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Abstract 

Unsupervised discovery of synonymous 

phrases is useful in a variety of tasks ranging 

from text mining and search engines to seman-

tic analysis and machine translation. This pa-

per presents an unsupervised corpus-based 

conditional model: Near-Synonym System 

(NeSS) for finding phrasal synonyms and near 

synonyms that requires only a large monolin-

gual corpus. The method is based on maximiz-

ing information-theoretic combinations of 

shared contexts and is parallelizable for large-

scale processing. An evaluation framework 

with crowd-sourced judgments is proposed 

and results are compared with alternate meth-

ods, demonstrating considerably superior re-

sults to alternatives in the literature and to the-

saurus look up for multi-word phrases. The 

method is language-independent making it ap-

plicable to any language with sufficient mono-

lingual electronic text. 

1 Introduction 

Phrasal near-synonym extraction is extremely 

important in domains such as natural language 

processing, information retrieval, text summari-

zation, machine translation, and other AI tasks. 

Whereas finding near-synonyms for individual 

words or possibly very common canned phrases 

may involve no more than a thesaurus lookup, 

the general case of finding near-synonymous 

multi-word phrases requires a generative process 

based on analysis of large corpora. For instance 

our method finds the following synonyms/near-

synonyms for “it is fair to say”: “it’s safe to say”, 

“we all understand”, “it’s pretty clear”, “we be-

lieve”, “it’s well known”, “it’s commonly ac-

cepted”, and so on. The meanings of these 

phrases are quite close, yet that is not the case for 

most of their corresponding words individually. 

Moreover, for proper nouns our method finds 

orthographic variants (after all they are the best 

synonyms) as well as descriptive near-synonyms, 

e.g. for “Al Qaeda” it finds: “Al Qaida”, “Al-

Qaeda network”, “jihadist group”, “terrorist or-

ganization”, “Bin Laden’s followers”. It is clear 

how near-synonym phrases can help in text min-

ing, such as finding all (or most) occurrences of 

entities of interest in text corpora or text streams, 

and discovering relations expressed in different 

ways in large and diverse natural language cor-

pora.  

If one were issuing an information retrieval 

query, especially if recall truly matters, searching 

for synonyms of queries live may be of high val-

ue. For instance if one wants “cheap housing” 

then also searching for “affordable real estate” 

might prove useful. Or if typing “heart attack” 

one might also want “cardiac arrest” or “heart 

failure” to also be searched via query expansion. 

To some extent search engines are starting to 

offer such expanded search automatically, but in 

so far as one can observe, only via highly-related 

single-word substitutions. Moreover, to emulate 

a phrasal thesaurus, a live system is essential 

since, a precompiled database (Ganitkevitch et 

al., 2013) no matter how large, cannot achieve 

full coverage as the search space for potential 

grammatically coherent phrases tends to be pro-

hibitively large. 

This paper develops a method for discovering 

near synonym phrases based on common sur-

rounding context relying on an extension of Har-

ris’ Distributional Hypothesis (Harris, 1985) – 

the more instances of common context, the more 

specific said context, and the longer the shared 

contexts, the stronger the potential synonymy 

relation. This unsupervised shared-context meth-

od relies only on a large monolingual corpus, and 

thus can be applied to any language without the 

need of pre-existing linguistic or lexical re-

sources. We present the method, inspired by 

Carbonell et al. (2006), after outlining related 

work. 



2 Related Work 

The NLP literature addressing semantic similari-

ty at the phrasal level is fairly sparse. Composi-

tional distributional semantic methods attempt to 

formalize the meaning of compound words by 

applying a vector composition function on the 

vectors associated with its constituent words 

(Mitchell and Lapata, 2008; Widdows, 2008; 

Reddy et al, 2011), but they do not address 

phrasal synonymy, and instead focus on tasks 

such as forming NN-compounds. More im-

portantly, the phrases (compounds) are treated as 

consisting of individual constituent words rather 

than as distinct entities, thus ignoring an essential 

fact that semantics of the whole might be quite 

different from that of its constituents. Our model, 

deals with phrases directly as separate entities at 

every level of computation. 

