
Inferring Networks and Estimating Influence in Social Media

1. Introduction
The propagation of information, cascading behavior,
spread of ideas, viruses and diseases through a network
have been studied in different contexts, such as viral mar-
keting (Kempe et al., 2003), the spread of news and opin-
ions (Adar et al., 2004), the spread of technological ino-
vations (Rogers, 1999), and the spread of infectious dis-
eases (Anderson et al., 1992). In such cases, we have a set
of contagions diffusing across a network. As a contagion
spreads in a network (static or dynamic) it creates a trace
at that instant of time, called a cascade. In order to study
network diffusion, there are usually two fundamental chal-
lenges that need to be addressed. First, to be able to track
cascading processes of contagion diffusion, which is cer-
tainly nontrivial with large-real world graphs. For exam-
ple, given data about when did which nodes get infected by
a virus, one can construct an exponentially large number of
trees containing the infected nodes consistent with the data
and the exact inference problem is simply intractable. Sec-
ond, in a typical scenario only the contamination of nodes
as a function of time is observed and the structure of the
diffusion network is often unknown or unobserved. For ex-
ample, in a viral marketing setting, it is easy to track the
products purchased by people with respect to time, but not
who influenced them into purchasing those.

Another fundamental task, especially with applications in
viral marketing (Kempe et al., 2003), is detecting the most
(or least) influential nodes in the network. The influence
maximization (or minimization) problem can be defined
as: find a set of nodes whose initial adoptions of a cer-
tain idea or product or contamination can trigger, in a given
time window, the largest (or smallest) expected number of
follow-ups (Du et al., 2013a). A majority of the previous
literature have focused on estimating influence for an infi-
nite time window (Kempe et al., 2003; Chen et al., 2009;
Goyal et al., 2011). In tasks such as viral marketing, in-
fluence at large times is of little use, since typically the
marketer would like his advertisement to be viewed in a
relatively short period of time (maybe a week or a month).

A series of recent work (Rodriguez et al., 2013; Du et al.,
2012; Rodriguez et al., 2011; Du et al., 2013b) in the litera-
ture has shown that modeling cascade data and information
diffusion through continuous-time diffusion networks can
provide significantly more accurate networks for inference,

than discrete-time models. This modeling choice has two
important justifications. First, since a node can be infected
at any instant of time, representing time as a continuous
variable seems much more appropriate. Also, artifically
discretizing time into bins introduces the additional over-
head of choosing optimal tuning parameters such as bin
size. Second, discrete time models can only describe trans-
mission times which obey an exponential density, and thus
are too restricted to model any arbitrary distribution in the
data (Du et al., 2013a).

This report develops a method for answering two major
questions related to information diffusion: (1) What is the
global structure of the underlying network over which in-
formation propagates and how do individual contagions
cascade over such a network? (2) What nodes are the
most/least influential in spreading the contagion? Specif-
ically, to answer the first question we build on the ap-
proach by (Gomez Rodriguez et al., 2010) which finds a
near-optimal solution for the network graph that maximizes
the conditional probability of diffusion of a set of observed
contagions given a specific graph (maximum likelihood es-
timator). We propose an improvement on their model by
using the Weibull distribution, a richer family of distribu-
tions than the exponential or power law distributions (Law-
less, 2011). After the network structure is learned, to ad-
dress the second question, we build on the approach by (Du
et al., 2013a) which estimates and maximizes the influence
based on a continous-time diffusion model. Although they
achieve state-of-the-art results on both synthetic and real
world datasets, their model assumes the transmission times
between edges to be independent of each other. We propose
a model which incorporates dependencies between trans-
mission times/functions by using priors. Furthemore, we
propose a solution to the influence minimization problem
as well, which is an important inference problem in appli-
cations where identifying non-influential sources might be
of great interest, such as viral marketing.

2. Background & Related Work
Generally there are three research topics in information dif-
fusion(Guille et al., 2013): 1) what topics are now popular
and diffuse the most in the network, 2) how, and through
which paths, information is diffusing, 3) which nodes in
the network play important roles in the diffusing process.
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We briefly review each of the three topics.

