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INTRODUCTION

When we consider a protein (or gene), one of the most fundamental questions is what
other proteins are related. Biological sequences often occur in families. These
families may consist of related genes within an organism (paralogs), sequences
within a population (e.g., polymorphic variants), or genes in other species (ortho-
logs). Sequences diverge from each other for reasons such as duplication within a
genome or speciation leading to the existence of orthologs. We have studied pairwise
comparisons of two protein (or DNA) sequences (Chapter 3), and we have also seen
multiple related sequences in the form of profiles or as the output of a BLAST or
other database search (Chapters 4 and 5). We will also explore multiple sequence
alignments in the context of molecular phylogeny (Chapter 7), protein domains
(Chapter 10), and protein structure (Chapter 11).

In this chapter, we consider the general problem of multiple sequence alignment
from three perspectives. First, we describe five approaches to making multiple
sequence alignments from a group of homologous sequences of interest. Second,
we discuss multiple alignment of genomic DNA. This is typically a comparative
genomics problem of aligning large chromosomial regions from different species.
Third, we explore databases of multiply aligned sequences, such as Pfam, the protein
family database. While multiple sequence alignment is commonly performed for
both protein and DINA sequences, most databases consist of protein families only.
Nucleotides corresponding to coding regions are typically less well conserved than
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proteins because of the degeneracy of the genetic code. Thus they can be harder to
align with with high confidence.

Multiple sequence alignments are of great interest because homologous
sequences often retain similar structures and functions. Pairwise alignments may suf-
fice to create links between structure and function. Multiple sequence alignments are
very powerful because two sequences that may not align well to each other can be
aligned via their relationship to a third sequence, thereby integrating information
in a way not possible using only pairwise alignments. We can thus define members
of a gene or protein family, and identify conserved regions. If we know a feature of
one of the proteins (e.g., RBP4 transports a hydrophobic ligand), then when we
identify homologous proteins, we can predict that they may have similar function.
The overwhelming majority of proteins have been identified through the sequencing
of genomic DNA or complementary DNA (cDNA; Chapter 8). Thus, the function
of most proteins is assigned on the basis of homology to other known proteins rather
than on the basis of results from biochemical or cell biological (functional) assays.

Definition of Multiple Sequence Alignment

Domains or motifs that characterize a protein family are defined by the existence of a
multiple sequence alignment of a group of homologous sequences. A multiple
sequence alignment is a collection of three or more protein (or nucleic acid)
sequences that are partially or completely aligned. Homologous residues are aligned
in columns across the length of the sequences. These aligned residues are homologous
in an evolutionary sense: they are presumably derived from a common ancestor. The
residues in each column are also presumed to be homologous in a structural sense:
aligned residues tend to occupy corresponding positions in the three-dimensional
structure of each aligned protein.

Multiple sequence alignments are easy to generate, even by eye, for a group of
very closely related protein (or DNA) sequences. We have seen an alignment of clo-
sely related sequences (Fig. 3.7, GAPDH). As soon as the sequences exhibit some
divergence, the problem of multiple alignment becomes extraordinarily difficult to
solve. In particular, the number and location of gaps is difficult to assess. We saw
an example of this with kappa caseins (Fig. 3.8), and in this chapter we will examine
a challenging region of five distantly related globins. Practically, you must (1) choose
homologous sequences to align, (2) choose software that implements an appropriate
objective scoring function (i.e., a metric such as maximizing the total score of a series
of pairwise alignments), and (3) choose appropriate parameters such as gap opening
and gap extension penalties.

There is not necessarily one “correct” alignment of a protein family. This is
because while protein structures tend to evolve over time, protein sequences generally
evolve even more rapidly than structures. Looking at the sequences of human beta
globin and myoglobin, we saw that they share only 25% amino acid identity (Fig.
3.5), but the three-dimensional structures are nearly identical (Fig. 3.1). In creating
a multiple sequence alignment, it may be impossible to identify the amino acid resi-
dues that should be aligned with each other as defined by the three-dimensional
structures of the proteins in the family. We often do not have high-resolution struc-
tural data available, and we rely on sequence data to generate the alignment.
Similarly, we often do not have functional data to identify domains (such as the
specific amino acids that form the catalytic site of an enzyme), so again we rely on
sequence data. It is possible to compare the results of multiple sequence alignments
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that are generated solely from sequence data and to then examine known structures
for those proteins. For a given pair of divergent but significantly related protein
sequences (e.g., for two proteins sharing 30% amino acid identity), Chothia and
Lesk (1986) found that about 50% of the individual amino acid residues are super-
posable in the two structures.

Aligned columns of amino acid residues characterize a multiple sequence align-
ment. This alignment may be determined because of features of the amino acids such
as the following:

e There are highly conserved residues such as cysteines that are involved in
forming disulfide bridges.

e There are conserved motifs such as a transmembrane domain or an immuno-
globulin domain. We will encounter examples of protein domains and motifs
(such as the PROSITE dictionary) in Chapter 10.

e There are conserved features of the secondary structure of the proteins, such
as residues that contribute to « helices, 3 sheets, or transitional domains.

e There are regions that show consistent patterns of insertions or deletions.

Typical Uses and Practical Strategies of Multiple
Sequence Alignment

When and why are multiple sequence alignments used?

e If a protein (or gene) you are studying is related to a larger group of proteins,
this group membership can often provide insight into the likely function,
structure, and evolution of that protein.

e Most protein families have distantly related members. Multiple sequence
alignment is a far more sensitive method than pairwise alignment to detect
homologs (Park et al., 1998). Profiles (such as those described for PSI-
BLAST and hidden Markov models in Chapter 5) depend on accurate mul-
tiple sequence alignments.

e When one examines the output of any database search (such as a BLAST
search), a multiple sequence alignment format can be extremely useful to
reveal conserved residues or motifs in the output.

e If one is studying cDNA clones, it is common practice to sequence them.
Multiple sequence alignment can show whether there are any variants or dis-
crepancies in the sequences. Alignments of genomic DNA containing single
nucleotide polymorphisms (SNPs; Chapter 16) are of interest, for example,
in the identification of nonsynonymous SNDPs.

e Analysis of population data can provide insight into many biological questions
involving evolution, structure, and function. The PopSet portion of Entrez
(described below) contains nucleotide (and protein) population data sets
that are viewed as multiple alignments.

e When the complete genome of any organism is sequenced, a major portion of
the analysis consists of defining the protein families to which all the gene
products belong. Database searches effectively perform multiple sequence
alignments, comparing each novel protein (or gene) to the families of all
other known genes.
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e We will see in Chapter 7 how phylogeny algorithms begin with multiple
sequence alignments as the raw data with which to generate trees. The most
critical part of making a tree is to produce an optimal multiple sequence

alignment.

e The regulatory regions of many genes contain consensus sequences for
transcription factor-binding sites and other conserved elements. Many such
regions are identified based on conserved noncoding sequences that are
detected using multiple sequence alignment.

Benchmarking: Assessment of Multiple Sequence
Alignment Algorithms

We will describe five different approaches to creating multiple sequence alignments.
How can we assess the accuracy and performance properties of the various algor-
ithms? The performance depends on factors including the number of sequences
being aligned, their similarity, and the number and position of insertions or deletions
(McClure et al., 1994).

A convincing way to assess whether a multiple sequence alignment program
produces a “correct” alignment is to compare the result with the alignment of
known three-dimensional structures as established by x-ray crystallography
(Chapter 11). Several databases have been constructed to serve as benchmark data
sets. These are reference sets in which alignments are created from proteins having
known structures. Thus, one can study proteins that are by definition structurally
homologous. This allows an assessment of how successfully assorted multiple
sequence alignment algorithms are able to detect distant relationships among pro-
teins. For proteins sharing about 40% amino acid identity or more, most multiple
sequence alignment programs produce closely similar results. For more distantly
related proteins, the programs can produce markedly different alignments, and
benchmarks are useful to compare accuracy.