A few approaches address phrases without 

breaking them into the constituting words. Barzi-

lay and McKeown (2001) use parallel resources 

to construct paraphrase pairs. They include a 

wide variety of semantic relationships as para-

phrase categories, such as siblings or hypero-

nyms. Ganitkevitch et al. (2013) use the bilingual 

pivoting technique (Bannard and Callison-Burch, 

2005) along with monolingual distributional sim-

ilarity features to extract lexical, phrasal and syn-

tactic paraphrases. They officially released a col-

lection of 220 million English paraphrase pairs 

known as the Paraphrase Database (PPDB) 1.0. 

Some other approaches (Pasca, 2005; Lin and 

Pantel, 2001; Berant et al., 2001) differ from 

ours in that, they use manually coded linguistic 

patterns to align only specific text fragment con-

texts to generate paraphrases (Pasca, 2005), and 

require language specific resources such as part-

of-speech taggers (Pasca, 2005) and parsers (Lin 

and Pante, 2001). Furthermore, the latter two 

only find alternate constructions with the same 

content words, such as “X manufactures Y” in-

fers “X’s Y factory” (Lin and Pantel, 2001). 

Near-synonyms with a distinct set of words such 

as “makes ends meet” and “pay the bills” are 

undetectable by their methods.  

Perhaps the most relevant prior work is Car-

bonell et al. (2006) and Metzler and Hovy 

(2011). Carbonell et al. (2006) briefly introduce 

totally-heuristic approach for the same problem 

to aid their context-based MT system. That work 

used the number of distinct contexts and their 

length to estimate near-synonymy. Meltzer and 

Hovy (2011) use similar methods and point-wise 

mutual information but also distribute the pro-

cess using Hadoop.  

3 The Near-Synonym System  

The Near Synonym System (NeSS) introduces a 

new method which differs from other approaches 

in that it does not require parallel resources, un-

like (Barzilay and McKeown, 2001; Lin et al., 

2003; Callison-Burch et al., 2006; Ganitkevitch 

et al., 2013) nor does it use pre-determined sets 

of manually coded patterns (Lin et al., 2003; 

Pasca, 2005). In addition to producing synonyms 

or near-synonyms for individual words, it also 

operates at the phrase level. NeSS captures se-

mantic similarity via n-gram distributional meth-

ods that implicitly preserve local syntactic struc-

ture without the aid of POS-

tagging/chunking/parsing, making the underlying 

method language independent. NeSS is a Web-

server, which functions as a live near-synonym 

search engine. 

3.1 Parallel Suffix Arrays 

When working on such a gigantic data set, it is 

absolutely necessary to have a scalable system. 

NeSS uses two important techniques to gain con-

siderable speed at run-time: (1) suffix arrays, and 

(2) parallel computing. Suffix arrays (Manber 

and Myers, 1993), are powerful pattern-matching 

data structures that use an augmented form of 

binary search to locate all the occurrences of a 

string pattern within a corpus. They address que-

ries such as, “Is   a substring of  ?” in time 

         , where   is the length of   and   

is the length of   (Manber and Myers, 1993).  

In our case,   is a sequence of word tokens, 

and     since   is a phrase and   is a large 

corpus. Specifically, we first create a global dic-

tionary (vocabulary) of whitespace-delineated 

word tokens from a large monolingual corpus 

and then split it into a fixed number (depending 

on hardware specifications) of equally sized 

parts. Each corpus split is sorted according to the 

global dictionary to construct a suffix array of its 

own. While starting the NeSS Webserver, all the 

corpus splits, the corresponding suffix arrays and 

the dictionary are all loaded into memory. As we 

will show in Section 3.2, our algorithm lends 

itself naturally to parallelization and thus, we put 

each suffix array on a separate thread of its own 

at run-time, which leads to further scalability. 



