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INTRODUCTION 

Wh en we consider a protein (or gene), one of the most fundamental questions is what 
other proteins are related. Biological sequences often occur in families . These 
fam ilies may consist of related genes within an organism (paralogs), sequences 
within a population (e.g., polymorphic variants), or genes in other species (or tho­
logs). Sequences diverge from each other for reasons such as duplication within a 
genome or speciation leading to the existence of orthologs. We have studied pairwise 
comparisons of two protein (or DNA) sequences (Chapter 3), and we have also seen 
multiple related sequences in the form of profiles or as the output of a BLAST or 
other database search (C hapters 4 and 5) . We will also explore multiple sequence 
alignments in the context of molecular phylogeny (Chapter 7), protein domains 
(Chap ter 10), and protein structure (Chapter 11). 

In this chapter, we consider the general problem of multiple sequence alignment 
from three perspectives. First, we describe five approaches to making multiple 
sequence alignments from a group of homologous sequences of interest. Second, 
we discuss multiple alignment of genomic DNA. This is typically a comparative 
genomics problem of aligning large chromosomal regions from different species. 
Third, we explore databases of multiply aligned sequences, such as Pfam, the protein 
family database. While multiple sequence alignment is commonly performed for 
bo th protein and D N A sequences, most databases consist of protein families only. 
Nucleotides corresponding to coding regions are typically less well conserved than 

Bioinformatics and Functional Genomics, Second Edition. By [onathan Pevsner 
Copyright © 2009 John Wiley & Sons, Inc. 

179 



180 MULTIPLE SEQUEN CE ALIGNMENT 

proteins because of the degeneracy of the genetic code. Thus they can be harder to 

align with with high confidence. 
Multiple sequence alignments are of great interest because homologous 

sequences often retain similar structures and functions. Pairwise alignments may suf­
fice to create links between structure and function . Multiple sequence alignments are 
very powerful because two sequences that may not align well to each other can be 
aligned via their relationship to a third sequence, thereby integrating information 
in a way not possible using only pairwise alignments. We can thus define members 
of a gene or protein family, and identify conserved regions. If we know a feature of 
one of the proteins (e.g., RBP4 transports a hydrophobic ligand), then when we 
identify homologous proteins, we can predict that they may have similar function. 
The overwhelming majority of proteins have been identified through the sequencing 
of genomic DNA or complementary DNA (cDNA; Chapter 8). Thus, the function 
of most proteins is assigned on the basis of homology to other known proteins rather 
than on the basis of results from biochemical or cell biological (functional) assays. 

Definition of Multiple Sequence Alignment 
Domains or motifs that characterize a protein family are defined by the existence of a 
multiple sequence alignment of a group of homologous sequences. A multiple 
sequence alignment is a collection of three or more protein (or nucleic acid) 
sequences that are partially or completely aligned. Homologous residues are align ed 
in columns across the length of the sequences. These aligned residues are homologous 
in an evolutionary sense: they are pre sumably derived from a common ancestor. The 
residues in each column are also presumed to be homologous in a structural sense : 
aligned residues tend to occupy corresponding positions in the three-dimensional 
structure of each aligned protein. 

Multiple sequence alignments are easy to generate , even by eye, for a group of 
very closely related protein (or DNA) sequences. We have seen an alignment of clo­
sely related sequences (Fig. 3.7, GAPDH). As soon as the sequences exhibit some 
divergence, the problem of multiple alignment becomes extraordinarily difficult to 

solve . In particular, the number and location of gaps is difficult to assess. We saw 
an example of this with kappa caseins (Fig. 3.8), and in this chapter we will examine 
a challenging region of five distantly related globins. Practically, you must (1) choose 
homologous sequences to align, (2) choose software that implements an appropriate 
objective scoring function (i.e., a metric such as maximizing the total score of a series 
of pairwise alignments), and (3) choose appropriate parameters such as gap opening 
and gap extension penalties. 

There is not necessarily one "correc t" alignment of a protein family. This is 
because while protein structures tend to evolve over time, protein sequences generally 
evolve even more rapidly than structures. Looking at the sequences of human beta 
globin and myoglobin, we saw that they share only 25% amino acid identity (Fi g. 
3.5) , but the three-dimensional structures are nearly identical (F ig. 3.1 ). In creating 
a multiple sequence alignment, it may be impossible to identify the amino acid resi­
dues that should be aligned with each other as defined by the three-dimensional 
structures of the proteins in the family. We often do not have high-resolution struc­
tural data available, and we rely on sequence data to generate the alignment. 
Similarly, we often do not have functional data to identify domains (such as the 
specific amino acids that form the catalytic site of an enzyme), so again we rely on 
sequence data . It is possible to compare the results of multiple sequence alignments 



INTRODUCTION 181 

that are generated solely from sequence data and to then examine known structures 
for those proteins. For a given pair of divergent but significantly related protein 
sequences (e.g., for two proteins sharing 30% amino acid identity), Chothia and 
Lesk (1986) found that about 50% of the individual amino acid residues are super­
posable in the two structures. 

Aligned columns of amino acid residues characterize a multiple sequence align­
ment. This alignment may be determined because offeatures of the amino acids such 

as the following: 

•	 There are highly conserved residues such as cysteines that are involved in 
forming disulfide bridges. 

•	 There are conserved motifs such as a transmembrane domain or an immuno­
globulin domain. We will encounter examples of protein domains and motifs 
(such as the PROSITE dictionary) in Chapter 10. 

•	 There are conserved features of the secondary structure of the proteins, such 
as residues that contribute to ex helices, f3 sheets, or transitional domains. 

•	 There are regions that show consistent patterns of insertions or deletions. 

Typical Uses and Practical Strategies of Multiple 
Sequence Alignment 
When and why are multiple sequence alignments used? 

•	 If a protein (or gene) you are studying is related to a larger group of proteins, 
this group membership can often provide insight into the likely function, 
structure, and evolution of that protein. 

•	 Most protein families have distantly related members. Multiple sequence 
alignment is a far more sensitive method than pairwise alignment to detect 
homologs (Park et al., 1998). Profiles (such as those described for PSI­
BLAST and hidden Markov models in Chapter 5) depend on accurate mul­
tiple sequence alignments. 

•	 When one examines the output of any database search (such as a BLAST 
search), a multiple sequence alignment format can be extremely useful to 
reveal conserved residues or motifs in the output. 

•	 If one is studying cDNA clones, it is common practice to sequence them. 
Multiple sequence alignment can show whether there are any variants or dis­
crepancies in the sequences. Alignments of genomic DNA containing single 
nucleotide polymorphisms (SN P s; Chapter 16) are of interest, for example, 
in the identification of nonsynonymous SNPs. 

•	 Analysis of population data can provide insight into many biological questions 
involving evolution, structure, and function. The PopSet portion of Entrez 
(described below) contains nucleotide (and protein) population data sets 
that are viewed as multiple alignments. 

•	 When the complete genome of any organism is sequenced, a major portion of 
the analysis consists of defining the protein families to which all the gene 
products belong. Database searches effectively perform multiple sequence 
alignments, comparing each novel protein (or gene) to the families of all 
other known genes . 
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•	 We will see in Chapter 7 how phylogeny algorithms begin with multiple 
sequence alignments as the raw data with which to generate trees. The m ost 
critical part of making a tree is to produce an optimal multiple sequence 
alignment. 

•	 The regulatory regions of many genes contain consensus sequences for 
transcription factor-binding sites and other conserved elements. Many such 
regions are identified based on conserved noncoding sequences that are 
detected using multiple sequence alignment. 

Benchmarking: Assessment of Multiple Sequence 
Alignment Algorithms 
We will describe five different approaches to creating multiple sequence alignments. 
How can we assess the accuracy and performance properties of the various algor­
ithms? The performance depends on factors including the number of sequences 
being aligned, their similarity, and the number and position of insertions or deletions 
(McClure et a!., 1994). 

A convincing way to assess whether a multiple sequence alignment program 
produces a "correct" alignment is to compare the result with the alignment of 
known three-dimensional structures as established by x-ray crystallography 
(Ch apter 11). Several databases have been constructed to serve as benchmark data 
sets. These are reference sets in which alignments are created from proteins having 
known structures. Thus, one can study proteins that are by definition structurally 
homologous. This allows an assessment of how successfully assorted multiple 
sequence alignment algorithms are able to detect distant relationships among pro­
teins. For proteins sharing about 40% amino acid identity or more, most multiple 
sequence alignment programs produce closely similar results. For more distan tly 
related proteins, the programs can produce markedly different alignments, and 
benchmarks are useful to compare accuracy. 

