15-863 Hint for Computer Assignment #2: HAIL STORM!

Instructor: Doug L. James

Due: Tuesday, March 11, 2003 (EXTENDED!)

Since some of you have asked, I will give you all a hint by deriving the special case of a single particle (s = 1) applying a constraint on a triangle of the bicycle seat. The general case you have to handle involves s point-like contact constraints, and is only a little more complicated.

Let the triangle in question have vertex indices 1, 2 and 3 for simplicity $(i_1, i_2 \text{ and } i_3 \text{ in general})$, and let $\beta = (\beta_1, \beta_2, \beta_3)$ denote the barycentric coordinate of the *surface contact point (SCP)*. The deformation quantities to be determined are the triangle's vertex displacements u^{Δ} and forces f^{Δ} , i.e.,

$$\mathbf{u}^{\Delta} = \left[\begin{array}{c} \mathbf{u}_1 \\ \mathbf{u}_2 \\ \mathbf{u}_3 \end{array} \right], \qquad \mathbf{f}^{\Delta} = \left[\begin{array}{c} \mathbf{f}_1 \\ \mathbf{f}_2 \\ \mathbf{f}_3 \end{array} \right],$$

as well as the SCP's displacement and contact force,

$$u^{\beta}$$
, f^{β} .

Note that the vertex forces are related to the vertex tractions by multiplying by the vertex area,

$$f_i = a_i p_i \quad \Leftrightarrow \quad f^{\Delta} = A^{\Delta} p^{\Delta},$$

where A^Δ is the equivalent diagonal matrix. In general, there are vertex variables for contacted triangles, and SCP variables for the s contacts.

For s = 1 we have 24 unknowns to determine, since

$$dim(\mathbf{u}^{\Delta}) = 9 \tag{1}$$

$$dim(f^{\Delta}) = 9 (2)$$

$$dim(\mathbf{u}^{\beta}) = 3 \tag{3}$$

$$dim(f^{\beta}) = 3, (4)$$

and we therefore need 24 constraints to determine all variables.

The constraints you have are as follows:

1. (9 Constraints) The Green's function relationship

$$\mathsf{u}^\Delta = \Xi^\Delta \mathsf{p}^\Delta = \Xi^\Delta (\mathsf{A}^\Delta)^{-1} \mathsf{f}^\Delta = \mathsf{D}^\Delta \mathsf{f}^\Delta$$

where D^{Δ} is the *compliance matrix* of the contacted triangle vertices.

2. (9 Constraints) Barycentric force distribution

$$\mathsf{f}^\Delta = \mathsf{B}\mathsf{f}^\beta$$

where B is a matrix expressing $f_i = \beta_i f^{\beta}$, i.e.,

$$B = \begin{bmatrix} \beta_1 I_3 \\ \beta_2 I_3 \\ \beta_3 I_3 \end{bmatrix}$$

where l_3 is the 3-by-3 identity matrix.

3. (3 Constraints) SCP displacement constraint

$$\mathbf{u}^{\beta} = \mathbf{\bar{u}}^{\beta}$$

assuming you specify displacement constraints arising from your particle time-stepping results.

4. (3 Constraints) Definition of SCP displacement

$$\mathbf{u}^{\beta} = \sum_{i=1}^{3} \beta_i \mathbf{u}_i = \mathsf{B}^T \mathbf{u}^{\Delta}$$

These equations can be combined to determine the relationship between the SCP contact displacement and force as

$$f^{\beta} = (B^T D^{\Delta} B)^{-1} \bar{u}^{\beta}$$

$$= K^{\beta} \bar{u}^{\beta}$$
(5)
(6)

$$= \mathsf{K}^{\beta} \bar{\mathsf{u}}^{\beta} \tag{6}$$

where K^{β} is the effective SCP stiffness matrix. Once this equation is solved (trivially), we can use the contact force to determine the traction constraints p^{Δ} and thus compute the deformation using the Green's function matrix.

As you know, in your assignment, you need to address the case with s barycentric contact constraints, derive the equations and simulate the results. We just did the s=1 case, and the generalization is not much harder-in fact it is strikingly similar-and you only have to find the constraints that mirror #1-#4 above.