Specifying and Proving Timing Properties with TIOA Tools

Dilsun Kaynar, Nancy Lynch, Sayan Mitra
MIT Computer Science and Atrtificial Intelligence Laboratory
32 Vassar Street, Cambridge, MA 02141, USA.

{dilsun,lynch,mitras }@csail.mit.edu

Abstract cient conditions for demonstrating implementation relation-
ships. The theory of timed 1/O automata is presented in de-

This paper introduces the TIOA specification language tail in [3] and a shorter introduction to the framework ap-
for timed systems, for example, communication protocolspears in [4].
with timeouts or timing-sensitive distributed algorithms. Recently, we have embarked on a project that will de-
TIOA specifications denote Timed Input/Output Automata, velop: (a) a formal modeling language called TIOA, (b)
which are composable state machines that evolve using boththe front-end processor for TIOA, incorporating syntax
discrete transitions and continuous trajectories. This paper and static semantic checking, and providing interfaces to
also outlines a scheme for translating TIOA specifications computer-aided design tools, (c) a simulation tool allowing
to the language of the PVS theorem prover. A simple two-simulation of automata, (d) a theorem-proving link through
task race example illustrates the translation and the use ofan interface to the theorem-prover PVS [8], and (e) a suite
PVS in proving timing-dependent properties for timed I/O of examples to illustrate the use of the tools for modeling
automata. and analyzing distributed algorithms, communication pro-
tocols, and other timing-based systems.

One line of our recent work focuses on proving timing-
related properties of timed I/O automata using PVS. In our
proofs we translate the example TIOA specifications to the
input language of PVS by hand and use our PVS theory
for timed 1/0O automata in doing the proofs. Working on ex-
amples in this fashion guides us in devising a translation
scheme from TIOA to PVS, implementation of which will
provide a TIOA to PVS interface. We also aim to identify
recurring patterns in proofs so that we can build PVS strate-
gies to mechanize these proofs as much as possible.

The described project builds upon the prior work on the
IOA language [2] and TAME [1].

1. Introduction

The Timed Input/Output Automaton (TIOA) modeling
framework is a basic mathematical framework that supports
description and analysis of timed systems, for example,
communication protocols with timeouts or timing-sensitive
distributed algorithms. A timed 1/O Automaton is a kind of
nondeterministic, possibly infinite-state, state machine. The
state of a TIOA is described by a valuation of state vari-
ables that are internal to the automaton. The state of a TIOA
changes either instantaneously by the occurrencedi$-a
crete transitionwhich is labeled by a discrete action, or ac-
cording to arajectory, which is a function that describes the
evolution of the state variables over an interval of time. An 2. The TIOA Language
important feature of the TIOA modeling framework is its
support for compositional specification of timed systems. We use theTwoTaskRace automaton [9] given in Fig-
The framework defines what it means for one TIOArt® ure 2.1, to illustrate the TIOA language, its translation to
plementanother:A implementsB if the external behavior PVS and a typical simulation proof. The signature, the state
set (set of traces) ol is contained in that oB. The frame- variable declarations and transition definitions in the TIOA
work also defines notions aimulations such as forward language are similar to their counterparts in IOA [2]. Each
simulations and backward simulations, which provide suffi- variable in TIOA has an explicitly declaresdfatic typeand
an implicitly defineddynamic typeThe built-in static types
* Research supported by DARPA/AFOSR MURI Contract F49620-02- in TIOA extend those of IOA by the addition of a new

1-0325 and AFOSR Contract FA9550-04-1-0121. type calledAugmentedReal . This type is essentially the

type Real extended with a constructor for infinityxq).