The performance of a multiple sequence alignment algorithm relative to a
benchmark data set is measured by some objective scoring function. One commonly
used metric is the sum-of-pairs score (Box 6.1). This involves counting the number of

Box 6.1
Evaluating Multiple Sequence Alignments

Thompson et al. (1999) described two main ways to assess multiple sequence
alignments. The first is the sum-of-pairs scores (SPS). This score increases as a
program succeeds in aligning sequences relative to the BAIiBASE or other
reference alignment. The SPS assumes statistical independence of the columns.
For an alignment of N sequences in M columns, the ith column is designated 4;;,
Az, . .. s Ain. For each pair of residues 4,;and A, a score of 1 is assigned (pe=1)
if they are also aligned in the reference, and a score of 0 is assigned if they are not
aligned (p; = 0). Then for the entire sth column, the score S, is given by:
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For the entire multiple sequence alignment, the SPS is given by:

Pl

S;
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SPS =

Here S,; is the score S; for the 7th column in the reference alignment, and Mr
corresponds to the number of columns in the reference alignment.

A second approach is to create a column score (CS). For the 7th column,
C; =1 if all the residues in the column are aligned in the reference, and C; = 0 if

not.

i

NS

M
CS = Z
i=1

Sum-of-pairs scores and column scores have been used to assess the
performance of multiple sequence alignment algorithms. Gotoh (1995) and
others further described weighted sum-of-pairs scores that correct for biased
contributions of sequences caused by divergent members of a group being
aligned. Lassmann and Sonnhammer (2005) note that a column score becomes

zero if even a single sequence is misaligned; thus it may be too stringent.

pairs of aligned residues that occur in the target and reference alignment, divided by
the total number of pairs of residues in the reference.

Benchmark data sets may contain separate categories of multiple sequence align-
ments, such as those having proteins of varying length, varying divergence, insertions
or deletions (indels) of various lengths, and varying motifs (such as internal repeats).
Investigators routinely employ benchmark data sets to assess the performance
of alignment algorithms (e.g., Morgenstern et al., 1996; McClure et al., 1994;
Thompson et al., 1999; Gotoh, 1996; Briffeuil et al., 1998). Blackshields et al.
(2006) compared the properties of six benchmark datasets (Table 6.1).

Another approach to benchmarking is to use a program such as ROSE (Stoye
et al.,, 1998) that simulates the evolution of sequences. We introduced ROSE in

L.V RS0 B Benchmark Data Sets to Assess Multiple Sequence Alignment Accuracy

Database Reference URL

BAIiBASE Thompson et al. (2005) http://www-bio3d-igbmc.u-strasbg.fr/
balibase/

HOMSTRAD  Mizuguchi et al. (1998) http://www-cryst.bioc.cam.ac.
uk/~homstrad/

IRMBASE Subramanian et al. (2005)  http://dialign-t.gobics.de/main

OxBench Raghava et al. (2003) http://www.compbio.dundee.ac.uk/

Software/Oxbench/oxbench.htm
Prefab Edgar (2004b) http://www.drive5.com/muscle/prefab.htm
SABmark Van Walle et al. (2005) http://bioinformatics.vub.ac.be/databases/

content.html
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You can examine typical bench-
mark entries for the globins and
the lipocalins from the
HOMSTRAD database
(Mizuguchi et al., 1998) in Web
documents 6.1 and 6.2 at

» http://www.bioinfobook.org/
chapter6. HOMSTRAD (the
homologous structure alignment
database) contains aligned three-
dimensional structures of homo-
logous proteins from over 1000
families. Later in this chapter,
studying the T-Coffee suite of
programs, we will introduce a new
approach to benchmarking that is
based on structural data but does
not employ a benchmark
darabase. ‘
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ROSE software is available at
» http://bibiserv.techfak.uni-
bielefeld.de/rose/.

We will explore sets of distantly
and closely related globin
sequences in the FASTA format.
These are available as web docu-
ments 6.3 and 6.4 at ® hup://
www.bioinfbook.org/chapter6.
There are many ways that you can
easily obrain a group of sequences
in the FASTA format. Examples
include HomoloGene at NCBI
(for eukaryotic proteins), or you
can select any subset of the results
of a BLAST search and view the
sequences in Entrez Protein (or
Entrez Nucleotide) in the FASTA
format.

Chapter 5 as a benchmark for analyzing genomic alignment software. It has also been
used to assess multiple sequence alignment software such as Kalign (Lassmann and
Sonnhammer, 2005) and MUSCLE (Edgar, 2004a).

Five MaiNn APPROACHES TO MULTIPLE
SEQUENCE ALIGNMENT

There are many approaches to multiple sequence alignment; in the past decade many
dozens of programs have been introduced. We may consider five algorithmic
approaches: (1) exact methods, (2) progressive alignment (e.g., ClustalW), (3) itera-
tive approaches (e.g., PRALINE, IterAlign, MUSCLE), (4) consistency-based
methods (e.g., MAFFT, ProbCons), and (5) structure-based methods that include
information about one or more known three-dimensional protein structures to facili-
tate creation of a multiple sequence alignment (e.g., Expresso). The programs we will
describe in categories (3) to (5) are often overlapping; for example, all rely on pro-
gressive alignment and some combine iterative and structure-based approaches. All
the programs offer trade-offs in speed and accuracy. MUSCLE and MAFFT are fast-
est, and are thus most useful for aligning large numbers of sequences. ProbCons and
T-Coffee, although slower, are more accurate in many applications.

We will explore how one set of globin sequences can be aligned differently
using various programs, and we will try to assess which alignments are most accurate.
A related question is the consequence of a misalignment. Potentially, the con-
servation of critical residues (such as active site amino acids of an enzyme, the
heme-binding residues of a globin, or conserved residues that cause disease when
mutated) may be missed. Phylogenetic inference (Chapter 7) may be compromised
because all molecular phylogeny algorithms depend on a multiple sequence align-
ment as input. Protein structure prediction (Chapter 11) is severely compromised
by faulty multiple sequence alignment, which is often a first step in homology-
based modeling.

The programs we will explore can be used by web interfaces, although
local installation of the programs typically allows you access to a more complete
package of options. All the web interfaces allow you to paste in a set of DNA,
RINA, or protein sequences in the FASTA format, or to upload a text file containing
these sequences.

Exact Approaches to Multiple Sequence Alignment

Dynamic programming as described by Needleman and Wunsch (1970) for pairwise
alignment is guaranteed to identify the optimal global alignment(s). Exact methods
for multiple sequence alignment employ dynamic programming, although the
matrix is multidimensional rather than two-dimensional. The goal is to maximize
the summed alignment score of each pair of sequences. Exact methods generate
optimal alignments but are not feasible in time or space for more than a few
sequences. For N sequences, the computational time that is required is O(2~VL™)
where N is the number of sequences and L is the average sequence length. An
exact multiple sequence alignment of more than four or five average sized proteins
would consume prohibitively too much time. Nonexact methods, which we will dis-
cuss next, are computationally feasible. For example, ClustalW has-time complexity
O(N* + L?) and MUSCLE has time complexity O(N* + NL?). Although they are
faster, these heuristic approaches are not guaranteed to produce optimal alignments.
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Progressive Sequence Alignment

The most commonly used algorithms that produce multiple alignments are derived
from the progressive alignment method. This was proposed by Fitch and
Yasunobu (1975) and described by Hogeweg and Hesper (1984) who applied it to
the alignment of 5S ribosomal RNA sequences. The method was popularized by
Feng and Doolittle (1987, 1990). Itis called “progressive” because the strategy entails
calculating pairwise sequence alignment scores between all the proteins (or nucleic acid
sequences) being aligned, then beginning the alignment with the two closest sequences
and progressively adding more sequences to the alignment. A benefit of this approach
is that it permits the rapid alignment of even hundreds of sequences. A major limitation
is that the final alignment depends on the order in which sequences are joined. Thus, it
is not guaranteed to provide the most accurate alignments.

Perhaps the most popular web-based program for performing progressive mul-
tiple sequence alignment is ClustalW (Thompson et al., 1994). There are many
ways to access the program (Box 6.2). The ClustalW algorithm proceeds in three
stages. We can illustrate the procedure by aligning five distantly related globins,
selected from Entrez and pasted into a text document in the FASTA format
(Fig. 6.1). The results are shown in Figs. 6.2 and 6.3. Later we will also align five clo-
sely related globins (Figs. 6.4 and 6.5). In this particular example we select proteins
for which the corresponding three-dimensional structure has been solved by x-ray
crystallography. This will help us to interpret the accuracy of the alignment from a
structural perspective as well as an evolutionary perspective.