The performance of a multiple sequence alignment algorithm relative to a 
benchmark data set is measured by some objective scoring function. One commonly 
used metric is the sum-of-pairs score (Box 6.1). This involves counting the number of 

Box 6.1 
Evaluating Multiple Sequence Alignments 

Thompson et a!. (1999) described two main ways to assess multiple sequence 
alignments. The first is the sum-of-pairs scores (SPS). This score increases as a 
program succeeds in aligning sequences relative to the BAliBASE or other 
reference alignment. The SPS assumes statistical independence of the columns. 
For an alignment ofN sequences in M columns, the ith column is designated A il' 
A iz , • . . , A iN. For each pair ofresidues Aij and A ik , a score of 1 is assigned (Pijk = 1) 
if they are also aligned in the reference, and a score of 0 is assigned if they are not 
aligned (Pijk = 0) . Then for the entire ith column, the score S, is given by: 

N N 

s, = L LPijk 
i = l . i#k k= l 

e 

I
 
r 

B 

H 

II 
o 

PI 
Sj 



INTRODU CTION 183 

For the entire multiple sequence alignment, the SPS is given by: 

M 

LSi 
SPS = i=l 

Mr 

LSn 
i=l 

Here S,., is the score S, for the ith column in the reference alignment, and Mr 
corresponds to the number of columns in the reference alignment. 

A second approach is to create a column score (CS) . For the ith column, 
C, = 1 if all the residues in the column are aligned in the reference, and C, = 0 if 
not. 

Ci 
CS= t 

i = I M 

Sum-of-pairs scores and column scores have been used to assess the 
performance of multiple sequence alignment algorithms . Gotoh (1995) and 
others further described weighted sum-of-pairs scores that correct for biased 
contributions of sequences caused by divergent members of a group being 
aligned. Lassmann and Sonnhammer (2005) note that a column score becomes 
zero if even a single sequence is misaligned; thus it may be too stringent. 

pairs of aligned residues that occur in the target and reference alignment, divided by 
the total number of pairs of residues in the reference. 

Ben chm ark data sets may contain separate categories of multiple sequence align­
ments, such as those h aving proteins of varying length, varying divergence, insertions 
or deletions (in dels) of various lengths, and varying motifs (su ch as internal repeats) . 
Investigators routinely employ benchmark data sets to assess th e performance 
of alignment algorithms (e.g., M orgenstern et aI., 1996; McClure et aI., 1994; 
Thom pson et aI., 1999; Gotoh, 1996; Briffeuil et aI., 1998). Blackshields et al. 
(2006) compared the properties of six benchmark datasets (Table 6.1 ). 

Another approach to benchmarking is to use a program such as ROSE (Stoye 
et aI., 1998) that simulates the evolu tion of sequences. We introduced ROSE in 

Ii!m!DII Benchmark Data Sets to Assess Multiple Sequence Alignment Accuracy 
Database Reference URL 

BAIiBASE Thompson et a1. (200 5) http :/ /www-bio3d-igbmc.u-strasbg.fr/ 
balibase / 

HOMSTRAD Mizuguchi et a1. (1998) http:/ /www-cryst.bioc.cam.ac . 
uk/ '"homstrad/ 

I&\1BASE Subramanian et a1. (2005) http ) / dialign-t.gobics.de/ m ain 
OxBench Raghava et a1. (2003) http: / /www.compbio .dundee.ac.uk/ 

Software/ Oxbench / oxbench.htm 
Prefab Edgar (2004b) http :/ /www.drive5.com/muscle /prefab.htm 
SABmark Van Walle et a1. (20 05 ) http: / /bioinformatics.vub.ac .be / databases / 

content.html 

You can examine typical bench­
mark entries for the globins and 
the lipocalins from the 
HOMSTRAD dat abase 
(M izuguchi et aI., 1998) in Web 
documents 6.1 and 6.2 at 
~ http ) /www.bioinfobook.org/ 
chapter6. HOM ST RAD (th e 
homologous structure alignment 
database) contains aligned three­
dimensional structures of homo­
logous proteins from over 1000 
families . Later in this chapter, 
studying the T-Coffee su ite of 
programs, we will introduce a new 
approach to benchmarking that is 
based on structural data but does 
not employ a benchmark 
database . 



184 MULTIPLE SEQUENCE ALIGNMENT 

ROSE software is available at 
.. http ) /bibiserv. techfak.uni­
bielefeld .de / rose / . 

We will explore sets of distantly 
and closely related globin 
sequences in the FASTA format. 
These are available as web docu­
me nts 6.3 and 6.4 at" http: / / 
www.bioinfb ook.org/ chapter6. 
There are many ways that you can 
easily obtain a group of sequences 
in the FASTA format. Examples 
include H omoloG ene at NCBI 
(for eukaryotic proteins), or you 
can select any subset of the results 
of a BLAST search and view the 
sequences in Entrez Protein (or 
Enrrez N ucleotide) in the FASTA 
format. 

Chapter 5 as a benchmark for analyzing genomic alignment software. It has also been 
used to assess multiple sequence alignment software such as Kalign (Lassmann and 
Sonnhammer, 2005) and MUSCLE (Edgar, 2004a). 

FIVE MAIN ApPROACHES TO MULTIPLE 

SEQUENCE ALIGNMENT 

There are many approaches to multiple sequence alignment; in the past decade many 
dozens of programs have been introduced. We may consider five algori thmic 
approaches: (1) exact methods, (2) progressive alignment (e.g., ClustalW), (3) itera­
tive approaches (e.g., PRALINE, IterAlign, MUSCLE), (4) consistency-based 
methods (e.g., MAFFT, ProbCons), and (5) structure-based methods that include 
information about one or more known three-dimensional protein structures to facili­
tate creation of a multiple sequence alignment (e.g., Expresso). The programs we will 
describe in categories (3) to (5) are often overlapping; for example, all rely on pro­
gressive alignment and some combine iterative and structure-based approaches. All 
the programs offer trade-offs in speed and accuracy. MUSCLE and MAFFTare fast­
est, and are thus most useful for aligning large numbers of sequences. ProbCons and 
T-Coffee, although slower, are more accurate in many applications . 

We will explore how one set of globin sequences can be aligned differently 
using various programs, and we will try to assess which alignments are most accurate. 
A related question is the consequence of a misalignment. Potentially, the con­
servation of critical residues (such as active site amino acids of an enzyme, the 
heme-binding residues of a globin, or conserved residues that cause disease wh en 
mutated) may be missed. Phylogenetic inference (Chapter 7) may be compromised 
because all molecular phylogeny algorithms depend on a multiple sequence align­
ment as input. Protein structure prediction (Chapter 11) is severely compromised 
by faulty multiple sequence alignment, wh ich is often a first step in homology­
based modeling. 

The programs we will explore can be used by web interfaces, alth ough 
local installation of the programs typically allows you access to a more complete 
package of options. All the web interfaces allow you to paste in a set of D N A, 
RNA, or protein sequences in the FASTA format, or to upload a text file contain ing 
these sequences. 

Exact Approaches to ultiple Sequence Alignment 
Dynamic programming as described by Needleman and Wunsch (I 970) for pairwise 
alignment is guaranteed to identify the optimal global alignmentrs). Exact methods 
for multiple sequence alignment employ dynamic programming, although the 
matrix is multidimensional rather than two-dimensional. The goal is to maximize 
the summed alignment score of each pair of sequences. Exact methods generate 
optimal alignments but are not feasible in time or space for more than a few 
sequences. For N sequences, the computational time that is required is O(2N L N ) 

where N is the number of sequences and L is the average sequence length. An 
exact multiple sequence alignment of more than four or five average sized proteins 
would consume prohibitively too much time. Nonexact methods, which we will dis­
cuss next, are computationally feasible. For example, CIustalW has -time complexity 
O(~ + L 2) and MUSCLE has time complexity O(~ + NL 2). Although th ey are 
faster, these heuristic approaches are not guaranteed to produce optimal alignm ents. 
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Progressive Sequence Alignment 
The most commonly used algorithms that produce multiple alignments are derived 
from the progressive alignment method. This was proposed by Fitch and 
Yasunobu (1975) and described by Hogeweg and Hesper (1984) who applied it to 
th e alignm ent of 5S ribosomal RNA sequences. The method was popularized by 
Feng and Doolittle (1987, 1990). It is called "progressive" because the strategy entails 
calculating pairwise sequence alignment scores between all the proteins (or nucleic acid 
sequen ces) being aligned, then beginning the alignment with the two closest sequences 
and progressively adding more sequences to the alignment. A benefit of this approach 
is that it permits the rapid alignment ofeven hundreds ofsequences. A major limitation 
is that the final alignment depends on the order in which sequences are joined. Thus, it 
is not guaranteed to provide the most accurate alignments. 

Perh ap s the most popular web-based program for performing progressive mul­
tiple sequence alignment is ClustalW (Thompson et al., 1994). There are many 
ways to access the program (Box 6.2). The ClustalW algorithm proceeds in three 
stages. We can illustrate the procedure by aligning five distantly related globins, 
selected from Entrez and pasted into a text document in the FASTA format 
(F ig. 6.1). The results are shown in Figs. 6.2 and 6.3. Later we will also align five clo­
sely related globins (Figs. 6.4 and 6.5). In this particular example we select proteins 
for which the corresponding three-dimensional structure has been solved by x-ray 
crystallography. This will help us to interpret the accuracy of the alignment from a 
structural perspective as well as an evolutionary perspective. 