2.1. Detecting Popular Topics

The main tasks here is to automatically detect topics that
are popular or will become popular in textual streams, and
it has been suggested to focus on bursts. Bursty topic is
defined as: A behavior associated to a topic within a time
interval in which it has been extensively treated but rarely
before and after. (Kleinberg, 2003) proposes a state ma-
chine to model the arrival times of documents in a stream
to identify bursts, but assume all documents belong to the
same topic. (Leskovec et al., 2009) show that the tempo-
ral dynamics of the most popular topics in social media are
made up of a succession of rising and falling patterns of
popularity. (Shamma et al., 2011) propose a Peaky Topics
model, which is based on a normalized term frequency met-
ric. They consider each time slice as a pseudo-document
composed of all the messages in the corresponding col-
lection. Using this metric, bursty topics defined as single
terms are ranked. One problem of this method is that a sin-
gle term is not enough to clearly identify a topic. (AlSumait
et al., 2008) propose a on-line LDA to find latent topics, to
train a topic model for current time slice, the topic model
for previously generated models is treated as a prior. (Lu &
Yang) develop a method that permits predicting which top-
ics will draw attention in the near future. They utilize Mov-
ing Average Convergence Divergence (MACD) to identify
bursty topics. The main idea is to turn a short period and
a longer period moving average of terms frequency into a
momentum oscillator. When the trend momentum changes
from negative to positive or from negative to positive, the
trends of a term will rise or fall. (Takahashi et al., 2011)
propose to use mentions contained in messages to identify
bursty models, instead of textual content. They combine
a mentioning anomaly score and a changepoint detection
technique based on Sequentially Discounting Normalized
Maximum Likelihood. The anomaly is calculated with re-
spect to the standard mentioning behavior of each user.

2.2. Modeling Information Diffusion

The diffusion process is characterized by two aspects: the
graph structure that transcribes who influenced whom, and
its temporal dynamics, i.e. the evolution of the diffusion
rate which is defined as the amount of nodes that adopts
the piece of information over time. We can distinguish two
categories of models in the following ways.

2.2.1. EXPLANATORY MODELS

Explanatory models aim at learning the underlying directed
graph structure through which a contagion is diffusing. In
such processes, one only observes the time sequence of
node infection, but is unable to infer what node was re-

sponsible for transmitting the infection. (Gomez Rodriguez
et al., 2010) approach that problem by trying to find a
near-optimal solution for a probabilistic model of the influ-
ence diffusion. They use the Independent Cascade Model
(Kempe et al., 2003) and incorporate a time-dependent
component to it. The model states that an infected node has
a probability β of infecting each one of its neighbour nodes
(each infection being an independent process). If such an
infection takes place, the infected neighbour will have an
incubation time α of the contagion agent before it is able
to infect its neighbour nodes. The model is such that the
propagation likelihood Pc(u, v) of a contagion c between
two nodes u and v is such that Pc(u, v) = 0 if tu > tv and,
otherwise, depends only on the difference between the hit
times of the two nodes (∆u,v = tv − tu). They use two
distributions,:

• Exponential Model: Pc(u, v) = Pc(∆u,v) ∝ e−
∆u,v
α

• Power-law Model: Pc(u, v) = Pc(∆u,v) ∝ 1
∆α
u,v

Further on, they use the concept of ε-edges to model
the influence of factors external to the diffusion net-
work. They aim to solve the optimization problem G? =
arg max|G|≤k FC(G), where the objective is a submodular
monotonic nondecreasing function. They use the popular
solution proposed by (Nemhauser et al., 1978) to obtain
1− 1/e optimality guarantee.