1. In stage 1, the global alignment approach of Needleman and Wunsch (1970;
Chapter 3) 1s used to crgate pairwise alignments of every protein that is to be included
in a multiple sequence alignment (Fig. 6.2, stage 1). As shown in the figure, for an
alignment of five sequences, 10 pairwise alignment scores are generated.

Algorithms that perform pairwise alignments generate raw similarity scores.
Note that for the default setting of ClustalW the scores are simply the percent
identities. Many progressive sequence alignment algorithms including ClustalW
use a distance matrix rather than a similarity matrix to describe the relatedness of
the proteins. The conversion of similarity scores for each pair of sequences to distance
scores is outlined in Box 6.3. The purpose of generating distance measures is to
generate a guide'tree (stage 2, below) to construct the alignment.

Box 6.2
Using ClustalW

—

ClustalW is accessed online at many servers, including » http://www.ebi.ac.uk/
clustalw/, where it is hosted by the European Bioinformatics Institute.

Another way to access ClustalW is through the EMBOSS program emma. A
variety of EMBOSS servers hosting emma are available, including » http://
phytophthora.vbi.vi.edu/EMBOSS/, » http://bioportal.cgb.indiana.edu/cgi-
bin/emboss/emma and ® http://embossgui.sourceforge.net/demo/emma.html.

ClustalX is a downloadable stand-alone program related to ClustalW
(Thompson et al., 1997). ClustalX offers a graphical user interface for editing
multiple sequence alignments. You can obtain ClustalX at ® http://bips.u-
strasbg.fr/fr/Documentation/ClustalX/. An introductory tutorial for using
ClustalX in conjunction with phylogeny software has been written by Hall (2001). ‘

|

Note that while most database
searches such as BLAST rely on
local alignment strategies, many
multiple sequence alignments
focus on global alignments, or a
combination of global and local
strategies.

For N sequences that are multiply
aligned, the number of pairwise
alignments that must be calculated
for the initial matrix equals

1 (N = )(N). For five proteins, 10
pairwise alignments are made. For
a multiple sequence alignment of
500 proteins, (499)(500)/2 =
12,250 pairwise alignments are
made; this is why the speed of an
algorithm can be a concern.
ClustalW is slow relative to other
approaches such as MUSCLE,
described below, but for most
typical applications its speed is
quite reasonable,

To confirm that the ClustalW
scores are percent identities, per-
form pairwise alignments berween
any two of the sequences in Fig.
6.2 or 6.4 using BLAST at NCBI
(Chapter 3).
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YOUR EMAIL ALIGNMENT TITLE RESULTB ALIGNMENT

I | [globins [interactive ﬂ | fuil a
KTUP WINDOW SCORE TYPE TOPDIAG PAIRGAP
(WORD SIZE) LENGTH

def [der =] [percent =] [det =] [det =]

MATRIX GAP OPEN END GAP GAP
GAPS EXTENSION DISTANCES

[def = [der = [def =]  [aef =]

OUTPUT PHYLOGENETIC TREE

QUTPUT QUTPUT TREETYPE  CORRECTDIST. IGNORE GAPS
FORMAT ORDER

| aln winumbers i Ia.lignedi | none i Igff 1ﬁ |off E

Enter or Paste a set of Sequences in any supported format:

>beta globin 2hhbB NP_000509.1 [Homo sapi=ng]

MVHLTPEEKS AVTALUGKVNVD EVGGEALGRLLVVYP VTQ.RFF!SF!:DLSTPDAVH\;NPKVKAHGKKVL
AFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCYVLAHHF GKEF TPPVQAATQRVVAGV A
ALAHKYH

>myoglobin 2MM1 NP_005359.1 ([Homo sapiens]

NGLSDGEWQLVLNVWSKVE AD IFGHGQEVL IRLFKGHPETLEKFDKF KHLKSEDEMKASEDLKKHGA

FIGURE 6.1. Mult‘iple sequence TALGGILKKKGHHEAE TKPLAQSHATRKHKIPVRYLEF ISECIIQVLOSKHPGDF GADAQGAMNKALEL
I t distantly related || [FOMASNTRELGFQO
a gmnen ofﬁve istan .y | |>neurcglcbin 10J6A NP 067080.1 [Homo sapiensz]

globins using the ClustalW server =~ MERPEPELIRQSURAVﬁB_S_ELEg@Z‘{LFARLFALEPDLLPLFQYNCRQFssPEDCLSSPEFLDHIRKVE,
at EBI (™ http:/ /www.ebi.ac.uk] - — - —
clustalw/). Five distantly related
globin  proteins were pasted in
using the FASTA format from
Entrez (NCBI).

Stage 1:generate a series of pairwise alignments

Seqd Name Len(aa) SeqB Name Len{aa) Score
. : 1 beta_globin 147 2 ayoglobin 154 25

FIGURE 6.2. P, rogresswve “hgn - 0] beta_globin 147 3 neuroglobin 151 1.5
ment method of Feng and 1 beta globin 147 4 soybean 144 13
Doolittle (1987) used by many 1 beta_glgbln 147 5 rice 166 21

tiinle ali 5 2 nyoglobin 154 3 neuroglobhin Is1 16
mu ”P a zgnment progmms suc 2 myoglobin 154 4 soybean 144 8
as ClustalW. In stage 1, a series of 2 myoglobin 154 5  rice 16¢ 12

o . . 3 neuroglobin 151 4 soybean 144 17

airwise alignments nerated

P X 8 & ge R 3 neuroglobin 151 5 rice 166 18 1
for five distantly related globins 4 soybean 144 5 rice 166 43—

(see Fig. 6.1). Note that the best ====ssss meEssssssssssssssss ==== ==
score is for an alignment of two  Stage 2:create a guide tree, calculated from a distance matrix
plant globins (score = 43; arrow (

1). In stage 2, a guide tree is calcu- beta_globin:0.36022,
lated describing the relationships of Ty°gl°b 1n:0.38308,
the five sequences based on their neuraglobin: 0.39924,
pairwise  alignment scores. A {
; . soybean: 0,30760,
gra.pbzcal representation 'of the rice:0.26184)
guide tree is shown wusing the 10.13652)
JalView tool at the ClustalW web *0-065E0 0
server. Branch lengths (rounded beta_globin: 0.36022
off) reflect distances between myoglobin: 0.39808
sequences and are indicated o i
q . S , soybean: 0.30760

the tree; compare to Fig. 6.4. ) L — ~ rice: 0.26184
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83) multiple sequence alignment

peta globin ---------- MVHLTPEEKSAVTALWGKVNVD - -EVGGEALGRLLVVY PWTQRFFESFG- 47
myoglobin — ---s------- MGLSDGEWQLVLNVWGKVEADI PGHGQEVLIRLFKGHPETLEKFDKFK~ 48
neuroglobin ------------- MERPEPELIRQSWRAVSRSPLEHGTVLFARLFALEPDLLPLFQYNCR 47
soybean = ---------- MVAFTEKQDALVSSSFEAFKANIPQYSVVFYTSILEKAPAAKDLFSFLA- 49
rice MALVEDNNAVAVSFSEEQEALVLKSWAILKKDSANIALRFFLKIFEVAPSASQMFSFLR- 59
. . . . * *
beta globin DLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLS----- ELHCDKLHVDPE 102
myoglobin HLKSEDEMKASEDLKKHGATVLTALGGIL.KKKGHHEAE IKPLA- - - - - QSHATKHK[IPVK 103
neuroglobin QFSSPEDCLSSPEFLDHIRKVMLVIDAAVTNVEDLSSLEEYLAS- - -LGRKHRAVGVKLS 104
soybean — - NGVDPT- - NPKLTGHAEKLFALVRDSAGQLKAS GTVVADAA - - - -LGSVHAQKAVTDP 101
rice - _NSDVPLEKNPKLKTHAMSVFVMTCEARAQLRKAGKVTVRDTTLKRLGATHLKYGVGDA 117
* . . =

peta globin NFRLLGNVLVCVLAHHF -GKEFTPPVQAAYQKVVAGVANALAHKYH-~-~---- 147
myoglobin YLEFISECIIQVLQSKH-PGDFGADAQGAMNKALELFRKDMASNYKELGFQG 154
neuroglobin SFSTVGESLLYMLEKCL-GPAFTPATRAAWSQLYGAVVQAMSRGWDGE---- 151
soybean QFVVVKEALLKTIKAAV-GDKWSDELSRAWEVAYDELAAAIKKA~~~-=-~-~- 144