1. In stage 1, the global alignment approach of Needleman and Wunsch (1970; 
Chapter 3) is used to create pairwise alignments ofevery protein that is to be included 
in a multiple sequence alignment (Fig. 6.2, stage 1). As shown in the figure, for an 
alignment of five sequences, 10 pairwise alignment scores are generated. 

Algorithms that perform pairwise alignments generate raw similarity scores. 
N ot e that for the default setting of ClustalW the scores are simply the percent 
identit ies. Many progressive sequence alignment algorithms including ClustalW 
use a distance matrix rather than a similarity matrix to describe the relatedness of 
the proteins. The conversion of similarity scores for each pair of sequences to distance 
scores is outlined in Box 6.3. The purpose of generating distance measures is to 
gen erate a guide tree (stage 2, below) to construct the alignment. 

Box 6.2 
Using ClustalW 

C lustalW is accessed online at many servers, including ~ http://www.ebi.ac.uk/ 
clustalwI, where it is hosted by the European Bioinformatics Institute. 

Another way to access ClustalW is through the EMBOSS program emma. A 
variety of EMBOSS servers hosting emma are available, including ~ http:// 
phytophthora.vbi.vt.edu/EMBOSS/, ~ http://bioporta1.cgb.indiana.edu/cgi­
bin i emboss / emma and ~ http://embossgui.sourceforge.net/demoI emma.htm1. 

C lustalX is a downloadable stand-alone program related to ClustalW 
(T hompson et al., 1997). ClustalX offers a graphical user interface for editing 
multiple sequence alignments. You can obtain ClustalX at ~ http://bips.u­
strasbg.frIfrIDocumentation/ClustalX/. An introductory tutorial for using 
ClustalX in conjunction with phylogeny sofrware has been written by Hall (2001). 

Note that while most database 
searches such as BLA ST rely on 
local alignment strategies, many 
multiple sequence alignmen ts 
focus on global alignments, or a 
combination of global and local 
strategies. 

For N sequences that are m ult iply 
aligned, the number of pa irwise 
alignments that must be calculated 
for the initial matrix equals
1(N - 1) (N). For five proteins, 10 
pairwise alignments are made. For 
a multiple sequence alignment of 
500 proteins, (499) (500) / 2 = 
12,250 pairwise alignments are 
made; this is why the speed of an 
algorithm can be a concern . 
ClustalW is slow relative to o ther 
approaches such as M USCLE, 
described below, but for most 
typical applications its speed is 
quite reasonable. 
To confirm that the C lustalW 
scores are percent identities, per­
form pairwise alignments be tween 
any two of the sequences in Fig. 
6.2 or 6.4 using BLA ST at NCBI 
(Chapter 3). 
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FIGURE 6.7 . Multiple sequence 
alignment offive distantly related 
globins using the ClustalW server 
at EBI ~ http:/ /www.ebi.ac.uk/ 
clustalw/ ). Five distantly related 
globin proteins were pasted in 
using the FASTA format from 
Entrez: (NCBI). 

FIGURE 6.2. Progressive align­
ment method of Feng and 
Doolittle (1987) used by many 
multiple alignment programs such 
as ClustalW In stage 1) a series of 
pairwise alignments is generated 
for five distantly related globins 
(see Fig. 6.1). Note that the best 
score is for an alignment of two 
plant globins (score = 43; arrow 
1). In stage 2) a guide tree is calcu­
lated describing the relationshipsof 
the fi ve sequences based on their 
pairwise alignment scores. A 
graphical representation of the 
guide tree is shown using the 
]alView tool at the ClustalW web 
server. Branch lengths (rounded 
off) reflect distances between 
sequences and are indicated on 
the tree; compare to Fig. 6.4. 

YOUR EMAIL ALIGNMENT TITLE RESULTS ALIGNMENT 

19lobins ! Linteretetive :::oJ Ilull :::oJ 

KTUP WINDOW SCORE TYPE TOPDIAG 
(WORDSIZE) LENGTH 

Ider :::oJ Idel ::oJ Ipercent ::oJ Idef ::oJ 
MATRIX GAP OPEN END GAP 

GAPS EXTENSION 

1 ~:::oJ Id ~ :::J Idef :::oJ ~ 

OUTPUT PHYLOGENETIC TREE 

OUTPUT OUTPUT TREE TYPE CORRECT DIST. 
FORMAT ORDER 

1.?lnw/numb ers B l a li g~:::oJ Inone ::oJ loff :::oJ 

Enter or Paste a set of Sequences In any supported format: 

>b e t a_ g lob l n 2hhb B NP_ 00 0 509.1 [ Homo 9 apiens] 
!f"JHLTPEEKSAVT AL fJG KVNVD EVGGEALGRLLWYP \lTQRFF ESFGD LSTPDAVHGNPKVKA HGKKVL 
AFS DG LAH L DN LKG TFATLS E L HC DK LHVD P E N FR L LG1~LVCV LAH HF G KEYT PPVQAA YQKWAGVA 

ALAHKYH 
>myo g l ob i n 211H1 NP_0 05 359 .1 [Homo sapi ens ) 
MGLSDGE fJQL VLNV'W GKVEAD IP GH G QEVLI RLFKGHPETLE KF D K FKH LK SE DEM K A SE DL K K H G A 

TALGGILKKKGHHEAEIKPLAQSHATKH KIPVKYLEFISECI I QVLQSKHPGDFGADAQG AHNKALEL F 
KDHASNYKEL GFQG 
> ne u r o g l ob i n 10 J 6A NP 0 670 80 . 1 [Homo s a piens] 
~E R P EP E L IRQS[JRAVSRSP L E HGTVL FARLFA L E! D LLPL FQYNCRQfS SP E DCLSS PEFL DH I R ~

Upload a file:I Browse... _jjJj,M -ir;m-

PAIRGAP 

Idel ::oJ 
GAP 

DISTANCES 

Idel :::J 

IGNOREGAPS 

~i 

JJC: 

Stage 1:generate a series of pairwise alignments 

SeqA Ne.me Len (aa ) SeqB Ne.me Len( aet) S c o ~ e 

1 beta_gl ob in 147 2 myoqlobin 154 25 
1 be t a_globin 147 3 neu~ oql o)bin 151 15 
1 beta_g lobin 147 4 soybean 14 4 13 
1 betet_glob i n 147 5 r i ce 166 21 
2 myoglobin 154 3 neu~ o gl o)b in 151 16 
2 myo gl ob i n 154 4 so ybe an 144 8 
2 myo glob i n 154 5 ric e 166 12 
3 neuroglob i n 15 1 4 soyb ean 144 17 
3 ne uroglobin 151 5 r i ce 166 18 
4 soybe an 144 5 r ice 166 43 • 
==== == == ===~~~~=~ ~ ~~~~=~ = ~ ~~~=~= = = ~~=~=~ = ====== = =~~~= = = = ===== 

Stage 2: create a guide tree, calculated from a distance matr ix 

( 

be t a_gl ob in: 0. 36022, 
myoglobin:O.3880 8 , 
( 

n eu~og lobin :0 .399 2 4 , 

( 

soybean: 0.30760,
 
ri ce:O. 26184)
 
: 0. 13652 )
 
: O. 065 60) ;
 

----------------------bet<l...!llobin: 0.:16022 
------------------------myoglobin: 0.:18808 

-------------------------neuroglobin: 0.39924 
--- soybean: 0.30760 

rice: 0.26184 
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CLUSTAL W (1 . 83 ) multipl e sequence a lignmen t
 

T
 
be ta g lob i n ----------MVHLTPEEKSAVTALWGKVNVD--EVGGEALGRLLVVYPWTQRFFESFG- 47 
myogl ob i n --------- - -MGLSDGEWQLVLNVWGKVEADIPGHGQEVLIRLFKGHPETLEKFDKFK- 48 
neuroglob in ------ ---- - - -MERPEPELIRQSWRAVSRSPLEHGTVLFARLFALEPDLLPLFQYNCR 47 

soybean ----------MVAFTEKQDALVSSSFEAFKANIPQYSVVFYTSILEKAPAAKDLFSFLA - 49 

r i c e MALVEDNNAVAVSFSEEQEALVLKSWAILK KDS ANIA LRFFLKI FEVAPSASQMFSF LR- 59 

* * 
T\l 

be t a g lobin DLSTPDAVMGNPKVKAHGKKVLGAFSDG LDNLKGTFATLS -----ELHCD KL 102 
myog lobin HLKSEDEMKASEDLKKHGATVLTALGGI KKKGHHEAEIKPLA- - -- -QS HAT KH 10 3 
neur oglob i n QFSS PEDCLSSPEFLDHIRKVMLVIDAA NVEDLSSLEEYLAS- - -LGRKHRAVG 104 

soybean - - NGVDP T--NPKLTGHAEKLFALVRDS GQLKASGTVVADAA- -- - LGSVHAQ 101 

rice -- NSDVPLEKNPKLKT~ISVFVMTC QLRKAGKVTVRDTTLKRLGATHLKYG 117 
* . . . . 