3.2 NeSS Run-Time Architecture 

We use the term “query phrase” to denote the 

input phrase for which we want to find synonyms 

or near synonyms. 

Phase I, Context Collection and Filtering: 

NeSS uses the local contexts surrounding the 

query phrase as features to the conditional model 

to capture both semantic and syntactic infor-

mation. A local context consists of: 

1. Left context which we call “left”, is a 3 to 

4-gram token to the immediate left of the 

query phrase, 

2. Right context which we call “right”, is a 3 

to 4-gram token to the immediate right of 

the query phrase (longer n-grams may fur-

ther improve results), 

3. Paired left & right context which we call 

“cradle”, combining left and right contexts 

of the same query phrase occurrence with 

“placeholder” (OOV) words in the middle 

of the candidate near-synonyms. 

We iterate over each occurrence of the query 

phrase in the data and collect the corresponding 

local context at each instance to form three sets 

of distinct lefts, distinct rights and distinct cra-

dles, respectively. To compute CQR (Section 4), 

during iteration we also store the frequency of 

each context with the query phrase as well as the 

frequency of the query phrase in the data.  Since 

the contexts can be collected independent of each 

other, we run this operation in parallel on the 

multi-threaded suffix arrays. After all the threads 

terminate, we combine the individual frequencies 

obtained through each suffix array to get the total 

frequency for the query phrase with each context 

as well as the total frequency of the query phrase 

in the entire data.  

Phase II, Candidate Collection and Filter-

ing: Once all the local contexts of the query 

phrase have been mined, we iterate over all the 

instances (excluding the ones corresponding to 

the query phrase itself) of each left, right and 

cradle in the data to collect a set of near-

synonym candidate phrases. Minimum and max-

imum candidate lengths permitted are given by:  

 
         

                  
 

where    is query phrase length,    and    are 

constant parameters set to 2 and 2, respectively. 

To compute CCS and k (Section 4), we also store 

the frequency of each candidate with each con-

text, the frequency of each context and the fre-

quency of each candidate in the data. Similar to 

Phase I, the candidates can be collected inde-

pendent of each other, and we run this operation 

in parallel on the multi-threaded suffix arrays. 

Again, once all the threads terminate, we com-

bine the individual frequencies obtained through 

each suffix array to get the three total frequen-

cies. 

4 Shared Feature Gain 

In this section, we describe the scoring function 

NeSS’s conditional model uses to rank candi-

dates. For some query phrase     and candi-

date    , we compute the score for lefts 
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Since content words are the most important 

factor in       , the value of   was chosen to be 

larger than   and  . Also, while normalizing, 

setting   to unity devalued the score too much. 

After considerable experimentation, 2, 0.5, 1 and 

0.5, for  ,  ,   and  , respectively, proved to be 

the best combination. 

Similarly, we compute scores for rights and 

cradles with the same empirical settings for each 

of the corresponding parameters and combine the 

three to get the final score: 
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where     is empirically set to 5 to boost the 

score for cradle matches and    is the cradle 

score. 

5 Rank-Sensitive Evaluation  

For our experiments, we chose a set of 54 query 

phrases which included no proper nouns which 

included an assortment of noun phrases, verb  

 



Method MRȘ(5) MRȘ(10) MRȘ(15) MRȘ(20) 

SF 2.35 2.19 2.12 2.00 

PPDB 1.97 1.80 1.62 1.48 

Mavuno 2.04 1.83 1.75 1.64 

Thesau-

rus 
1.18 1.09 1.00 0.95 

 

Table 1. Significant MRȘ improvements over PPDB, 

Mavuno and Roget’s Thesaurus, for 23 two word que-

ry phrases. 