The dynamic type of any variable of static typeal or 2?5?2?:?2 TwoTaskRace(al,a2,b1,b2 : Real)
A_ugmentedReaI is the set of piecewise contlnuogs fu_nc- internal increment, decrement, set
tions. The dynamic type of a variable whose type is neither o tput report
Real nor AugmentedReal , or is discrete Real , is the set
of piecewise constant functions. In other words, the value states
of such a variable remains constant throughout trajectories. count: Nat: =0, flag: Bool: =false,
Each transition definition hasmecondition specifying reported: Bool: =false, now: Real: =0,
when an action is enabled and afiect clause specifying f'rStma_'”: discrete Real: =al, _
the effects of making that transition. "?Stma'n' d!screte AugmentedReal: a2,
o . L firstset: discrete Real: =bl,
_ The construct for specifying trajector|e§ is a newl_y_o_le- lastset: discrete AugmentedReal: —b2
signed part of the TIOA language. Each trajectory definition
defines a set of trajectories; the set of all trajectories for antransitions
automaton is the concatenation closure of all of these sets. A internal increment internal decrement
trajectory belongs to the set of trajectories defined by atra- pre —flag A pre flag A
jectory definition if it satisfies the predicate in itwariant now > firstmain now > firstmain A
clause, the differential equations in teeolve clause and count > 0
the stopping condition expressed by tep whenclause. eff _ _ eff . .
The stopping condition is satisfied by a trajectory if the only ~ count: =count+l; count: =count-1;
. . . : firstmain: =now+al; firstmain: =now+al;
state in which the condition holds is the last state of that L -
. . lastmain: =now+a2 lastmain: =now+a2
trajectory. In other words, time cannot advance beyond the
point where the stopping condition becomes true. internal set output report

The automatomfwoTaskRace increments a counter un- pre —flag A pre flag A count =0
til it performs aset action. After the occurrence ofset now > firstset —reported
action, it starts decrementing the counter and reports when A now > firstmain
the counter reaches 0. The variabdsy is used to keep track eff eff
of realtime. The timing constraints are expressed using ab- flag: =true; reported: =true;
solute times: (1) The variablésstmain andlastmain firstset: =0; firstmain: =0;
lastset: =infty lastmain: =infty

record, respectively, the first time and the last time that an
action from the sefincrement ,decrement ,report } is

. s trajectories
allowed to occur. (2) The variablésstset andlastset

trajdef preset

trajdef postset

record, respectively, the first time and the last time that the invariant —flag invariant flag
actionset is allowed to occur. There are two trajectory defi- stop when stop when
nitions corresponding to the two “modes” of the automaton. now = lastmain now = lastmain
The trajectory definitiongreset andpostset specify, re- V now = lastset evolve
spectively, the trajectories of the automaton before and after ~ evolve dnow) = 1 d(now) =1

performing theset action. The only continuouReal vari-
able in this example isow, which increases at the constant
rate 1 as expressed by the equatigrow) =1 in its evolve
clause. The evolve statements in this example are very sim-

ple; however, the TIOA language permits a large class of then translate them to PVS. Owing to shortage of space
differential and algebraic equations and inequalities. we omit these specifications from this paper; all the rel-

In many timing-based systems, we are interested infind—e"_ant f||es_can be found ahttp://tioa.csalil.
ing lower and the upper bounds on the time of occur- m|t.edu/prolect/examplg—pages/cqunters oo
rence of some action. For example, fwoTaskRace we NoFe alsolthat.the notion of a §|mulat|0n rellat_lon is ex-
want to prove that the upper bound on the time of occur- plained briefly in Section 1 and in more detail in [3] and
rence of thereport action isb2 + a2 + b2(a2/a1). To [4].
show this we create an abstract automatbs which sim-
ply performs thereport action within the aforemen-
tioned time. We then prove tha@itvoTaskRace implements
Abs by showing the existence a forward simulation rela- Our approach for translating TIOA specifications to the
tion from TwoTaskRace to Abs. We specify theAbs au- PVS language uses the idea of TAME [1], which was devel-
tomaton and the forward simulation relation in TIOA and oped for translating MMT automata [5] to PVS. The PVS

Figure 2.1. TIOA code for TwoTaskRace

3. Translation to PVS

actions: DATATYPE

BEGIN
v(timeof: (fintime?)): nu?
increment: increment?
decrement: decrement?
set: set?
report: report?