be ta g lobin NFRLLGNVLVCVLAHHF- GKEFTPPVQAAYQKVVAGVANALAHKYH- ----- 147
 
myoglob in YLEFISECIIQVLQSKH- PGDFGADAQGAMNKALELFRKDMASNYKELGFQG 154
 
neur ogl obin SFSTVGESLLYMLEKCL- GPAFTPATRAAWSQLYGAVVQAMSRGWDGE---- 151
 

s oy be a n QFVVVKEALLKTl KAAV-GDKWSDELSRAWEVAYDELAAAIKKA- ------- 14 4
 

r ice HFEVVKFALLDTI KEEVPADMWSPAMKSAWSEAYDHLVAAIKQEMKPAE--- 1 66
 

* 

FIGURE 6.3 . Multiple sequence alignm ent of fiv e distantly related globins. The output is from 
ClustalW using the progressive alignment algorithm ofFeng and Doolittle (1987). In stage 3, a 
multiple sequence alignment is created byperforming progressive sequence align ments. First, the 
two closest sequences are aligned (soy bean and rice globins). Next, further sequences are added 
in an order based on their position in the guide tree. An asterisk indicates positions in which the 
amino acid residue is 100% conserved in a column; a colon indicates conservative substitutions;a 
dot indicates less conservative substitutions. The proteins are human beta globin (accession 
NP_000509; Protein Data Bank identifier 2hhb), human myoglobin (N P_005359; 2MMl), 
human neuroglobin (NP_067080; 10]6A), leghemoglobin (from the soybean GLycine max; 
I FSL) and nonsymbiotic plant hemoglobin (from rice; ID8U). Regions ofalpha helices (defined 
in Chapter 11) based on x-ray crystallography are indicated in red letters. Three highly conserved 
residues are indicated by arrowheads:phe44 of myoglobin (red arrowhead) his65 (open arrow­
head); and his93 (black arrowhead) . These two histidines are importan t in coordinating protein 
binding to the hemegroup. A box surrounds the second histidine including five amino acidsdown­
stream (to the carboxy-terminal) and 17 amino acids upstream (to the end ofan alpha helical 
region) . We will discuss the alignment within this box for ClustalW in comparison to other align­
ment programs (Fig. 6.6) . 

In our example, note that the best pairwise global alignment score is for rice 
versu s soybean hemoglobin (F ig. 6.2, arrow 1). For a group of closely related beta 
globins, all have high scores (F ig. 6 .4), even for sequences from avian and mamma­
lian spe cies that diverged over 300 milli on years ago. 

2. In the second stage, a guide tr ee is calculated from the distance (or similarity) 
matrix. There are two principal ways to construct a guide tree: the unweighted pair 
group method of arithmetic averages (U PGMA) and the neighbor-joining method. 
We will define these algorithms in Chapter 7. The two ma in features of a tree are 
its topology (branching order) and branch lengths (which can be drawn so that 
they are proportional to evolution ary distance). Thus, the tree reflects the relatedness 
of all the proteins to be multiply aligned. 

In ClustalW, the tree is described with a written syntax called the Newick format, 
as well as with a graphical output (Figs. 6.2 and 6.4, stage 2). The chicken sequence 
has the lowest score relative to the human, chimpanzee, dog, and mouse beta globins, 
and this is reflected in its position in the guide tree (Fig. 6.4, stages 1 and 2). A tree 
can also be displayed graphically at the ClustalW site by us ing the JalView option. 
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FIGURE 6.4. Example of a mul­
tiple sequence alignment ofclosely 
related glofJin proteins using the 
progressive sequence aligment 
method of Feng and Doolittle 
(1987) as implemented by 
ClustalW. Compare these scores to 
those for distantly related proteins 
(Fig. 6.2), and note that the pair­
wise alignment scores are consist­
ently higher and the distances 
(reflected in branch lengths on the 
guide tree) are much shorter. 

Stage 1:generate a series of pairwi se alignments 

Se qA N~e Len(aa ) Se qB Name Len( aa) Sco re 
= = ========= = ==== ==== = = = === === = = = = = = == = === = = = = = = = = = = === == = ~ = = = = = = = = = = = = = = = = = = = = == = = = : = = = = = = = 

1 human_NP_00 0509 14 7 Z Pan_ t roglodytes_XP_S08242 147 100 

1 human_NP_000509 147 3 Cani3 familiaris_XP_S379 0Z 147 89 

1 human_~IP_ 00 0509 14 7 4 Mu s_muscu1us _NP_058652 147 80 

1 hum.an_~IP_ 0 0 0 5 0 9 14 7 5 Gal1us_gal1us_XP_444648 14 7 69 

2 Pan_tcoglody t e s_XP_50 8242 147 3 Can is_ f ami l iac i s_XP 537902 147 89 

2 Pan_troglodyces_XP_50 8242 147 4 Mu s_mu s c u lu s_~lP_ O S 8 65 2 14 7 80 

2 Pan_tc oglody ces_XP_S0824 2 14 7 5 Ga 11us_gal1 u ~_XP_44464 8 14 7 69 
3 C an i s _ E ~i1 ia r i s_XP_537902 14 7 4 Hu s_~u s culus_NP_0 5 8 65 2 147 78 

3 Canis_Eami1i aris_XP_5 3790 2 147 5 Gal1us_gal1us _XP_4 44648 147 71 
4 Mus_musculus_NP_05865 2 147 5 Ga 11us_ ~a 11 u s_XP_44464 8 147 66 

Stage 2:create a guide tree. calculated from a di stance matrix 
( 
( 

(
 

human_NP_OOOS09:0.000oo,
 
Pan_ccoglodyces_XP_S08242:0.00000 )
 
: O. 05272 ,
 
Can1s_fam11iacis_XP_S3790 2 :0.04932)
 
:0.03231,
 
1Iu9_mus cu1 us_NP_OS8652: 0 . 12075,
 
Gal1us_ga11us_XP_444648:0.21 2S9);
 

human_NP _000509: 0.00000 
~---r------jpan_troglodytes_XP_508242: 0.00000 

'-- - - - - Canis _familia ris _XP_537902: 0.04932 
1---------------Mus_musculus_NP_058652: 0.12075 
L-- - - - - - - - - - - - - - - - - - - - - - - Gallus ....oa llus _XP_444648: 0.21259 

Guide trees are usually not considered true phylogenetic trees, but instead are 
templates used in the third stage of ClustalW to define the order in which sequences 
are added to a multiple alignment. A guide tree is estimated from a distance m atrix 
based on the percent identities between sequences you are aligning. In constrast, 
a phylogenetic tree almost always includes a model to account for multiple substi­
tutions that commonly occur at the position of aligned amino acids (or nucleotides), 
as discussed in Chapter 7. 

3. In stage 3, the multiple sequence alignment is created in a series ofsteps based 
on the order presented in the guide tree. The algorithm first selects the two most 
closely related sequences from the guide tree and creates a pairwise alignment. 
These two sequences appear at the terminal nodes of the tree, that is, the locations 
of extant sequences. For example, rice globin and soybean globin are aligned. The 
next sequence is either added to the pairwise alignment (to generate an aligned 
group of three sequences, sometimes called a profile) or used in anoth er pairwise 
alignment. At some point, profiles are aligned with profiles. The alignment continues 
progressively until the root of the tree is rea ched, and all sequences have been aligned. 
At this point a full multiple sequence alignment is obtained (F igs. 6.3 and 6.5, stage 3). 

In the alignment of five distantly related globins , we can note that a highly con­
served phenylalanine is aligned (Fig. 6.3, red arrowhead) as is a histidine that coor­
dinates h eme binding in most globins (open arrowhead) . However, an even m ore 
highly conserved histidine (black arrowhead) is aligned in beta globin and myoglobin, 
but is placed in a separate column for neuroglobin and two plant globins. This rep­
resents a misalignment, and we will expl ore how other programs treat this region. For 
a group of closely related globins, the level of conservation is so h igh that there are no 
gaps and thus no ambiguities about how to perform the alignment (Fig. 6.5) . 
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CLUSTAL W (1.83) multiple sequence alignment 