 

Method MRȘ(5) MRȘ(10) MRȘ(15) MRȘ(20) 

SF 2.15 1.99 1.85 1.76 

PPDB 1.65 1.57 1.48 1.38 

Mavuno 1.85 1.76 1.71 1.65 

Thesau-

rus 
0.50 0.47 0.43 0.43 

 

Table 2. Significant MRȘ improvements over PPDB, 

Mavuno and Roget’s Thesaurus, for 16 greater than 

two word query phrases 

 

phrases, non-compositional phrases and nouns, 

verbs, and adjectives. The query phrase set com-

prised 15 single word, 23 two word, and 16 

greater than two word phrases.  

In order to objectively evaluate the output of 

our model, we develop a normalized metric, the 

mean rank-sensitive score      , which deval-

ues the annotated scores for higher ranks: 
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where    is the annotated score,   is the cutoff at 

the     rank,   is the rank of the candidate and   

is the set of raters.     takes into account miss-

ing results by padding the rating sequence with 

zeros for the missing values. Also, due to nor-

malization     is insensitive to the length of the 

rating sequence, i.e.,        for 2, 2, 2 is equal 

to        for 2, 2, 2, 2, 2. 

The annotators (6 human judges) were asked 

to provide ratings on each query phrase-synonym 

candidate combination. The ratings scaled from 

0-3, where 3 indicates absolute synonymy 

(Zgusta, 1971), 2 indicates near-synonymy 

(Hirst, 1995), 1 indicates some semantic correla-

tion such as hypernymy, hyponymy or antonymy 

and 0 indicates no relationship.  

To show the inadequacy of thesauri lookup, 

we compare our model to a self-manufactured 

baseline from the Roget’s Thesaurus. Since, like 

 

Method MRȘ(5) MRȘ(10) MRȘ(15) MRȘ(20) 

SF 2.22 2.00 1.90 1.79 

PPDB 1.42 1.30 1.23 1.16 

Mavuno 2.00 1.79 1.64 1.55 

Thesaurus 2.88 2.83 2.81 2.80 

H&S 0.27 0.29 0.28 0.26 

 
Table 3. Significant MRȘ improvements over PPDB, 

Mavuno and H&S Model, for 15 single word query 

phrases 

 

all other thesauri it primarily contains single 

words, we take random combinations of ele-

ments in the synonym sets of individual words 

(except articles and auxiliary verbs) in the query 

phrase to construct candidates for each of the 54 

query phrases, if the thesaurus fails to provide 20 

of them directly. For instance, in “strike a bal-

ance” we randomly select “hammer” and “har-

mony” as synonyms for “strike” and “balance”, 

respectively, to form “hammer a harmony” as a 

candidate. We assume 100% precision for single 

word thesaurus entries (it is a published thesau-

rus), and for the rest we again employ 3 human 

judges.  

In addition to the thesaurus, we also compare 

our methods to two other multi-word systems: 

(1) PPDB (Ganitkevitch et al., 2013), and (2) 

Mavuno (Meltzer and Hovy, 2011).  We also 

compare to Huang & Socher’s (H&S, Huang et 

al., 2012) single prototype word embeddings. 

The results are shown in Tables 1, 2 and 3.  

6 Concluding Remarks 

We introduced a new unsupervised method for 

discovering phrasal near synonyms from large 

monolingual unannotated corpora and an evalua-

tion method that generalizes precision@k for 

ranked lists of results based on multiple human 

numerical judgments, weighing more heavily the 

top of the ranked list. Our methods are based on 

combining elements of frequentist statistics, in-

formation theory, and scalable algorithms. Our 

NeSS method significantly outperforms previous 

automated synonym finding methods on both the 

lexical and phrasal level, and outperforms the-

saurus-based methods for multi-word (phrasal) 

synonym generation, in terms of precision as 

well as recall. The evaluation demonstrates that 

scalable algorithms when combined with statis-

tics and information theory are more effective in 

capturing semantics as compared to approaches 

that are unscalable or NLP intensive.  
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