2.2.2. PREDICTIVE MODELS

Predictive models aim at how a specific diffusion process
would spread in a given network by learning from past
diffusion traces. There are generally two models, one is
the Independent Cascades (Goldenberg et al., 2001), and
the other is Linear Threshold (Granovetter, 1978). The IC
model requires a diffusion probability to be associated to
each edge whereas LT requires an influence threshold for
each node. In IC, for each iteration, the newly activated
nodes try once to activate their neighbors with the prob-
ability defined on the edge joining them; in LT, for each
iteration, the inactive nodes are actived by their activated
neighors if the sum of influence degrees exceeds their own
influence threshold. (Galuba et al., 2010) propose to use
LT model to predict the graph of diffusion. Their model
relies on parameters such as information virality, pairwise
users degree of influence and user probability of adopting
any information. The parameters are optimized by gradient
ascent method.

2.3. Identifying Influential Spreaders

Another major task which has numerous potential appli-
cations such as in viral marketing, is the task of influence
maximization. Influence maximization is defined as find-



Inferring Networks and Estimating Influence in Social Media

ing a set of nodes whose initial adoptions of a certain idea
can produce or trigger, in a time window, the largest ex-
pected number of follow-ups (Du et al., 2013a). Some ap-
proaches have developed discrete-time models (Rodriguez
et al., 2013; Du et al., 2012; Rodriguez et al., 2011; Du
et al., 2013b), which are typically disadvantageous as they
introduce additional tuning parameters such as bin size to
discretize time axis into bins and can only model transmis-
sion times obeying exponential density. (Du et al., 2013a)
introduce a scalable continous-time diffusion model (Con-
TinEst) with heterogeneous transmission functions to esti-
mate the influence of A sources within a T time window.
They use Cohen’s modified Dijkstra’s algorithm approach
(Cohen, 1997) to create least label list for each source node
s. Based on the list, they estimate the neighborhood of s
within T as,

|N(s, T )| ≈ m− 1∑m
u=1 r∗

u
(1)

where r∗ is the least label and m is the number of random
label samples. Thereafter, they obtain the neighborhood
of A within T by simply taking the union of the neigh-
borhoods of each source. In contrast to the naive sam-
pling approach which needs to run the shortest path al-
gorithm again if the source set is increased, this random-
ized algorithm involves only a constant-time minimization
over |A| numbers. For n samples, the overall computa-
tional complexity of the randomized algorithm is given by
O(n|E|log|V | + n|V |log2|V |). They use the Weibull dis-
tribution (Lawless, 2011), providing more flexibility than
an exponential distribution. They achieve ground truth ac-
curacy on synthetic data (Leskovec et al., 2010) and state-
of-the-art accuracy on the MemeTracker dataset (Leskovec
et al., 2009).

3. Method
In this section, we present the details of our method or-
ganized by: (1) infer the global structure of the underly-
ing network, (2) estimate the influence in the learned net-
work, and (3) optimize the influence. At each step, we use
a continuous-time diffusion model.

3.1. Static Network Inference

For our purposes, we assume that the underlying diffusion
network remains static (does not change over time).

Cascade transmission model. We build on the Indepen-
dent Cascade Model (Kempe et al., 2003) and the cascade
transmission model by (Gomez Rodriguez et al., 2010).
The Independent Cascade Model posits that an infected
node u infects each of its neighbors in network G indepen-
dently at random with some probability β. It implicitly as-

sumes that every node can be infected by at most one other
node. Therefore, v can have multiples of its nodes infected
but only one of those can activate v. Thus, the structure of
a cascade c over the graph G, is a directed tree T . In con-
trast to using the exponential and power-law distributions
(Gomez Rodriguez et al., 2010), we define the probabiltiy
Pc(u, v) that a node u spreads the cascade to a node v, by
a broader (less restrictive) family of distributions known as
the Weibull distribution (Lawless, 2011),

Pc(u, v) =
γ

α

(
∆u,v

α

)γ−1

e
−
(

∆u,v
α

)γ
(2)

where α > 0 and γ > 0, are distribution parameters cor-
responding to scale and shape, respectively and ∆u,v =
tv − tu is the infection time differential between node u
and node v. In large scale networks, most contagions can
only infect a small subset of the all the nodes in the net-
work. We set the infection times for uninfected nodes v
(after completion of the cascade) to be tv = +∞ resulting
in Pc(u, v) = 0. Also, Pc(u, v) = 0 if tu > tv , that is an
uninfected node u cannot influence an infected node v.

