whether
a structural approach to MSA is useful in all cases. For example, as discussed
in Section 4, residues that share a structural or functional role do not always
share an evolutionary history.

6 Conclusion

Optimization is an extremely effective tool for attacking many computational
problems. In the case of problems from computational biology, one must
be careful that the optimization criterion used closely follows some specific
biological model of how the data relate to the underlying structure sought,
e.g. a phylogeny or an MSA. In this vein, tree alignment has been touted as a
“biological” approach to the MSA problem. However, as argued in Section 4,
the definition of tree alignment (i.e. a single tree under a parsimonious scoring
scheme) renders it meaningless in many biological settings. Furthermore, we
argue in Section 3 that approximation algorithms for tree and other alignment
criteria do not exploit biologically intuitive notions of convergence.

None of this need be the case. We are not pointing out fundamental short-
comings of the optimization/approximation approach in computational biol-
ogy. Indeed, we believe that this approach offers the best hope for a principled
attack on MSA and other problems. However, the strength of this approach,
most notably a transparent association between underlying assumptions and
computational methods, is rendered meaningless if the underlying assump-
tions are not biological. We therefore call for a more focused search for a
biologically grounded model for MSA computation. Our paper points out
many pitfalls of any such search, and suggests new directions for improve-
ment. It should be considered a call to action.
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