END actions

states: TYPE =
[# count: nat, flag: bool,
reported: bool, firstmain: real,
lastmain: time, firstset: real,
lastset: time, now: time #]

start(s: states): bool =
s = (#count:=0,flag := FALSE,
reported := FALSEfirstmain := a1,
lastmain := as, firstset := by,
lastset := by, now := zero #)

visible(a: actions): bool =
report?(a) OrR nu?(a)

Figure 3.2. PVS Spec for TwoTaskRace

specification of a TIOA consists of two parts: (a) auxiliary
declarations, and (b) the PVS formulation of the automa-
ton. The auxiliary declarations consist of theories describ-

ing the special data structures, such as stacks, timed-queue

and their related theorems that are used in the automaton’
state but are not available in the PVS library. For example,
the AugmentedReal type used inTwoTaskRace is not a
standard PVS type and requires explicit definition. Since the
typetime included in the TAME library is identical to the
TIOA type AugmentedReal , we usetime instead of defin-
ing a new type foAugmentedReal in PVS. For a variable
of typetime, if the value oft is finite, then we denote its real
part is bydur(t). Thefintime type is a subtype dfme con-
sisting only of positive reals.

The second part of the PVS specification, which consists
of components describing the TIOA, is described below.

Actions, State, and Transition3o represent the actions of
the TIOA, we define a PVS datatype callactions. This
datatype consists of individual constructors for each action

in Figure 3.3, theenabled predicate for(delta_t) specifies
the stopping condition of the trajectory definitions. For ex-
ample, the stopping conditions on the trajectory definitions
of TwoTaskRace require time to stop whenever any dead-
line set bylastmain or lastset is reached. These stop-
ping conditions are enforced by the two conjuncts in
the precondition ofv(delta_t): now(s) + deltat < last-
main(s), andnow(s) -+ delta_t < lastset(s). The first con-
dition states thatlelta_t units of time can advance from a
given state only if the resulting timew(s) + delta_t does
not exceed theastmain(s) deadline. Time-passage is en-
abled only if none of the disjuncts in the stopping condi-
tions is violated.

Thetrans function gives the last state of a trajectory of
lengthdelta_t that results from solving the differential equa-
tions in theevolvepart of the TIOA specification. This trans-
lation scheme assumes that there exists a unique closed
form solution to the set of differential equations in the TIOA

S, : . .
Specification, and that the user can provide this solution.

sfn the TwoTaskRace automaton, for example, the constant

differential equations have a straightforward solution: for
any trajectoryr, 7(t).now = 7(0).now + t. This solution

is immediately translated in terms délta_t in the transi-

tion definition forv.

Although the trajectory definitions in this example are
simple, our translation approach also works for more com-
plex types of trajectories. For example, a set of overlapping
trajectory definitions of a TIOA are specified by multiple
time passage actions; each with its own enabling condition
and transition definition. Trajectory definitions with nonde-
terminism in theevolve clause can be specified in PVS by
adding extra parameters in the corresponding time-passage
transition definition. For example, agvolve clause with

d(now) > 0 can be modeled by a time passage action

of the automaton (see Figure 3.2). To represent the trajecw(timeof: (fintime?), k:pos_real): nu? with two parameters,

tory definitions of TIOA we use the specitine-passage
actionv. The functionvisible declares the external actions
of the automaton; it returnsrRUE for the external actions.
The third component is a type declaration for the states of
the automatorstate is defined as a PVS record with differ-
ent state components. TRart predicate defines the start

states of the automaton. The fifth and the final components

are functions defining the precondition and the effect of
each transition definition of the automaton (see Figure 3.3).

Trajectory Definitions.The trajectory definitions of the

TIOA are captured in terms of special time-passage transi-

tion definitions. ThefwoTaskRace automaton has two tra-
jectory definitions with disjoint invariants and the same
evolve clause. Each trajectory definition is determinis-

and the corresponding transition definitiar(delta_t,k): s
WITH [now := now(s) + k * delta_t].