Many nodes in the network may get infected due to rea-
sons other than the network influence. For example, in viral
marketing a person may purchase a product due to TV com-
mericals rather than peers, creating a disconnected cascade
(Leskovec et al., 2007). A simple approach to take this into
account would be to create an external node x and connect
it to every other node u in the network with an ε-edge. Then
every node u can be infected by the external influence x
with a small probability ε. However, introducing additional
nodes in an already intractable inference task will make our
problem even harder. To navigate this, we instead connect
nodes u and v by ε-edge if they are not connected by a net-
work edge (in that direction) already (Gomez Rodriguez
et al., 2010). So, now every node can influence every other
node in the network even if they are not connected by a
network edge. Our graph G is now a fully connected graph
of two disjoint sets of edges, the network edges E and the
ε-eges Eε, i.e., E ∩ Eε = ∅ and E ∪ Eε = V × V

Maximum likelihood estimation. Given data of the form
(c, tc), where c is the contagion and tc are the node hit
times, we can calculate the likelihood P (c|T ) of the conta-
gion c spreading in a particular tree pattern T (VT , ET ) in
the following manner,

P (c|T ) =
∏
u∈VT

∏
v∈V

P
′

c(u, v) (3)

where the transmission probability P
′

c(u, v) is given by
(Gomez Rodriguez et al., 2010),
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Figure 1. (a) Graph G with network edges (solid) and ε-edges (dashed). (b) Propagation tree T = (a,b), (b,c), (b,d) with (i) network edges
that are a part of the tree T (solid bold), (ii) ε-edges that are a part of T (dashed bold), (iii) network edges that are not a part of T (solid),
and (iv) ε-edges that are not a part of T (dashed) (Gomez Rodriguez et al., 2010)

P
′

c(u, v) =



βPc(u, v), if tu < tv and (u, v) ∈ ET ∩ E
εPc(u, v), if tu < tv and (u, v) ∈ ET ∩ Eε
1− β, if tv =∞ and (u, v) ∈ E \ ET
1− ε, if tv =∞ and (u, v) ∈ Eε \ ET
0, otherwise (i.e. if tu ≥ tv)

(4)

Figure 1 illustrates the concept of ε-edges (Gomez Ro-
driguez et al., 2010). Figure 1(a) shows an example of the
entire graph G, and Figure 1(b) shows the edges participat-
ing in the computation of Eq. (4) for the propagation tree
T = (a, b), (b, c), (b, d) in graphG. The likelihood P (c|G)
of the contagion c for a graph G, can then be calculated
by marginalizing over the set of all the directed maximum
spanning trees Tc(G) on a subgraph of G induced by the
nodes that got infected by contagion c. Specifically,

P (c|G) = =
∑

T∈Tc(G)

P (c|T )P (T |G) (5)

We assume that the prior probability of a tree T given a
graph G follows a uniform distribution, i.e. P (T |G) =
1/|Tc(G)|. Now, the probability of all the cascades for all
the set of contagions C is simply given by,

P (C|G) =
∏
c∈C

P (c|G) (6)

Taking the log of the likelihood, our maximization problem
simply becomes,

Ĝ = arg min
G

FC(G) (7)

=
∑
c∈C

max
∑

(i,j)∈ET

log(P
′

c(i, j)− log(εPc(i, j)) (8)

where the second log term inside the summation comes
from the empty graphK (a graph only with ε-edges). Max-
imizing with respect to K makes the objective in Eq. (8) a
monotic nondecreasing submodular function (Gomez Ro-
driguez et al., 2010). The log differential inside the sum-
mation is non-negative and can be thought of as an im-
provement on the log-likelihood for edge (i, j) under the
most likely propagation tree T . Since, Eq. (8) is mono-
tonically nondecreasing, the graph G which maximizes it
will be a fully connected (network edges) graph. However,
real-world graphs are in general sparse and so we want to
learn the graph that only contains some small number of k
network edges. Our optimization problem then becomes,