human_NP_000509 
pan_t~oglodytes_XP_508242 

Canis_[amilia~is_XP_537902 

Mus_musculus_NP_058652
 
Gallus_gallus_XP_444648
 

human_NP_000509 
Pan_t~oglodytes_XP_508242 

Canis_[amilia~is_XP_537902 

Mus_musculus_NP_058652
 
Gallus_gallus_XP_444648
 

human_NP_000509 
Pan_t~oglodytes_XP_508242 

Canis_[amilia~is_XP_537902 

Mus_musculus_NP_058652
 
Gallus_gallus_XP_444648
 

Box 6.3 

"V 
~~LTPEEKSAVTALWGKVNV~EVGGEALGRLLVVYPWTQRFFESFGDLS 50 
MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLL~r{PWTQRFFESFGDLS 50 
MVHLTAEEKSLVSGLWGKVNVDEVGGEALGRLLI'rlPWTQRFFDSFGDLS 50 
~~LTDAEKSAVSCLWAKVNPDEVGGEALGRLL~{PWTQRYFDSFGDLS 50 
MVHYTAEEKQLITGLWGKVNVAECGAEALARLLIVl"PWTQRFFASFGNLS 50 
~~~ ~ ~~ . :: ~~.~~~ ~ ~.~~~.~~~:~~~~~~~:~ ~~~:~~ 

100TPDA'{MGNP~~G~'LGAFSDGLAHLDNLKGTFATLSEL~DKLHVD 
TPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVD 100 
TPDAVMSNAK~GKKVLNSFSDGLKNLDNLKGTFAKLSELHCDKLW{D 100 
SASAIMGNPKVKAHGKKVITAFNEGLKNLDNLKGTFASLSELHCDKLHVD 100 
SPTAILGNPMVRAHGKKVLTSFGDAVKNLDNIKNTFSQLSELHCDKLHVD 100 ' 
.. 1i: :.1i, 1;:1;11101;1;1;: :1>.:.: :1>1;1r:1i.1i1i: 1i1i1i1i1i1i1i1i1i1i1i1i 

PENFRL LGNVLVCVLAHHFGKE FTPPVQAAYQKVVAGVANALAHK'lli 147 
PENFRLLQ~lLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH 147 
PENFKLL GNVLVCVLAHHFGKE FTPQVQAAYQ~lVAGV ANALAHKYH 147 
PENFRLLGNAIVIVLGHHLGKDFTPAAQAAFQ~1VAGVATALAHKYH 147 
PENFRLLGDILIIVLAAHFSKDFTPECQAAWQKLVRVVAHAL~lli 147 
1i1i1i1i:1';1;1i: :: 101; 1i:.1i:1';1;1i 1i1i1i:1i1i:1i ti1i 1i1r1i:1i1i1i 

Similarity versus Distance Measures 

Trees that represent protein or nucleic acid sequences usually display the 
differen ces between various sequences. One way to measure distances is to count 
the number of mismatches in a pairwise alignment. Another method, employed 
by the Feng and Doolittle progressive alignment algorithm, is to convert similarity 
scores to distance scores. Similarity scores are calculated from a series of pairwise 
alignments among all the proteins being multiply aligned. The similarity scores S 
between two sequences (i,j) are converted to distance scores D using the equation 

D = -In Sejf 

where 

Sejf = Sreal(if) - Srand(if) X 100
 
SidenCif) - SrandCii)
 

H ere, Sreal(l)) describes the observed similarity score for two aligned sequences i 
and j, SidenCii) is the average of the two scores for the two sequences compared to 
themselves (if score i compared to i receives a score of 20 and score j compared to j 
receives a score of 10, then Siden(ii) = 15); Srand(ij) is the mean alignment score 
derived from many (e.g., 1000) random shuffiings of the sequences; and Sejfis a 
norm alized score. If sequences i,jhave no similarity, then Sejf = 0 and the distance 
is infin ite. If sequences i, j are identical, then Sejf = 1 and the distance is O. 

The Feng-Doolittle approach includes the rule "once a gap, always a gap." The 
most closely related pair of sequences is aligned first. As further sequences are added 
to the alignment, there are many ways that gaps could be included. The rationale for 
the "once a gap, always a gap" rule is that the two most closely related sequences that 

are initially aligned should be weighted most heavily in assigning gaps. ClustalW 
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FIGURE 6,5, i'vlultiple sequence of 
five closely related beta globin 
orthologs (see Fig. 6.4) . The 
output is a screen capture from 
ClustalW using the progressive 
alignment algorithm of Feng and 
Doolittle. The arrowheads (red, 
open, and black) correspond to 
the human beta globin phe44, 
his72, and hisl04 residues, respect­
ively. These are highly conserved 
among the globin superfamily. 
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The website ~ http :/ /msa.cgb.ki. 
se includes Kalign for alignment, 
Kalignvu as a viewer, and Mumsa 
to assess the quality of a multiple 
sequence alignment (Lassmann 
and Sonnhammer, 2006). Kalign 
is also offered through the 
European Bioinformatics Institute 
(~ http://www.ebi.ac.uk/kalign/) . 

dynamically assigns position-specific gap penalties that increase the likelihood of 
having a new gap occur in the same position as a preexisting gap. That serves to 
give the overall alignment a block-like structure that often appears efficient in 
terms of minimizing the number of gap positions. 

Should an insertion be penalized the same amount as a deletion? No, according 
to Loytynoja and Goldman (2005): a single deletion event is typically penalized onc e 
where it occurs, but a sin gle insertion event that occurs once inappropriately resul ts 
in multiple penalties to all the other sequences. The result of these high penalties is 
that many multiple sequence alignments are unrealistically aligned with too few gaps. 
Loyrynoja and Goldman (2005) introduced a pair hidden Markov model approach 
that distinguishes insertions from deletions. They sh owed that their method creates 
gaps that are consistent with phylogeny, even though the alignments appear less 
compact than with ClustalW Their approach applies to the alignment of protein , 
RNA, or DNA sequences, but it may be especially useful for the alignment of 
genomic DNA. There, overfittin g may occur with traditi on al progressive alignment, 
for example when one sequence ha s long insertions. The appro ach of Loytynoja and 
Goldman (2005), reviewed in Higgins et a!. (2005), provides multiple sequence 
alignments that ha ve more gaps but are likely to be m ore accurate, based on criteria 
such as correct alignment of exons . 

ClustalW implements a series of additional features to optimize the alignment 
(T h ompson et a!., 1994) . The distance of each protein (or DN A) sequence from 
the root of the guide tree is calculated, and those sequences that are most clos ely 
rela ted are downweighted by a multiplicative factor. This adjustment assures th at if 
an alignment includes a group of very closely related sequences as well as anoth er 
group of divergent sequences, the closely related on es will not overly dominate the 
final multiple sequence alignment. Other adjustments include the use of a series of 
scoring matrices that are applied to pairwise alignments of proteins depending on 
their similarity, and compensation for differences in sequence length. 

Many other algorithms use variants of progressive alignm ent. For exam ple, 
K align employs a string-matching algori th m to ach ieve speeds ten tim es faster than 
ClustalW (Lassmann and Sonnhammer, 2005). Kalign aligns 100 protein sequences 
of length 500 residues in less than a secon d . 

Iterative Approaches 
Iterative methods compute a subo ptim al solution using a progressive alignment strat­
egy, and then modify the alignment using dynamic programming or other methods 
until a solution converges. Thus, they create an initial alignment and then modify 
it to try to improve it . Progressive alignm ent methods have the inherent limitation 
th at once an error occurs in the alignment process it cannot be corrected, and iterative 
approaches can overcome this limitation. In standard dynamic programming the 
branching order of the guide tree may be suboptimal, or the sco ring parameters 
may cause gap s to be misplaced. Iterative refinement can search for more optimal sol­
utions stochastically (seeking higher maximal scores according to som e metric such 
as the sum-of-pairs scores; Box 6.1) or by systemati cally extracting and realigning 
sequ en ces from an initial profile that is generated. Examples of programs employing 
iterative approaches are MAFFT (M ultiple Alignment using Fast Fourier Transform) 
(Katch et al., 2005), Iteralign (K arlin and Brocchieri, 1998 ), Praline (Profile 
ALIgl"'l"mEnt) (H eringa, 1999; Simossis and Heringa, 2005), and M U SCLE 
(M U ltiple Sequence Comparison by Log-Expectation) (Edgar, 2004a, 2004b). 
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MAFFToffers a suite of tools with choices of more speed or accuracy. The fastest 
version involves progressive alignment using matching 6-ruples (strings of six 
residues) to calculate pairwise distances. This approach is called k-mer counting. 
A k-mer (also called a k-tuple or word) is a contiguous subsequence of length k. 
k-mer counting is extremely fast because it requires no alignment. The initial distance 
matrix can optionally be recalculated once all pairwise alignments are calculated, 
yielding a more reliable progressive alignment. In the iterative refinement step, a 
weighted sum-of-pairs score is calculated and optimized. MAFFT allows options 
including global or local pairwise alignment. 

J\tlAFFT and PRALINE can both incorporate information from homologous 
sequences that are analyzed in addition to those you submit for multiple sequence 