F R T e e et s aniie

rice HFEVVKFALLDTIKEEVPADMWSPAMKSAWSEAYDHLVAAIKQEMKPAE- -~ 166

FIGURE 6.3. Multiple sequence alignment of five distantly related globins. The output is from
ClustalW using the progressive alignment algorithm of Feng and Doolittle (1987). In stage 3, a
multiple sequence alignment is created by performing progressive sequence alignments. First, the
two closest sequences are aligned (soybean and rice globins). Next, further sequences are added
in an order based on their position in the guide tree. An asterisk indicates positions in which the
amino acid residue is 100% conserved in a column; a colon indicates conservative substitutions; a
dot indicates less conservative substitutions. The proteins are human beta globin (accession
NP_000509; Protein Data Bank identifier 2bbb), buman myoglobin (NP_005359; 2MM]1),
human neuroglobin (NP_067080; 10J6A), leghemoglobin (from the soybean Glycine max;
1FSL), and nonsymbiotic plant hemoglobin (from rice; 1D8U). Regions of alpha helices (defined
in Chapter 11) based on x-ray crystallography are indicated in red letters. Three highly conserved
residues are indicated by arrowbeads: phed4 of myoglobin (red arrowbead), his65 (open arrow-
bead); and bis93 (black arrowbead). These two bistidines are important in coordinating protein
binding to the heme group. A box surrounds the second bistidine including five amino acids down-
stream (to the carboxy-terminal) and 17 amino acids upstream (to the end of an alpha belical
region ). We will discuss the alignment within this box for ClustalW in comparison to other align-
ment programs (Fig. 6.6).

In our example, note that the best pairwise global alignment score is for rice
versus soybean hemoglobin (Fig. 6.2, arrow 1). For a group of closely related beta
globins, all have high scores (Fig. 6.4), even for sequences from avian and mamma-
lian species that diverged over 300 million years ago.

2. In the second stage, a guide tree is calculated from the distance (or similarity)
matrix. There are two principal ways to construct a guide tree: the unweighted pair
group method of arithmetic averages (UPGMA) and the neighbor-joining method.
We will define these algorithms in Chapter 7. The two main features of a tree are
its topology (branching order) and branch lengths (which can be drawn so that
they are proportional to evolutionary distance). Thus, the tree reflects the relatedness
of all the proteins to be multiply aligned.

In ClustalW, the tree is described with a written syntax called the Newick format,
as well as with a graphical output (Figs. 6.2 and 6.4, stage 2). The chicken sequence
has the lowest score relative to the human, chimpanzee, dog, and mouse beta globins,
and this is reflected in its position in the guide tree (Fig. 6.4, stages 1 and 2). A tree
can also be displayed graphically at the ClustalW site by using the JalView option.
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FIGURE 6.4. Example of a mul-
tiple sequence alignment of closely
related globin proteins using the
progressive  sequence  aligment
method of Feng and Doolittle
(1987) as implemented by
ClustalW. Compare these scores to
those for distantly related proteins
(Fig. 6.2), and note that the pair-
wise alignment scores are consist-
ently higher and the distances
(reflected in branch lengths on the
guide tree) are much shorter.

Stage 1:generate a series of pairwise alignments

Seqh Name Len{aa) SegB Name Len(aa) Score
L human_ NP_000509 147 2 Pan_troglodytes_XP_508242 147 100
1 human_NP_000509 147 3 Canis_familiaris XP_537902 147 89
1 human_NP_000509 147 4 Mus_musculus_NP_058652 147 80
1 human_NP_000509 147 5 Gallus_gallus_XP_444643 147 69
2 Pan_troglodytes_XP_508242 147 3 Canis_familiaris XP_537902 147 89
2 Pan_troglodytes_XP_508242 147 4 Mus_musculus_NP_058652 147 80
2 Pan_troglodytes_XP_508242 147 5 Gallus_gallug_XP_444648 147 69
3 Canis_familiaris XP_537902 147 4 Mus_musculus_NP_058652 147 78
3 Canis_familiaris XP_537902 147 8 Gallus_gallus_XP_444648 147 71
4 HMus_musculus_NP_053652 147 5 Gallus_gallus_XP_444643 147 66
Stage 2: create a guide tree, calculated from a distance matrix

(

(

(

human NP_000509:0.00000,

Pan_troglodytes_XP_508242:0.00000)

:0.05272,

Canis_familiaris_XP_537902:0.04932)

10.03231,

Mus_musculus_NP_058652:0.12075,

Gallus _gallus_XP_444648:0.21259);

human_NP_000509: 0.00000

Pan_troglodytes _XP_508242: 0.00000

Canis_familiaris_XP_537902: 0.04932

Mus_musculus_NP_058652: 0.12075
L Gallus_gallus_XP_444648: 0.21259

Guide trees are usually not considered true phylogenetic trees, but instead are
templates used in the third stage of ClustalW to define the order in which sequences
are added to a multple alignment. A guide tree is estimated from a distance matrix
based on the percent identities between sequences you are aligning. In constrast,
a phylogenetic tree almost always includes a model to account for multiple substi-
tutions that commonly occur at the position of aligned amino acids (or nucleotides),
as discussed in Chapter 7.

3. In stage 3, the multiple sequence alignment is created in a series of steps based
on the order presented in the guide tree. The algorithm first selects the two most
closely related sequences from the guide tree and creates a pairwise alignment.
These two sequences appear at the terminal nodes of the tree, that is, the locations
of extant sequences. For example, rice globin and soybean globin are aligned. The
next sequence is either added to the pairwise alignment (to generate an aligned
group of three sequences, sometimes called a profile) or used in another pairwise
alignment. At some point, profiles are aligned with profiles. The alignment continues
progressively until the root of the tree is reached, and all sequences have been aligned.
At this point a full multiple sequence alignment is obtained (Figs. 6.3 and 6.5, stage 3).

In the alignment of five distantly related globins, we can note that a highly con-
served phenylalanine is aligned (Fig. 6.3, red arrowhead) as is a histidine that coor-
dinates heme binding in most globins (open arrowhead). However, an even more
highly conserved histidine (black arrowhead) is aligned in beta globin and myoglobin,
but is placed in a separate column for neuroglobin and two plant globins. This rep-
resents a misalignment, and we will explore how other programs treat this region. For
a group of closely related globins, the level of conservation is so high that there are no
gaps and thus no ambiguities about how to perform the alignment (Fig. 6.5).

FEAVIISIIGR L A
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CLUSTAL W (1.83) multiple sequence alignment

MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPUTQRFFESFGDLS

human_ NP_000503 50

Pan_troglodytes XP_508242 MVHLTPEEKSAVTALUGKVNVDEVGGEALGRLLYVYPUTQRFFESFGDLS S0

Canis_familiaris XP_537902 MVHLTAEEKSLVSGLUGKVNVDEVGGEALGRLLIVYPUTQRFFDSFGDLS 50

Mus_musculus NP_058652 MVHLTDAEKSAVSCLUAKVNPDEVGGEALGRLLVVYPUTQRYFDSFGDLS 50 ~ '

Gallus_gallus XP_444648 MVHUTAEEKQLITGLUGKVNVAECGAEALARLLIVY PUTQRFFASFGNLS 50 FIGURE 6.5. Multiple sequence of
TENY X TE, TT.TT‘F * 'H_‘E‘EK_TT‘E:TTTWTT‘S:T T‘.TT:T‘.T ﬁve Closeéy reldted bﬂ_’ta g!obzn

human NP_000509 TPDA’mGNPK‘)’KMv{Gm?LGAFSDGLAHLDNLKGTFATLSEL!CDKLHVD 100 orthologs (see Fig. 6.4). The

Pan_troglodytes_XP_508242 TPDAVHONPKVEAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLEVD 100 output is a screen capture from
TPDAVMSNAKVKAHGKKYLNSFSDGLENLDNLKGTFAKLSELHCDKLEVD 100

Canis familiaris XP_537902

ClustalW using the progressive
alignment algorithm of Feng and
Doolittle. The arrowheads (red,
open, and black) correspond to
the human beta globin phed4,
his72, and his104 residues, respect-
ively. These are highly conserved
among the globin superfamily.