G? = arg max
|G|≤k

FC(G) (9)

where maximization is over all graphs G containing k
edges. Maximizing submodular functions is in general NP-
hard (Khuller et al., 1999). However, (Nemhauser et al.,
1978) have shown that using the greedy approach we can
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Algorithm 1 Max. weight directed spanning tree of a DAG
Require: Weighted DAG D(V,E,w)
T ← {}
for all i ∈ V do
ParT (i) = arg maxj w(j, i)
ParT (i)← T ∪ {(ParT (i), i)}

end for
Return: T

Algorithm 2 NetInf Algorithm
Require: Cascades C = {(c, tc)} and #edges k
G← K̄
for all c ∈ C do
Tc ← max span tree(c) {Algorithm 1}

end for
while |G| < k do

for all (j, i) 6∈ G do
δj,i = 0
Mi,j ← ∅
for all c : tj < tiinc do

Consider G ∪ {(j, i)}
if wc(j, i) ≤ wc(PartTc(i), i) then
δj,i = δj,i + wc(j, i)− wc(PartTc(i), i)
Mj,i ←Mj,i ∪ {c}

end if
end for

end for
(j∗, i∗)← arg max(j,i)∈C\G δj,i
G← G ∪ {(j∗, i∗)}
for all c ∈Mj∗,i∗ do
ParTc(i

∗)← j∗

end for
end while
Return: G

achieve 1 − 1/e ≈ 63% of the optimal value for the graph
Ĝ return be the algorithm.The detailed process is shown in
algorithm 1 and algorithm 2.

3.2. Influence Estimation

Once the global network structure is learned, we can esti-
mate the influence of a set of source nodesAwithin a given
time window T . Specifically, we want to estimate σ(A, T )
(Du et al., 2013a),

σ(A, T ) = E[
∑
i∈V

I (ti ≤ T )] =
∑
i∈V

E[I (ti ≤ T )] (10)

=
∑
i∈V

Pr(ti ≤ T ) (11)

where I(·) is the indicator function and V is the set of

all vertices in the graph G. The above problem can be
converted to a function of the edge transmission times
τji = ti − tj ,

σ(A, T ) =
∑
i∈V

Pr{gi
(
{τji}(j,i)∈E

)
≤ T} (12)

where gi
(
{τji}(j,i)∈E

)
= ti is the shortest path from the

source nodes to node i. Given a set of fixed edge transmis-
sion times {τji}(j,i)∈E and a source node s infected at time
0, the neighborhood N(s, T ) of s in a given time window
T can be estimated using the Cohen’s randomized neigh-
borhood estimation algorithm (Cohen, 1997),

|N(s, T ) ≈ m− 1∑m
u=1 r

u
?

(13)

where r? = mini∈N(s,T ) ri is the smallest label within
distance T from the source s and will distribute as r? ∼
exp(−|N(s, T )|r?, and m is the number of randomized
initializations of nodes i over the labelings ri ∼ exp(−ri).
To estimate the neighborhood of a set ofA sources, we sim-
ply take the union of the neighborhood for each individual
source (Du et al., 2013a),

N(A, T ) = ∪s∈AN(s, T ) (14)

and the least label r? for the neighborhoodN(A, T ) can be
calculated by taking the minimum of the least labels r?(s)
for each of the individual sources s. Similarly, |N(A, T )|
can be estimated using Eq. (13) by taking m label samples.