alignment. These sequences are used to improve the multiple sequence alignment; 
in the case of IvlAFFT, the extra sequences are then removed. PRALINE performs 
a PSI-BLAST search (Chapter 5) on the query protein sequences and then performs 
progressive alignment using the PSI-BLAST profiles. PRALINE also permits the 
incorporation of predicted secondary structure information. 

Since its introduction in 2004, the MUSCLE program of Robert Edgar (2004a, 
2004b) has become popular because of its accuracy and its exceptional speed, 
especially for multiple sequence alignments involving large numbers of sequences. 
For example, 1000 protein sequences of average length 282 residues were aligned 
in 21 seconds on a desktop computer (E dgar, 2004a) . MUSCLE operates in a 
series of three stages. First, a draft progressive alignment is generated. To achieve 
this, the algorithm calculates the similariry between each pair of sequences using 
either the fractional identity (calcu lated from a global alignment of each pair of 
sequences), or k-mer counting. Based on the similarities, MUSCLE calculates a 
triangular distance matrix, then constructs a rooted tree using UPGMA or 
neighbor-joining (see Chapter 7). Sequences are added progressively to the multiple 
sequence alignment following the branching order of the tree . In the second stage, 
M U SCLE improves the tree and builds a new progressive alignment (or a new set 
of alignments). The similariry of each pair of sequences is assessed using the 
fractional identiry, and a tree is constructed using a Kimura distance matrix (d is­
cussed in Chapter 7). In a comparison of two sequences there is some likelihood 
that multiple amino acid (or nucleotide) substiutions occurred at any given position, 
and the Kimura distance matrix provides a model for such changes. As each tree is con­
structed it is compared to the tree from stage 1, and the process results in an improved 
progressive alignment. In stage 3 the guide tree is iteratively refined by systematically 
partitioning the tree to obtain subsets; an edge (branch) of the tree is deleted to 
create a bipartition. Next, M USCLE extracts a pair of profiles (m ultip le sequence 
alignments), and realigns them ( perform ing profile-profile alignment; see Box 6.4) . 
T he algorithm accepts or rejects the newly generated alignment based on whether 
the sum-of-pairs score increases. All edges of the tree are systematically visited 
and deleted to create bipartitions. This iterative refinement step is rapid and had 
been shown earlier to increase the accuracy of the multiple sequence alignment 
(H irosawa et al., 1995). 

T he alignments of five distantly related globins using PRALINE (Fig. 6.6a) and 
M U SCLE (F ig. 6.6b) show a somewhat different result than we saw with ClustalW 
(Fig. 6.3 ) . In the boxed region there are only 10 total gaps with PRALINE and 4 
with MUSCLE, compared with 17 using ClustalW This reflects a more compact 
overall alignment. Both these programs still fail to align the highly conserved histidine 
(Fig. 6.6a and b, black arrowhead). 

MAFFT is available at the EBI 
website, ~ http :/ /www.ebi.ac.uk/ 
maffr /, or with more options from 
its pro ject home page, ~ h ttp: / / 
align.bmr.kyushu-u.ac.i p / rnafft / 
software .'. PRALINE can be 
accessed from ~ http://zeus.cs. 
vu.nl /prograrns /pralinewww[. 

The idea of a triangular distance 
matrix in stage 1 is that th e dis­
tance me asure between sequences 
(A,B) equals the distance of (A,C) 
plus (B,C). This is a good 
approximation for closely related 
sequences, but the accuracy is 
further increased using the 
Kimura distance correction in 
stage 2. 
MUSCLE can be downloaded or 
accessed via web servers at 
~ http: / /www.drive5.com/ 
muscle/ or at the European 
Bioinforrnatics website, ~ h ttp :/ / 
www.ebi .ac .uk /muscle / . 
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Box 6.4 
Profile-Profile Alignment with the MUSCLE Algorithm 

The name MUSCLE (multiple sequence comparison by log expectation) 
includes the phrase "log expectation." Like ClustalW, MUSCLE measures the 
distance between sequences (Edgar, 2004a, 2004b). In its third stage, 
MUSCLE iteratively refines a multiple sequence alignment by deleting th e 
edge of the guide tree to form a bipartition, then extracting a pair of profiles 
and realigning them. It does this using several scoring functions to optimally 
align pairs of columns. For amino acid types i and J, Pi is the background 
probability of i, Pi} is the joint probability of i and J being aligned, 5ij is the 
score from a substitution matrix, ft is the observed frequency of i in column x 
of the first profile, fo is the observed frequency of gaps in column x, and (Xi is 
the estimated probability of observing residue i in position x in the family 
based on the observed frequencies f. (Note that 5,j = log(pij/p,p;) as discussed 
in Chapter 3.) MUSCLE, ClustalW, and MAFFT use a profile sum-of-pairs 
(PSP) scoring function: 

P5py = L Litf/5ij 
; 

PSP is a sequence-weighted sum of substitution matrix scores for each pair of 
letters (one from each column that is being aligned in a pairwise fashion). The 
PSP function maximizes the sum-of-pairs objective score. MUSCLE applies 
two PAM matrices for its PSP function. MUSCLE also employs a novel 
log-expectation (LE) score that is defined as follows: 

LEXY = (1 - fJ) (1 - f~) log L Litf! Pi} 
. . I PiP;·

I I 

The factor (1 - fo) is the occupancy of a column. This promotes the alignment of 
columns that are highly occupied (i.e., that have fewer gaps) while downweighting 
column pairs with many- gaps. Edgar (2004a) reported that this significantly 
improved the accuracy of the alignment. 

Consistency-Based Approaches 
In progressive alignments using the Feng-Doolittle approach, pairwise alignment scores 
are generated and used to build a tree. Consistency-based methods adopt a different 
approach by using information about the multiple sequence alignment as it is being gen­
erated to guide the pairwise alignments. We will discuss two consistency-based multiple 
sequence alignment programs: ProbCons (Do et al., 2005) and T-Coffee (Norredame 
et al., 2000). The MAFFT program also includes an iterative refinement app roach 
with consistency-based scores (Katoh et al., 2005). 

The idea ofconsistency is that for sequences x, y, and z, if residue Xi aligns with Z k 

and Zk aligns withy}, then Xi should align withy}. Consistency-based techniques score 
pairwise alignments in the context of information about multiple sequences, for 
example, adjusting the score of Xi to Yi based on the knowledge that Zk aligns to 
both Xi and to Yi' This approach is distinctive because it incorporates evidence 
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from multiple sequences to guide the creation of a pairwise alignment (Do et a1., 
2005). Using the notation given in a review by Wallace and colleagues (2005), the 
likelihood that residue i from sequence x and residue j from sequence yare aligned, 
given the sequences of x and y, is given by: 

P(Xi 'V Yjl x, y) (6. 1) 

This is the posterior probability, and it is calculated for each pair of amino acids. The 
consistency transformation further incorporates data from additional residues to 
improve the estimate of two residues aligning (that is, given information about how 

x andy each align with z): 

P (Xi 'V Yj l x, Y, z) ~ L P (Xi 'V Zk Ix, Z)P(Yi 'V Zk IY, z) (6.2) 
k 

The consistency-based approach often generates final multiple sequence alignments 
that are more accurate than those achieved by progressive alignments, based on 

be nchm arking studies. 
T h e ProbCons algorithm has five steps. First, the algorithm calculates the 

poster ior probability matrices for each pair of sequences . This involves a pair 
hidde n Markov model as described in Fig. 5.1 2. This HMM has three states : M 
(corresponding to two aligned positions of sequences x and y), L; (a residue in 
sequen ce x that is aligned to a gap ) , and Iy (a residue in y that is aligned to a gap) . 
There is an initial probability of starting in a particular state, a transition probability 
from the initial state to the next residue, and an emission probability for the next 
residue to be aligned. Second, the expected accuracy of each pairwise alignment is 
com puted. The expected accuracy is the number of correctly aligned pairs of residues 
divided by the length of the shorter sequence. The alignment is performed according 
to the Needleman-Wunsch dynamic programming method, but in stead of using a 
PAM or BLO SU M scoring matrix, scores are assigned based on the posterior 
probability terms for the corresponding residues and gap penalties are set to zero. 