SASATMGNPKVRAHGKKYITAFNEGLKNLDNLKGTFASLSELHCDKLEYD 100
SPTAILGNPMVRAHGRKYLTSFGDAVKNLDNIKNTFSQLSELHCDKLEVD 100

Tro K, FIRRREFEF: oK 2 _x 1FEELE FE: FESAFFNARASEN

Mus_musculus_NP_058652
Gallus_gallus_XP_444648

PENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH 147
PENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQRKVVAGVANALAHKYH 147
PENFKLLGNVLVCVLAHHFGKEFTPQVQAAYQRVVAGVANALAHKYH 147
PENFRLLGNAIVIVLGHHLGKDFTPAAQAAFQRVVAGVATALAHKYH 147
PENFRLLGDILIIVLAAHFSKDFTPECQAAWQKLVRVVAHALARKYH 147

EEERRST: 2y KE, Ky K REE FEE;EEF FE REHLEEF

human_NP_000509
Pan_troglodytes_XP_508242
Canis_familiaris_XP_537902
Mus_musculus_NP_058652
Gallus_gallus_XP_ 444648

Box 6.3
Similarity versus Distance Measures

Trees that represent protein or nucleic acid sequences usually display the

differences between various sequences. One way to measure distances is to count
the number of mismatches in a pairwise alignment. Another method, employed
by the Feng and Doolittle progressive alignment algorithm, is to convert similarity
scores to distance scores. Similarity scores are calculated from a series of pairwise
alignments among all the proteins being multiply aligned. The similarity scores S
between two sequences (z, j) are converted to distance scores D using the equation

|
\
|
|

L) = —lrngﬂ

B (I SR R e T

where

Sreal(z_';) - Srand(z_';)

|
Sgﬂ = x 100 ‘

Sidentin = Srand)

Here, Syeai;y describes the observed similarity score for two aligned sequences 7
and j, Siqenc;) 15 the average of the two scores for the two sequences compared to
themselves (if score 7 compared to 7 receives a score of 20 and score j compared to J
receives a score of 10, then Sigengyy = 15); Smnagy 1S the mean alignment score
derived from many (e.g., 1000) random shufflings of the sequences; and S zis a
normalized score. If sequences 7, j have no similarity, then S, = 0 and the distance
is infinite. If sequences 7, j are identical, then S,z= 1 and the distance is 0.

The Feng-Doolittle approach includes the rule “once a gap, always a gap.” The
most closely related pair of sequences is aligned first. As further sequences are added
to the alignment, there are many ways thar gaps could be included. The rationale for
the “once a gap, always a gap” rule is that the two most closely related sequences that
are initially aligned should be weighted most heavily in assigning gaps. ClustalW
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The website » http://msa.cgb.ki.
se includes Kalign for alignment,
Kalignvu as a viewer, and Mumsa
to assess the quality of a multiple
sequence alignment (Lassmann
and Sonnhammer, 2006). Kalign
is also offered through the
European Bioinformatics Institute
(» http://www.ebi.ac.uk/kalign/).

dynamically assigns position-specific gap penalties that increase the likelihood of
having a new gap occur in the same position as a preexisting gap. That serves to
give the overall alignment a block-like structure that often appears efficient in
terms of minimizing the number of gap positions.

Should an insertion be penalized the same amount as a deletion? No, according
to Loytynoja and Goldman (2005): a single deletion event is typically penalized once
where it occurs, but a single insertion event that occurs once inappropriately results
in multiple penalties to all the other sequences. The result of these high penalties is
that many multiple sequence alignments are unrealistically aligned with too few gaps.
Loytynoja and Goldman (2005) introduced a pair hidden Markov model approach
that distinguishes insertions from deletions. They showed that their method creates
gaps that are consistent with phylogeny, even though the alignments appear less
compact than with ClustalW. Their approach applies to the alignment of protein,
RNA, or DNA sequences, but it may be especially useful for the alignment of
genomic DNA. There, overfitting may occur with traditional progressive alignment,
for example when one sequence has long insertions. The approach of Loytynoja and
Goldman (2005), reviewed in Higgins et al. (2005), provides multiple sequence
alignments that have more gaps but are likely to be more accurate, based on criteria
such as correct alignment of exons.

ClustalW implements a series of additional features to optimize the alignment
(Thompson et al., 1994). The distance of each protein (or DNA) sequence from
the root of the guide tree is calculated, and those sequences that are most closely
related are downweighted by a multiplicative factor. This adjustment assures that if
an alignment includes a group of very closely related sequences as well as another
group of divergent sequences, the closely related ones will not overly dominate the
final multiple sequence alignment. Other adjustments include the use of a series of
scoring matrices that are applied to pairwise alignments of proteins depending on
their similarity, and compensation for differences in sequence length.

Many other algorithms use variants of progressive alignment. For example,
Kalign employs a string-matching algorithm to achieve speeds ten times faster than
ClustalW (Lassmann and Sonnhammer, 2005). Kalign aligns 100 protein sequences
of length 500 residues in less than a second.

Iterative Approaches

Iterative methods compute a suboptimal solution using a progressive alignment strat-
egy, and then modify the alignment using dynamic programming or other methods
until a solution converges. Thus, they create an initial alignment and then modify
it to try to improve it. Progressive alignment methods have the inherent limitation
that once an error occurs in the alignment process it cannot be corrected, and iterative
approaches can overcome this limitation. In standard dynamic programming the
branching order of the guide tree may be suboptimal, or the scoring parameters
may cause gaps to be misplaced. Iterative refinement can search for more optimal sol-
utions stochastically (seeking higher maximal scores according to some metric such
as the sum-of-pairs scores; Box 6.1) or by systematically extracting and realigning
sequences from an initial profile that is generated. Examples of programs employing
iterative approaches are MAFFT (Multiple Alignment using Fast Fourier Transform)
(Katoh et al., 2005), Iteralign (Karlin and Brocchieri, 1998), Praline (Profile
ALIgNmEnt) (Heringa, 1999; Simossis and Heringa, 2005), and MUSCLE
(MUltiple Sequence Comparison by Log-Expectation) (Edgar, 2004a, 2004b).
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MAFFT offers a suite of tools with choices of more speed or accuracy. The fastest
version involves progressive alignment using matching 6-tuples (strings of six
residues) to calculate pairwise distances. This approach is called k-mer counting.
A k-mer (also called a A-tuple or word) is a contiguous subsequence of length 4.
k-mer counting is extremely fast because it requires no alignment. The initial distance
matrix can optionally be recalculated once all pairwise alignments are calculated,
yielding a more reliable progressive alignment. In the iterative refinement step, a
weighted sum-of-pairs score is calculated and optimized. MAFFT allows options
including global or local pairwise alignment.

MAFFT and PRALINE can both incorporate information from homologous
sequences that are analyzed in addition to those you submit for multiple sequence
alignment. These sequences are used to improve the multiple sequence alignment;
in the case of MAFFT, the extra sequences are then removed. PRALINE performs
a PSI-BLAST search (Chapter 5) on the query protein sequences and then performs
progressive alignment using the PSI-BLAST profiles. PRALINE also permits the
incorporation of predicted secondary structure information.