3.3. Influence Optimization

Once we have estimated the influence, our goal is to find
out an optimal set of source nodes which maximize or min-
imize the influence. That is,

A∗(max) = arg max
A
|N(A, T )| (15)

A∗(min) = arg min
A
|N(A, T )| (16)

Like in the previous section, |N(A, T )| is a monotonic,
non-decreasing function in the source node set A and sat-
isfies the diminishing returns property of submodularity.
Therefore, we modify our optimization to include the fol-
lowing constraints,
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(a) Precision Curve

(b) Recall Curve

Figure 2. Precision and recall decrease with very large alpha

A∗(max) = arg max
|A|≤k

|N(A, T )| (17)

A∗(min) = arg min
|A|≥k

|N(A, T )| (18)

where we are looking for the k most influential and least
influential sources, respectively. Eq. (17) can be solved us-
ing the same greedy approach for submodular functions as
described in the previous section. For Eq. (18), the greedy
approach can be used but the optimality guarantee 1− 1/e
does not hold. We will give more theoretical details about
optimality for the minimization task after running more ex-
periments.

4. Experimental Setup and Results
In this section, we proceed with the experimental evalua-
tion of our proposed methods, as well as a quantitive and
qualitative analysis of the corresponding results. Specifi-
cally, we organize this section by addresssing the follow-
ing problems in order: (1) given only timestamp data, learn
the most likely network structure, (2) given a network, es-
timate influence of sources within a given time window,
and (3) given only timestamp data, estimate the influence
of sources within a given time window.

4.1. Inferring Network Structure

For this experiment, we explore the properties of NETINF
algorithm. The data we used is synthetic data generated by
tools provided in the SNAP project. Specifically we gener-
ate kronecker graph with 1024 nodes and 2048 edges. We
tried different number of cascades. To evaluate, we calcu-
late the Precision and Recall of the estimated graph V.S.
the ground truth graph. 2(a) and 2(b) shows the Precision
and Recall results, respectively. Here alpha is the param-
eter for exponential distribution, the tranmission distribu-
tion in NETINF algorithm. As we can see, when alpha in-
creases, both Precision and Recall decrease, the best alpha
is between 0 and 2. Besides, we could observe that as the
number of cascades increases, both Precision and Recall
increase, this is because with more cascades, we have more
information to learn our graph. And with 955 cascades,
both Precision and Recall can be above 90%.

4.2. Estimating influence via known network

For this task, we use a part of the Memetracker dataset
(Leskovec et al., 2009) from the Stanford Large Network
Dataset Collection (Leskovec, 2014), a collection of news
articles and blogs posts from August 2008 to April 2009.

Real-world data. Memetracker dataset tracks quotes and
memes that occur most frequently in news media websites
and blogs. For each instance of a document (news article
or blog post), it contains the URL of the document, time of
the post (timestamp), the textual phrases extracted from the
document, and hyper-links in the document(links pointing
to other documents on the web). It contains 96 million doc-
uments and 418 million links, along with 17 million differ-
ent phrases. About 54% of the total phrases appear in blogs
and 46% in news media. It is possible to see how different
stories diffuse and fade in the network.

Ground Truth Networks. We preprocess our data to in-
clude only the most frequent websites (nodes) based on
the number of hyperlinks they create/receive, and consider
only the most frequent 343602 textual phrases as conta-
gions. Specifically, we construct 10 ground truth networks
ranging from a minimum of 1000 nodes to a maximum of
10000. We wanted to run experiments on larger networks
but the computational limitations of our machine did not
permit us to do the same. As there are no ground truth net-
works for the dataset, we use the following method to con-
struct a ground truth network G∗ for each node size. Each
network G∗ has a directed edge between a pair of nodes u
and v if a post on site u is linked to a post site v. These
networks are subsequently used

Influence Estimation. For this experiment, we only con-
sider the node with the highest out-degree in G∗ as the
source. To compare the accuracy of our estimated influence
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(a) Estimated Influence vs time

(b) Error rate vs #nodes

(c) Error rate vs #samples

(d) Error rate vs #labels

Figure 3. For the MemeTracker dataset (a) estimated influence
with increasing time window T, (b) for T = 10 and node size
= 4000, error rate with increasing node size, (c) error rate for
increasing number of samples, and (d) error rate for increasing
number of labels

(a) Influence vs time

(b) Top common sources vs top ground truth

Figure 4. For synthetic network with node size = 1024, (a) net-
work inference - influence estimation integration, and (b) network
inference - influence maximization integration

we use the Naive Sampling (NS) approach as the ground
truth measure for which we draw 10,000 samples. The het-
erogenous transmission densities were characterized by a
Weibull distribution which is more flexible than the expo-
nential and power-law distributions typically used in such
tasks. The scale parameter α, where α > 0, and the shape
parameter β, where β > 0, for the Weibull distribution
were learned from the data.