Third, the quality scores for each pairwise alignm ent are ree stimated by applyin g a 
"prob abilistic consistency transformation." This step applies information about con­
serve d residues that were identified through all the pairwise alignments, resulting in 
th e use of more accurate substitution scores. Fourth, an expected accuracy guide tree 
is construct ed using hierarchical clu stering (similar to the approach adopted by 
ClustalW) . The guide tree is based on simil arities (rather th an distances). Fifth, 
the sequences are progressively aligned (as in ClustalW) by follow ing the order speci­
fied by the guide tree. Further iterative refinements may be applied. Do et a1. (200 5) 
report ed that ProbCons outperformed six other multiple sequence alignment 
pro grams, including ClustalW; DIAUGN, T-Coffee, MAFFT, MUSCLE, and 
Align-rn, based on testing on the BAliBASE, PREFAB, and SABmark benchmark 
databases. 

T- Coffee is an acrony m for tree based con sistency objective function for align­
ment evaluation. T-Coffee first computes a library consisting of pairwise alignments. 
By default these include all possible pairwise global alignments of the input 
sequen ces (using the Needleman-Wunsch algorithm), and the ten highest-scoring 
local alignments. Every pair of aligned residues is assigned a weight. These weights 
are recalculated to generate an "extended library" that serves as a position-specific 
substitution matrix. The program then computes a multiple sequence alignment 
by progressive alignment, creating a distance matrix, calculating a neighbor-joining 
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ProbCons is available at " ht tp :/ / 
probcons.stanford.edu/ . 

T-Coffee was developed by Cedric 
Notredarne, Desmond H iggins, 
jaap Heringa, and colleagues. It is 
available at" http: / / www.tcoffee. 
org . It is also mirrored at the 
European Bioinformatics Ins titu te 
(.. http: / /www.ebLac.uk/ 
t-c offee ./), the Swiss In stitu te of 
Bioinformatics, and the Centre 
National de la Recherche 
Scientifique (Paris) . 
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(a) Praline multiple sequence alignment 

FIGURE 6.6. Multiple sequence 
alignment offive distantly related 
globins using four different pro­
grams. The alignments were per­
f ormed with (a) PRAliNE, (b) 
M USCLE) (c) Probilons, and (d) 
T-Coffee. The proteins used to 
make the alignments and the sym­
bols used to illustrate the figure 
are the same as those described in 
Fig. 6.3. Note that the programs 
differ in their abilities to align cor­
responding regions ofalpha helical 
secondary structure (red lettering); 
in their alignment ofa highly con­
served histidine residue (black 
arrowhead); and in the number 
and placement ofgaps (see boxed 
regions). 

You can see an output of the five 
distantly related globins using M­
Caffee in web document 6.5. 

P ip eAlign is available at .. httpr/ / 
bip s.u-straebg.fr / Pip eAlign / . 
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3166354224776653*43686354244 4451335634333 542003335440000922 

ENFRLLGNVLVCVLAHHF.GKEFTPPVQAAYQKVVAGVANALAHKYH . 
KYLEFISECIIQVLQSKH.PGDFGADAQGAMNKALELFRKmlASNYKELGFQG 
SSFSTVGESLLYMLEKCL.GPAFTPATRAA\oJSQLYGAVVQh~SRGIJD .. GE .. 
PQFVVVKEALLKTlKAAV. GDKWSDELSRA\·'IEVAYDELAAAIKKA . 
AHFEVVKFALLDTIKEEVPADM1;,!SPhVlKSA\'ISEAYDHLVAAIKQEMKPAE . 
43744844498258542305336554454* 5 5465426446754322001000 

multiple sequence alignment 
~ 

__ - -- - - - --MVHLTPEEKSAVTAL\'IGKVNVD--EVGGEALGRLLVVYPWTQRFFES-FG 
- - -- - - - - ---MGLSDGE"IQLVLNIfl,'JGKVEADIPGHGQEVLIRLFKGHPETLEKFDK-FK 
--------- ----MERPEPELIRQS WRAVSRSPLE HGTVLFARLFALEPDLLPLFQYNCR 
_______ - - -1.NAFTEKQDALVSSSFEAFKANI PQYSVVFYTSI LEKAPY .KDLFSF - LA 
MALVEDNNAVAVSFSEEQEALVLKSWAILKKDSANIALRFFLKIFEVAPSASQMFSF-LR 

\l 
DLSTPDAVMGNPKVKAHGKKVLGAF---SDG 
HLKSEDE~ilZASEDLKKHGATVLTAL---GGI 

QFSSPEDCLSSPEFLDHIRKVMLVI---DAA
 
NGVDP- - - -TNPKLTGHAEKLFALVRDSAGQ
 
NSDVP-- LEN~PKLKT~ISVFVMTC EAAAQ 

~ 
AHLDNLKGTFATLSELBCDKLH 
KKKGHHEAEIKPLAQSHATKH 
TNVEDLSSLEEYLASLGRKH 
KASGT'NAD- - - -AALGSVHA 
RKAGKVTVRDTTLKRLGATHL 

NFRLLGNVLVCVLAHHFGKE-FTPPVQk~YQKVVAGVANALAHKYH-----­

YLEFIS ECIIQVLQSKHPGD-FGADAQGfu~KALELFRKDMASNYKELGFQG 

SFSTVGESLLYMLEKCLGPA-F TPATR?~.WSQLYGAVVQh~SRGloJDGE---­

QFVVVKElI..LLKTlKAAVGDK -',vSDELSR?'·,IEVAYDELAAAIKKA- - - - - - - ­
HFEVVKFA LLDTIKEEVPADMIoJSPfu~KSAWSEAYDHLVAAIKQEMK PAE--­

-VDPE 
-IPVK 
GVKLS 

VTDP 
GVGDA 

guide tree, and using dynamic programming and the substitution matrix derived 
from the extended library. 

T-Coffee includes a suite of related alignment and evaluation tools. M -Coffee 
(Meta-Coffee) combines the output of as many as 15 different multiple sequence 
alignment methods (Wallace et al., 2006; Moretti et al., 2007). These include 
T-Coffee, Clustalw, MAFFT, MUSCLE, and ProbCons. M-Coffee employs a 
consistency-based approach to estimate a consensus alignment that is more accurate 
than any of the individual methods. By adding structural information (discussed 
next), even further accuracy is achieved. 

Structure-Based Methods 
Tertiary structures evolve more slowly than primary sequences. Thus, for example, 
human beta globin and myoglobin share limited sequence identity (in the " twi ligh t 
zone") yet share structures that ate clearly related. It is possible to improve the 
accuracy of multiple sequence alignments by including information about the 
three-dimensional structure of one or more members of the group of proteins being 
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...
 
be t a glob i n M- - - - - - - - - -VHLTPSEKSAVTALWGKVNVD- - SVGGEALGRLLVVYpWTQRFFES- FG 
myogl obin M-----------GL S DGEWQLVLN \~GKVEADI PG HGQEVL I RLF KG n PETL EKFDK - FK 

neurog l obi n M-------------ERPE? ELI RQSWRAVSRSPLEHGTVLFARLFALEPDLLPLFQYNCR 
soybean M----------VAFTSK DALVSSSFEAFKANI PQYSVVFYT ILE KAPAAKDL FSF-L A 
r i ce MA LVEDNNAVAVSFSEEQEALVLKSWAI LKKDSANI ALRF LKIFEVAPSASQMFSF- LR 

'f 
beta gl obi n DLS TPDAVMG, P KVKA~GKK VLGAFS DG AHLD - - - NLK - - - GTFATLSELHCDKL 
myog lobin HLKSEDEMKASEDLKKHG TVLTALGGI - -L KKKGHHE- - - AEIKPLAQSHATKH 
ne ur og l ob i n QFSSPEDCLSSPEFLDHTRKVMLVI DAA TN VEDLSSLE- - -EYLASLGRKHRAV­
soybe a n NGVDP----TNPKLTGHAEKLF LVRDS GQLKASGTVV- - - -AD.~LGSVHAaK­

ri c e NSDVP--LEKNPKLKTHAMSVFVMTCEA AQLRK AGKVTVRDTTLK LGATHLKY-

be t a g lobin ENFRLLG,'VL CVLAHHF- GKEFTPPVQAl\Y KVVil.GVANALAHK- - - - - - YH 
myog l obi n KYLEFI SECI I QVLQSKH- PGDFGADAQGAM KALEL : RKDMASNY,;ELG: QG 
neurog l ob in SSFSTVGESLLYMLEKC L- GPAFTPl-.T?AA SQLYGAVVQA1':SRG- - - W-DGE 
soybe a n PQFVVV KEAL LKTI KAAV - GDKWSDELSRA~EVAYDELAAAI -- ----- - KA 
ri ce AHFEVVKF LLDTI KEEVPADMWSP AMKSA~SEAiDHLVAA I K QE - - -MK PAE 

(d) 
CLUSTAL FORMAT f o r T-COFFEE Vers ion 5 . 13 

'f 
be t a gl obi n - - - - - - - - - - MVHLTPEEKSAVTAL~] G K V NVD - - EVGGEALSRLLV'1'f PWTQRFFE- SFG 
myoglobin ---- --- ----MGLS DGEWQ LVLN VWGKVEAD I PGHGQ EVL I RLFK G~PETL EKF9-KFK 

ne ur og l ob i n -------- --- --MER PE ?~ L I RQ SWRAVS RS P L EHGT V~F AR L F AL E P DL L P LF QYNCR 

soybe a n - - - - - - ---- t-'IVAFT"''' DAL·v'SSSFEAFKj".NI PQ YSVVFYTS I LEKAP.l\.AKDL FS- FLA 
r ice MALVEDNNAVAVSFS EEQEA LV L~ WAiLK KDSANIALRFFLKIFEVAPSASQMFS-FLR 

V 'f 
be t a globi n DLSTPDAVMGNPKVKAHGKKVLGAFSDC AHLDNL - - -KGTF- - - ATLSELH: DKLHV[ P 
myo g l obin HLKSEDEMKASSDLKKHGATVLTAL- -- ;GI LKKKGHHEAE- - - I KPLAQSHATKHKI V 
ne ur og l obin QFSS PEDCLSS PE F LDH I R KV~l LV I DAAiT,' VEDL- - - SSLEEYi.ASLGF.KH-RA'·iGV L 
soybe a n NGVDP----TNP KL7GHAEK LFALVRDS ~GQLKASGTVVAD----AALG SVHAQ K '.IT P 
r ice NSDVP- - LEKNPKLKTHM:SVFVMTCEj'. \AQLRKAGKVTVRDTTLKRLG!'I' HL~Y GVGLA 

be t a g l obin 
myoglob i n 
neurog l ob i n 
s o ybe a n 
r i c e 

ENFRLL-NVL'/CVLAH F- GKEFTPPVQ.~.A Y'2:;VV i'.GVANl-.LA HKYH- - - - -­
K 'f L E F I S E C I I ~ V L Q " K H - P G D FGA DAQGA M N K A L E L F R K D ~A S N Y K E ~GFQG 

SSFS TVG E S L LYM L E KC L -GPA FT P l-. T R ;'. A: ·! ~ Q L y -A ' JV()AM S RG\~ D G ­ - - - E 

C: - F ·v./~K E A L L K T I KA A V -G D K W S u E L S ~ AW E V AY D E L AAA IK K A ­ - - - - - - ­

H-FEVVKFALLDTI KEEVPADMWSPAMKSAWSEAf DHLVAAI KQE- - - MKPAE 

FIGURE 6.6. (Continued ) 

aligned. Program s that enable you to incorporate structural information include 
PRALINE (Simossis and Heringa, 2005), the T-Coffee module Expresso 
(Armougom et al. , 2006b), and PipeAlign (Plewniak et al., 2003). 

When you use the Expresso program at the T-Coffee website, you submit a ser ies We described BLAST in 

of sequences (typically in the fasta format). Each sequence is automatically searched Chapter 4, and we will describe 
PDB in Chapter 11.by BLAST against the Protein Data Bank (PDB) database, and matches (shar ing 