Since its introduction in 2004, the MUSCLE program of Robert Edgar (2004a,
2004b) has become popular because of its accuracy and its exceptional speed,
especially for multiple sequence alignments involving large numbers of sequences.
For example, 1000 protein sequences of average length 282 residues were aligned
in 21 seconds on a desktop computer (Edgar, 2004a). MUSCLE operates in a
series of three stages. First, a draft progressive alignment is generated. To achieve
this, the algorithm calculates the similarity between each pair of sequences using
either the fractional identity (calculated from a global alignment of each pair of
sequences), or k-mer counting. Based on the similarities, MUSCLE calculates a
triangular distance matrix, then constructs a rooted tree using UPGMA or
neighbor-joining (see Chapter 7). Sequences are added progressively to the multiple
sequence alignment following the branching order of the tree. In the second stage,
MUSCLE improves the tree and builds a new progressive alignment (or a new set
of alignments). The similarity of each pair of sequences is assessed using the
fractional identity,' and a tree is constructed using a Kimura distance matrix (dis-
cussed in Chapter 7). In a comparison of two sequences there is some likelihood
that multiple amino acid (or nucleotide) substiutions occurred at any given position,
and the Kimura distance matrix provides a model for such changes. As each tree is con-
structed it is compared to the tree from stage 1, and the process results in an improved
progressive alignment. In stage 3 the guide tree is iteratively refined by systematically
partitioning the tree to obtain subsets; an edge (branch) of the tree is deleted to
create a bipartition. Next, MUSCLE extracts a pair of profiles (multiple sequence
alignments), and realigns them (performing profile-profile alignment; see Box 6.4).
The algorithm accepts or rejects the newly generated alignment based on whether
the sum-of-pairs score increases. All edges of the tree are systematically visited
and deleted to create bipartitions. This iterative refinement step is rapid and had
been shown earlier to increase the accuracy of the multiple sequence alignment
(Hirosawa et al., 1995).

The alignments of five distantly related globins using PRALINE (Fig. 6.6a) and
MUSCLE (Fig. 6.6b) show a somewhat different result than we saw with ClustalW
(Fig. 6.3). In the boxed region there are only 10 total gaps with PRALINE and 4
with MUSCLE, compared with 17 using ClustalW. This reflects a more compact
overall alignment. Both these programs still fail to align the highly conserved histidine
(Fig. 6.6a and b, black arrowhead).

MAFFT is available at the EBI
website, ® http://www.ebi.ac.uk/
mafft/, or with more options from
its project home page, ® htip://
align.bmr.kyushu-u.ac.jp/mafft/
software/. PRALINE can be
accessed from P http://zeus.cs.
vu.nl/programs/pralinewww/.

The idea of a triangular distance
matrix in stage 1 is that the dis-
tance measure berween sequences
(A,B) equals the distance of (A,C)
plus (B,C). This is a good
approximation for closely related
sequences, but the accuracy is
further increased using the
Kimura distance correction in
stage 2.

MUSCLE can be downloaded or
accessed via web servers at

» http://www.drive5.com/
muscle/ or at the European
Bioinformatics website,  http://
www.ebi.ac.uk/muscle/.
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Box 6.4
Profile-Profile Alignment with the MUSCLE Algorithm

The name MUSCLE (multiple sequence comparison by log expectation)
includes the phrase “log expectation.” Like ClustalW, MUSCLE measures the
distance between sequences (Edgar, 2004a, 2004b). In its third stage,
MUSCLE iteratively refines a multiple sequence alignment by deleting the
edge of the guide tree to form a bipartition, then extracting a pair of profiles
and realigning them. It does this using several scoring functions to optimally
align pairs of columns. For amino acid types ¢ and j, p; is the background
probability of 4, p; is the joint probability of 7 and j being aligned, S; is the
score from a substitution matrix, f7 is the observed frequency of 7 in column x
of the first profile, f& is the observed frequency of gaps in column x, and «F is
the estimated probability of observing residue 7 in position x in the family
based on the observed frequencies f. (Note that S; = log(p;/pip;) as discussed
in Chapter 3.) MUSCLE, ClustalW, and MAFFT use a profile sum-of-pairs
(PSP) scoring function:

PSP =% S hES;
i g

PSP is a sequence-weighted sum of substitution matrix scores for each pair of
letters (one from each column that is being aligned in a pairwise fashion). The
PSP function maximizes the sum-of-pairs objective score. MUSCLE applies
two PAM matrices for its PSP function. MUSCLE also employs a novel
log-expectation (LE) score that is defined as follows:

LE® = (1 - f5(1 - £2) logZZﬂ"ﬁﬁ
i i L

The factor (1 — fg) is the occupancy of a column. This promotes the alignment of
columns that are highly occupied (i.e., that have fewer gaps) while downweighting
column pairs with many-gaps. Edgar (2004a) reported that this significantly
improved the accuracy of the alignment.

Consistency-Based Approaches

In progressive alignments using the Feng—Doolittle approach, pairwise alignment scores
are generated and used to build a tree. Consistency-based methods adopt a different
approach by using information about the multiple sequence alignment as it is being gen-
erated to guide the pairwise alignments. We will discuss two consistency-based multiple
sequence alignment programs: ProbCons (Do et al., 2005) and T-Coffee (Notredame
et al.,, 2000). The MAFFT program also includes an iterative refinement approach
with consistency-based scores (Katoh et al., 2005).

The idea of consistency is that for sequences x, 3, and z, if residue x; aligns with 2,
and z;, aligns with y;, then x, should align with y;. Consistency-based techniques score
pairwise alignments in the context of information about multiple sequences, for
example, adjusting the score of x; to y; based on the knowledge that z; aligns to
both x; and to y,. This approach is distinctive because it incorporates evidence
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from multiple sequences to guide the creation of a pairwise alignment (Do et al.,
2005). Using the notation given in a review by Wallace and colleagues (2005), the
likelihood that residue 7 from sequence x and residue j from sequence y are aligned,
given the sequences of x and y, is given by:

P(x; ~ y;| %, ) (6.1)

This is the posterior probability, and it is calculated for each pair of amino acids. The
consistency transformation further incorporates data from additional residues to
improve the estimate of two residues aligning (that is, given information about how
x and y each align with z):

P ~ %, 3,2) = > Pl ~ 2z | % 2)P(3i ~ 2|9, 2) (6.2)
k

The consistency-based approach often generates final multiple sequence alignments
that are more accurate than those achieved by progressive alignments, based on
benchmarking studies.

The ProbCons algorithm has five steps. First, the algorithm calculates the
posterior probability matrices for each pair of sequences. This involves a pair
hidden Markov model as described in Fig. 5.12. This HMM has three states: M
(corresponding to two aligned positions of sequences x and y), I, (a residue in
sequence x that is aligned to a gap), and I, (a residue in y that is aligned to a gap).
There is an initial probability of starting in a particular state, a transition probability
from the initial state to the next residue, and an emission probability for the next
residue to be aligned. Second, the expected accuracy of each pairwise alignment is
computed. The expected accuracy is the number of correctly aligned pairs of residues
divided by the length of the shorter sequence. The alignment is performed according
to the Needleman—Wunsch dynamic programming method, but instead of using a
PAM or BLOSUM scoring matrix, scores are assigned based on the posterior
probability terms for the corresponding residues and gap penalties are set to zero.
Third, the quality scores for each pairwise alignment are reestimated by applying a
“probabilistic consistency transformation.” This step applies information about con-
served residues that were identified through all the pairwise alignments, resulting in
the use of more accurate substitution scores. Fourth, an expected accuracy guide tree
is constructed using hierarchical clustering (similar to the approach adopted by
ClustalW). The guide tree is based on similarities (rather than distances). Fifth,
the sequences are progressively aligned (as in ClustalW) by following the order speci-
fied by the guide tree. Further iterative refinements may be applied. Do et al. (2005)
reported that ProbCons outperformed six other multiple sequence alignment
programs, including ClustalW, DIALIGN, T-Coffee, MAFFT, MUSCLE, and
Align-m, based on testing on the BAIIBASE, PREFAB, and SABmark benchmark
databases.