Analysis of Results. Figure 3(a) shows the results for the
influence estimation algorithm versus the ground truth. It is
quite clear, that the algorithm produces the same estimates
as the ground truth. Figure 3(b) compares the algorithm
with the ground truth for networks with different node sizes
(ranging from 1000 to 10000). Again it can be seen, the er-
ror rate between the influence estimation algorithm and the
ground truth measure is negligible, irrespective of the size
of the network. Figures 3(a) and 3(b) were generated using
10000 random samples of sets of waiting times and 5 ran-
dom labels for each set of waiting times. We wanted to see
the impact of the number of random samples and random
labels on error rate. As expected, the error rate with re-
spect to ground truth decreases with increasing the number
of random samples as well as random labels (Figures 3(c)
and 3(d)).
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4.3. Estimating influence via unknown network

Most real-world situations such as viral marketing, the
spread of infectious diseases, the spread of news and opin-
ions etc. are characterized by only time-stamp data. For
example, in virus propagation we usually observe people
getting sick without knowing who infected them. More-
over, in such situations it is often important to learn the
people (nodes) who are most responsible for propagating
the virus. Thefore, it is essential to integrate the task of
network inference with influence estimation. For this task,
we use the synthetic networks in the form of Kronecker net-
works (Leskovec et al., 2010) generated by Stanford Large
Network Dataset Collection (Leskovec, 2014).

Synthetic Network Generation. We use the core-
periphery netowrks (parameter matrix: [0.9 0.5; 0.5 0.3]),
which mimic the information diffusion traces in real world
networks (Gomez Rodriguez et al., 2010). Similar to the
previous task, we use the Weibull distribution to character-
ize the heterogeneous edge transmission densities. Since,
this is a synthetic network there is no real-world data to
simulate the probability density functions. Therefore, the
parameters α and β were chosen uniformly at random from
0 to 10. The number of nodes and edges in this network
were 1024 and 2048, respectively. The synthetic network
serves as the ground truth network for this task.

Network Inference-Influence Estimation. The results of
the previous task demonstrated the accuracy of the influ-
ence estimation algorithm. To show that the network infer-
ence task integrates well with influence estimation, it is im-
portant to compare the estimated influence across various
time windows for the ground truth synthetic network with
that of the network inferred from the same ground truth
synthetic network. Figure 4(a) shows the plots for the es-
timated influence versus time window for the ground truth
synthetic network and the inferred network from the same
ground truth synthetic network. The plots are quite close
to each other and, moreover, have a similar shape. This
shows that the inferred network is quite close to the ground
truth synthetic network, and the network inference problem
can be integrated with influence estimation problem as one
joint problem.

Network Inference-Influence Maximization. We ran a
similar experimental setup to the one above to see if the
network inference problem can integrate well with the in-
fluence maximization problem. Figure 4(b) shows the top
n sources obtained from the ground truth synthetic network
on the horizontal axis, and the number of common sources
in the top n sources of the inferred network and ground
truth synthetic network the vertical axis. As it can been, the
network inference-influence maximization integration does
not perform as well as the network inference-influence es-
timation.

5. Conclusion
In this paper we have explored a graph structure learning
algorithm and an influence estimation algorithm. Based
on that, we have proposed a method to estimate influ-
ence without any knowledge about the true graph structure,
which is the case in most real world application. Experi-
ments have shown that the graph learned by NETINF pro-
vides us a reliable graph structure to estimate the influence
when the ground truth graph structure is unknown. Future
works include compare our approach with some non-graph
based influence estimation method such as SIR(Hethcote,
2000) and SIS(Newman, 2003). We would also want to ex-
plore how to set the number of edges in NETINF algorithm
automatically.
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