> 60% am ino acid identity) are used to provide a template to guide the creation of 
the multiple sequen ce alignment. 

Structu ral information can also be used to assess the accuracy of a multiple 
sequence alignment after it has been made. This is done in benchmarking studies 
(described above) for protein families having known str uctures. In another approach 
you can incorporate structural information and assess the quality of a protein mul­
tiple sequence alignment that you make at the iRMSD-APDB ("Analyze alignments 
with Protein Data Bank") server of the T-Coffee package (O 'sullivan et al., 2003; 
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The iRMSD -APD B server is part 
of th e T-Coffee suite of tools 
(~ http :/ /www.tcoffee.org) . 
Examples of five divergent and five 
closely related globin sequences, 
formatted for input to the APDB 
server, as well as the detailed 
output, are available in web docu­
ments 6.6 and 6.7 at ~ http :/ / 
www.bioinfbook.org/chaptero. 

Armougom et al., 2006c). It is necessary to obtain the accession numbers corre­
sponding to the Protein Data Bank (P D B) file having the known structures of at 
least two of the proteins you are aligning. As an example, we can obtain the PDB 

accession numbers for each of the five distantly related globins described above by 
performing a blastp search at NCBI, restricting the output to PDB. Next, perform 
a multiple sequence alignment using T-Coffee or any other program. Finally, in p u t 

this alignment (using the PDB accession number in place of the name) to the 
APDB server at the T-Coffee website. The output provides an analysis of the quality 
of the alignment on the basis of all pairwise comparisons of those sequences having 
structures as well as an average quality assessment for each protein. The main approach 

to assessing how well two structures align is to measure the root mean square deviation 
(RMSD) (see Chapter 11) . The RMSD is a measure ofhow closely the alpha carbons of 
two aligned amino residues are positioned. Notredame and colleagues introduced 
iRMSD as an intra molecular RMSD measure (Arm ougom et al., 2006a). 

For the case offive divergent globins analyzed with the iRMSD-APDB server, 79 % 
of the pairwise columns could be evaluated, 51 % of the columns were aligned correctly 

(accordin g to APDB), and the average iRMSD over all the evaluated columns was 1.07 
Angstroms. This analysis did not depend on a reference alignment, but instead involved 
a calculation of the superposition of the structures in the alignment. 

Conclusions from Benchmarking Studies 
We have discussed some ofthe programs for making multiple sequence alignments, and 

we have seen that they can produce differing results for a set ofdistantly related globins. 
Nonetheless most programs produce reasonably consistent alignments, especially for 
relatively closely related protein or DNA sequences. Comparative studies of m ultiple 
sequence alignment algorithms have been performed based on tests against benchmark 
databases. Some of the general conclusions include the following. 

•	 Adding more homologs to a multiple sequence alignment improves its 
accuracy (Katoh et aI., 2005). 

•	 As the group of sequences being multiply aligned begins to share less am ino 
acid identity, the accuracy of the alignments decreases (Briffeuil et aI. , 
1998; Blackshields et aI. , 2006) . For groups of sequences that share less 
than 25 % identity, the problem becomes especially severe . Thompson et al. 
(1999) found that the best programs available at the time (P RRP, ClustalX, 

and SAGA) aligned about 60 % to 70 % of the amino acid residues for 
groups of proteins with < 25% identity, For multiple sequence alignments 
ofproteins sharing more identity (20% up to 40%), they found that on average 
80 % of the residues were aligned properly (T hom pson et al. , 1999) . 

•	 For highly divergent DNA sequences, programs that use local alignment (such 
as DiAlign and LAGAN) perform better than those using global alignment 
(such as ClustalW) (Kumar and Filipski, 2007). 

•	 Orphan sequences are proteins that are highly divergent members of a family. 
If we examined a multiple sequence alignment of retinol-binding prote in 
(REP) from 10 species, then added the distantly related odorant-bindin g 
protein (OBP) to that multiple sequence alignment, OBP would be con­
sidered an orphan. Orphans might be expected to disrupt the organizat ion 
of a multiple sequence alignment, and yet they do not. Global alignment 
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algorithms outperform local alignment methods for the introduction of 
orphans to an alignment (Thompson et a!., 1999). 

•	 Separate multiple sequence alignments can be combined, such as a group of 
closely related myoglobins and a group of closely related neuroglobins. 
Iterative algorithms performed this task better than progressive alignment 
methods (Thompson et a!., 1999). However, many programs have difficulty 
in accurately producing a single alignment from a subset of alignments. 

•	 Often, some proteins in a family contain large extensions at the amino- and/ 
or carboxy-terminals. Overall, local alignment programs dramatically outperfor­
med global alignment programs at this task. For most multiple sequence 
alignment applications, global alignments are superior. 

DATABASES OF MULTIPLE EQUENCE A LIGNMENTS 

We have discussed different methods for creating multiple sequence alignments. We will 
next examine databases ofprecomputed multiple sequence alignments, many of which 
are available. These may be searched using text (i.e ., a keyword search) or using any 
query sequence. The query may be an already known sequence (such as myoglobin 
or RB P) or any novel protein (such as the raw sequence of a new lipocalin or globin 
you have identified). In some databases, the query sequence you provide is incorporated 
into the multiple sequence alignment of a particular precomputed protein family. 

Pfam: Protei Family Database of Profile HMMs 
Pfam is one of the most comprehensive databases of protein families (Bateman et a!., 
2004; Finn et al., 2006). It is a compilation ofboth multiple sequence alignments and 
profile HMMs of protein families. The database can be searched using text (key­
words or protein names) or by entering sequence data. Its combination of HMN1­
based approach and expert curation makes Pfam one of the most trusted and 
widely used resources for protein families . 

Pfam consists of two databases. Pfam-A is a manually curated collection of protein 
families in the form of multiple sequence alignments and profile HM.Ms. HMMER 
software (Chapter 5) is used to perform searches. For each family, Pfam provides 
four features: annotation, a seed alignment, a profile HMM, and a full alignment. 
T he full alignment can be quite large; currently the top 20 Pfam families each contain 
over 20,000 sequences in their full alignment. The seed alignments contain a smaller 
number of representative family members. Sequences in Pfam-A are grouped in 
families, assigned stable accession numbers (such as PF00042 for globins) and expertly 
curated. Additional protein sequences are automatically aligned and deposited in 
Pfam-B where they are not annotated or assigned permanent accession numbers. 
Pfam-B serves as a useful supplement that makes the database more comprehensive. 
For all Pfarn families, the underlying HM.L\1. is accessible from the ma in output page. 

We can see the main features of Pfam in a search for globins using the \Vellcome 
Tru st Sanger Institute site . There are three main ways to access the database: by 
browsing for families, by entering a protein sequence search (with a protein accession 
number or sequence), and by entering a text search. From the front page, select a 
text-based search and enter "globin." The results summary includes links to the 
pfam entry and to related databases (InterPro, described below; the Protein Data 

Pfam is maintained by a consor­
tium of researchers, including 
Alex Bateman, Ewan Birney, 
Lorenzo Cerrutti, Rich ard 
Durbin, Sean Eddy, and Erik 
Sonnhammer, and others. F ive 
sites host Pfam: .. http :/ / www. 
sanger.ac.uk/ Software/ Pfam / 
(U.K.) , .. http: / /pfam.janelia. 
org/ (U.S .), .. http ) /pfam.cgb. 
ki.se / (Sweden) , ... http :/ / pfam . 
jouy.inra.fr / (France), and .. 
http://pfam.ccbb.re.kr/index. 
shtml (South Korea). Version 23 .0 
(July 2008) has 10,340 protein 
families . Pfam is based on 
sequences in Swiss-Prot an d SP ­
TrEMBL (Chap ter 2). Curren tly 
(M ay 2007), 74% of the proteins 
in those databases have at least one 
domain that matches to a Pfam 
family. 

http:pfam.cgb