T-Coffee is an acronym for tree based consistency objective function for align-
ment evaluation. T-Coffee first computes a library consisting of pairwise alignments.
By default these include all possible pairwise global alignments of the input
sequences (using the Needleman—Wunsch algorithm), and the ten highest-scoring
local alignments. Every pair of aligned residues is assigned a weight. These weights
are recalculated to generate an “extended library” that serves as a position-specific
substitution matrix. The program then computes a multiple sequence alignment
by progressive alignment, creating a distance matrix, calculating a neighbor-joining

ProbCons is available at » http://
probcons.stanford.edu/.

T-Coffee was developed by Cédric
Notredame, Desmond Higgins,
Jaap Heringa, and colleagues. It is
available at » hrtp://www.tcoffee.
org. It is also mirrored at the
European Bioinformatics Institute
(> http://www.ebi.ac.uk/
t-coffee/), the Swiss Institute of
Bioinformatics, and the Centre
National de la Recherche
Scientifique (Paris).
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FIGURE 6.6. Multiple sequence
alignment of five distantly related
globins using four different pro-
grams. The alignments were per-
formed with (a) PRALINE, (b)
MUSCLE, (c) ProbCons, and (d)
T-Coffee. The proteins wused to
make the alignments and the sym-
bols used to illustrate the figure
are the same as those described in
Fig. 6.3. Note that the programs
differ in their abilities to align cor-
responding regions of alpha belical
secondary structure (red lettering);
in their alignment of a highly con-
served bistidine residue (black
arrowbead); and in the number
and placement of gaps (see boxed
regions).

You can see an output of the five
distantly related globins using M-
Coffee in web document 6.5,

PipeAlign is available at » http://
bips.u-strasbg.fr/PipeAlign/.

(a)Praline multiple seqguence alignment

v
bets globifi 0 sssceseqes MVELTPEEKSAVTALWGKV . . NVDEVGGEALGRLLVVYPWTQRFFES . FG
myoglobin 000 ciiiaeecwas MGLSDGEWQLVLNVWGKVEADI PGHGQEVLIRLFKGHPETLEKFDK . FK
rneuroglobin 0 iisiswmiswesas MERPEPELIRQSWRAVSRSPLEHGTVLFARLFALEPDLLPLFQYNCR
goybean, =000 ciwsewsss MVAFTEKQDALVSSSFEAFKANIPQYSVVFYTSILEKAPAAKDLFS . . FL
rice MALVEDNNAVAVSFSEEQEALVLKSWAILKXDSANIALRFFLKIFEVAPSASQMFS. .FL
Consistency 000000000014265438257934573463364343624453686433%35344*50063
. ﬂ v .y
beta globin DLSTPDAVMGNPKVKAHGKXVLGAFSDGLAHLDNLKGTFATLSEL. . HCDKLH. . . .VDP
myoglobin HLKSEDEMKASEDLKKHGATVLTALGGILKKKGHHEAEIKPLAQS . .HATKHK|. . . . IPV
neuroglobin QFSSPEDCLSSPEFLDHIRKVMLVIDAAVTNVEDLSSLEEYLASLGRKHRAVG_,_<VKL
soybean A.NGVDP. . TNPKLTGHAEKLFALVRDSAGQL . KASGTVVADAA. . . . LGSVHAQKAVTD
rice R,NSDVPLEKNPKLKTHAMSVFVMTCEAAAQL.RKAGKVTVRDTTLKRLGATHLKYGVGD
Consistency 3166354224776653*436863542445445133563433354200333544/0000922
beta globin ENFRLLGNVLVCVLAHHF , GKEFTPPVQAAYQKVVAGVANALAHKYH, . . ...
myoglobin KYLEFISECIIQVLQSKH , pGDFGADAQGAMNKALELFRKDMASNYKELGFQG
neurcglobin SSFSTVGESLLYMLEKCL . GPAFTPATRAAWSQLYGAVVQAMSRGWD. .GE. .
soybean PQFVVVKEALLKTIKAAV. GDKWSDELSRAWEVAYDELARATKKA , ., .. ...
rice AHFEVVKFALLDTIKEEYVPADMWSPAMKSAWSEAYDHLVAATIKQEMKPAE. . .
Consistency 43744844498258542305336554454*55465426446754322001000
(b) . .
MUSCLE (3.6) multiple sequence alignment
v
beta globin -=-—-----—- MVHLTPEEKSAVTALWGKVNVD- -EVGGEALGRLLVVY PWTQRFFES-FG
myoglobin ~ ---=------- MGLSDGEWQLVLNVWGKVEADIPGHGQEVLIRLFKGHPETLEKFDK-FK
neuroglobin —-—-—-—----—=—-- MERPEPELIRQSWRAVSRSPLEHGTVLFARLFALEPDLLPLFQYNCR
soybean = =  —--—===-—- MVAFTEKQDALVSSSFEAFKANIPQYSVVFYTSILEKA PAAKDLFSF-LA
rice MALVEDNNAVAVSFSEEQEALVLKSWAILKKDSANIALRFFLKIFEVAPSASQMFSF-LR
. . - . . * *
beta globin DLSTPDAVMGNPKVKAHGKKVLGAF ---SDGLAHLDNLKGTFATLSELACDKLH--VDPE
myoglobin HLKSEDEMKASEDLKKHGATVLTAL - - -GGILKKKGHHEAEIKPLAQSHATKHK}--IPVK
neuroglobin QFSSPEDCLSSPEFLDHIRKVMLVI ---DAAVTNVEDLSSLEEYLASLGRKH GVKLS
soybean NGVDP- - --TNPKLTGHAEKLFALVRDSAGQLKASGTVVAD----BALGSVHA Y TDP
rice NSDVP--LEKNPKLKTHAMSVFVMTCEAAAQLRKAGKVTVRDTTLKRLGATHLKY GYVGDA
* .. .

beta globin NFRLLGNVLVCVLAHHFGKE-FTPPVQAAYQKVVAGVANALAHKYH----~~-

myoglobin YLEFISECIIQVLQSKHPGD-FGADAQGAMNKALELFRKDMASNYKELGFQG
neuroglobin SFSTVGESLLYMLEKCLGPA-FTPATRAAWSQLYGAVVQAMSRGWDGE----
soybean QFVVVEEALLKTIKAAVGDK -WSDELSRAWEVAYDELAAAIKKA —--—————

rice HFEVVKFALLDTIKEEVPADMWS PAMKSAWSEAYDHLVAATKQEMK PAE-- -

* .

guide tree, and using dynamic programming and the substitution matrix derived
from the extended library.

T-Coffee includes a suite of related alignment and evaluation tools. M-Coffee
(Meta-Coffee) combines the output of as many as 15 different multiple sequence
alignment methods (Wallace et al., 2006; Moretti et al., 2007). These include
T-Coffee, ClustalW, MAFFT, MUSCLE, and ProbCons. M-Coffee employs a
consistency-based approach to estimate a consensus alignment that is more accurate
than any of the individual methods. By adding structural information (discussed
next), even further accuracy is achieved.

Structure-Based Methods

Tertiary structures evolve more slowly than primary sequences. Thus, for example,
human beta globin and myoglobin share limited sequence identity (in the “twilight
zone”) yet share structures that are clearly related. It is possible to improve the
accuracy of multiple sequence alignments by including information about the
three-dimensional structure of one or more members of the group of proteins being
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c)
PROBCONS

v

beta globin Y PATQRFFES-FG

myoglobin HPETLEKFDK~-FK

neuroglobin EPDLLPLFQYNCR

soybean et Bt VAFTEKQDALVSSSFEAFKANIPQ KAPAAKDLFSF-LA

rice MALVEDNNAVAVSFSE:CEBL/LKJWAILKKDQ“\ ALRFFL VAPSASQMFSF-LR
* * - .. * *

beta globin DLSTPDAVMGNPKVKAHGKKVL
nyoglobin HLKSEDEMKASED
neuroglobin QFSSPEDCLSSFE
soybean NGVDP----TNPKLTGHAEX
rice NSDVP--LEKNPELKTHA!

* .o .« * *

B 4
HCDKLHVDP
F--LKKKGHHE---AEIK ! TPV

h\VVDLSSL~——-uf7P'

beta globin ENFRLLGNVLVCVLAHHF-GKEFTPPVQAAYQKV
myoglobin KYLEFISECIIQVLQSKH~PGDFGAD KALE SNYKEL
neuroglobin SSFSTVGESLLYMLEKCL-GPAFTF
soybean PQFVVVKEALLKTIKAAV-GDKWSD
FEVVKFALLDTIKEEVPADMWSPAM

rice AH

(d)
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FIGURE 6.6. (Continued)

aligned. Programs that enable you to incorporate structural information include
PRALINE (Simossis and Heringa, 2005), the T-Coffee module Expresso
(Armougom et al., 2006b), and PipeAlign (Plewniak et al., 2003).

When you use the Expresso program at the T-Coffee website, you submit a series ~ We described BLLAST in
of sequences (typically in the fasta format). Each sequence is automatically searched  Chapter 4, and we will describe
by BLAST against the Protein Data Bank (PDB) database, and matches (sharing ©LPB in Chapter 11.
>60% amino acid identity) are used to provide a template to guide the creation of
the multiple sequence alignment.

Structural information can also be used to assess the accuracy of a multiple
S€quence alignment after it has been made. This is done in benchmarking studies
(described above) for protein families having known structures. In another approach
You can incorporate structural information and assess the quality of a protein mul-
tiple sequence alignment that you make at the iRMSD-APDB (“Analyze alignments
with Protein Data Bank”) server of the T-Coffee package (O’sullivan et al., 2003;
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Armougom et al., 2006c¢). It is necessary to obtain the accession numbers corre-
The iRMSD-APDB server is part  sponding to the Protein Data Bank (PDB) file having the known structures of at
of the T-Coffee suite of tools least two of the proteins you are aligning. As an example, we can obtain the PDB
(> http:/ /www.tcgffee.org). accession numbers for each of the five distantly related globins described above by
5’;235 iﬁiﬁt&i;f:gﬁiﬁiﬁve performing a blastp search at NCBI, restricting the output to PDB. Next, perform
formatted for input to the APD},E} a multiple sequence alignment using T-Coffee or any other program. Finally, input
server, as well as the detailed this alignment (using the PDB accession number in place of the name) to the
output, are available in web docu- APDB server at the T-Coffee website. The output provides an analysis of the quality
ments 6.6 and 6.7 at > http:// of the alignment on the basis of all pairwise comparisons of those sequences having
www.bioinfbook,org/chapters. structures as well as an average quality assessment for each protein. The main approach
to assessing how well two structures align is to measure the root mean square deviation
(RMSD) (see Chapter 11). The RMSD is a measure of how closely the alpha carbons of
two aligned amino residues are positioned. Notredame and colleagues introduced

iRMSD as an intra molecular RMSD measure (Armougom et al., 2006a).
For the case of five divergent globins analyzed with the iIRMSD-APDB server, 79%
of the pairwise columns could be evaluated, 51% of the columns were aligned correctly
(according to APDB), and the average iIRMSD over all the evaluated columns was 1.07
Angstroms. This analysis did not depend on a reference alignment, but instead involved L
a calculation of the superposition of the structures in the alignment.

Conclusions from Benchmarking Studies

We have discussed some of the programs for making multiple sequence alignments, and
we have seen that they can produce differing results for a set of distantly related globins.
Nonetheless most programs produce reasonably consistent alignments, especially for
relatively closely related protein or DNA sequences. Comparative studies of multiple
sequence alignment algorithms have been performed based on tests against benchmark
databases. Some of the general conclusions include the following.

¢ Adding more homologs to a multiple sequence alignment improves its
accuracy (Katoh et al., 2005).
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¢ As the group of sequences being multiply aligned begins to share less amino
acid identity, the accuracy of the alignments decreases (Briffeuil et al.,
1998; Blackshields et al., 2006). For groups of sequences that share less
than 25% identity, the problem becomes especially severe. Thompson et al.
(1999) found that the best programs available at the time (PRRP, ClustalX,
and SAGA) aligned about 60% to 70% of the amino acid residues for
groups of proteins with <25% identity. For multiple sequence alignments
of proteins sharing more identity (20% up to 40%), they found that on average
80% of the residues were aligned properly (Thompson et al., 1999).
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* For highly divergent DNA sequences, programs that use local alignment (such
as DiAlign and LAGAN) perform better than those using global alignment
(such as ClustalW) (Kumar and Filipski, 2007).

* Orphan sequences are proteins that are highly divergent members of a family.
If we examined a multiple sequence alignment of retinol-binding protein
(RBP) from 10 species, then added the distantly related odorant-binding
protein (OBP) to that multiple sequence alignment, OBP would be con-
sidered an orphan. Orphans might be expected to disrupt the organization
of a multiple sequence alignment, and yet they do not. Global alignment
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algorithms outperform local alignment methods for the introduction of
orphans to an alignment (Thompson et al., 1999).

e Separate multiple sequence alignments can be combined, such as a group of
closely related myoglobins and a group of closely related neuroglobins.
ITterative algorithms performed this task better than progressive alignment
methods (Thompson et al., 1999). However, many programs have difficulty
in accurately producing a single alignment from a subset of alignments.

e Often, some proteins in a family contain large extensions at the amino- and/
or carboxy-terminals. Overall, local alignment programs dramatically outperfor-
med global alignment programs at this task. For most multiple sequence
alignment applications, global alignments are superior.

DataBASES OF MULTIPLE SEQUENCE ALIGNMENTS

We have discussed different methods for creating multiple sequence alignments. We will
next examine databases of precomputed multiple sequence alignments, many of which
are available. These may be searched using text (i.e., a keyword search) or using any
query sequence. The query may be an already known sequence (such as myoglobin
or RBP) or any novel protein (such as the raw sequence of a new lipocalin or globin
you have identified). In some databases, the query sequence you provide 1s incorporated
into the multiple sequence alignment of a particular precomputed protein family.

Pfam: Protein Family Database of Profile HMMs

Pfam is one of the most comprehensive databases of protein families (Bateman et al.,
2004; Finn et al., 2006). It is a compilation of both multiple sequence alignments and
profile HMMs of protein families. The database can be searched using text (key-
words or protein names) or by entering sequence data. Its combination of HMM-
based approach and expert curation makes Pfam one of the most trusted and
widely used resources for protein families.

Pfam consists of two databases. Pfam-A is a manually curated collection of protein
families in the form of multiple sequence alignments and profile HMMs. HMMER
software (Chapter 5) is used to perform searches. For each family, Pfam provides
four features: annotation, a seed alignment, a profile HMM, and a full alignment.
The full alignment can be quite large; currently the top 20 Pfam families each contain
over 20,000 sequences in their full alignment. The seed alignments contain a smaller
number of representative family members. Sequences in Pfam-A are grouped in
families, assigned stable accession numbers (such as PF00042 for globins) and expertly
curated. Additional protein sequences are automatically aligned and deposited in
Pfam-B where they are not annotated or assigned permanent accession numbers.
Pfam-B serves as a useful supplement that makes the database more comprehensive.
For all Pfam families, the underlying HMM is accessible from the main output page.

We can see the main features of Pfam in a search for globins using the Wellcome
Trust Sanger Institute site. There are three main ways to access the database: by
browsing for families, by entering a protein sequence search (with a protein accession
number or sequence), and by entering a text search. From the front page, select a
text-based search and enter “globin.” The results summary includes links to the
Pfam entry and to related databases (InterPro, described below; the Protein Data

Pfam is maintained by a consor-
tium of researchers, including
Alex Bateman, Ewan Birney,
Lorenzo Cerrutti, Richard
Durbin, Sean Eddy, and Erik
Sonnhammer, and others. Five
sites host Pfam: ® http://www.
sanger.ac.uk/Software /Pfam/
(U.K.), » http://pfam.janelia.
org/ (U.S.), ® http://pfam.cgb.
ki.se/ (Sweden), ® hrttp://pfam.
jouy.inra.fr/ (France), and »
http://pfam.ccbb.re kr/index.
shtml (South Korea). Version 23.0
(July 2008) has 10,340 protein
families. Pfam is based on
sequences in Swiss-Prot and SP-
TrEMBL (Chapter 2). Currently
(May 2007), 74% of the proteins
in those databases have at least one
domain that matches to a Pfam
family.


http:pfam.cgb