4. Forward Simulation Proof

Using this approach of translating TIOA specifica-
tions to PVS we construct PVS theories for thiss and

the TwoTaskRace automata. Recall thatbs is the ab-
stract automaton that captures the essential timing prop-
erties of TwoTaskRace. Then we use the approach
described in [6] to express a forward simulation rela-
tion from TwoTaskRace to Abs in a separate PVS theory.
To show that the relation is indeed a forward simula-
tion, we have to show that (a) for every start state of

tic in the sense that the state that is reached at the end of &woTaskRace there is a start state ofbs that is re-
given amount of time-passage is uniquely determined. Welated to it, and (b) every action dfwoTaskRace can be

use a single transition definition in the PVS specifica-
tion to represent these two trajectory definitions. As shown

“matched by’ a sequence of actions Mibs such that if
the pre-states are related then the post states are also re-

enabled(a: actions, s: states): bool = trans(a: actions, s: states): states =

CASESa OF CASESa OF
v(delta_t): delta_t > zero A now(s) + delta_t < lastmain(s) v(delta_t): s WITH [now := now(s) + delta_t],
A now(s) + delta_t < lastset(s), increment: s WITH [count := count(s) + 1,
increment: (— flag(s)) A dur(now(s)) > firstmain(s), firstmain := dur(now(s)) + a1, lastmain := now(s) + as],
set: (— flag(s)) A dur(now(s)) > firstset(s), set: s WITH [flag := TRUE, firstset := 0, lastset := infinity],
decrement: flag(s) A count(s) > 0 decrement: s wWITH [count := count(s) — 1,
A dur(now(s)) > firstmain(s), firstmain := dur(now(s)) + a1, lastmain := now(s) + az],
report: flag(s) A count(s) = 0 A — reported(s) report: s WITH [reported := TRUE,
A dur(now(s)) > firstmain(s) firstmain := 0, lastmain := infinity]
ENDCASES ENDCASES

Figure 3.3. PVS Spec for TwoTaskRace (cont.)

lated. Finding the matching sequence of actions is usu-References

ally the key proof step. Note that in the TIOA framework, _ _

we use a separate case for time-passage steps in manual forll] M. Archer. TAME: PVS Strategies for special purpose the-
ward simulation proofs. In the PVS proofs, we deal only orem proving.Annals of Mathematics and Artificial Intelli-

with actions since we represent time-passage in an automa-__ 9ence 29(1/4), February 2001.
ton by a special time—pars)sage action P g [2] S. Garland, N. A. Lynch, J. Tauber, and M. VaziriOA

User Guide and Reference ManuaMIT Computer Sci-
The proof of this forward simulation is carried out in- ence and Atrtificial Intelligence Laboratory, Cambridge, MA,

teractively in the PVS prover using some of the special- 2003. Available athttp://theory.Ics.mit.edu/

ized strategies presented in [6]. These strategies break down tds/ioa.html

the proof into the base case and the inductive cases for [3] D- Kaynar, N. Lynch, R. Segala, and F. Vaandrager.

each action offwoTaskRace . Most of the trivial subgoals The theory of timed /O automata. Technical Report

generated at this stage are automatically discharged by QAASQLCSA/\;?;}ZZMJJ /I/‘t?lz%:?t?g ;?irtgglr];puter Science,

the PVS decision procedure. Proofs of the non-trivial sub- : ' R

. . . . tds/reflist.html
goals often rely on some simple invariant properties of the [4] D. K. Kaynar, N. A. Lynch, R. Segala, and F. Vaandrager.

TwoTaskRace automaton most of which are proved auto- Timed /0 automata: A mathematical framework for model-
matically using TAME strategies and PVS decision proce- ing and analyzing real-time system. RTSS 2003: The 24th
dures. Proving the simulation relation itself involves prov- IEEE International Real-Time Systems Symposi@an-
ing several inequalities involvingeal and time variables. cun,Mexico, December 2003.

We prove most of these inequalities by initially providing [5] M. Merritt, F. Modugno, and M. Tuttle. Time constrained au-
some guiding steps and then applying the strategies in the tomata. InJ. C. M. Baeten andJ. F. Goote, ed@®NCUR
Field [7], and the Manip [10] packages, or the PVS decision '91: 2nd International Conference of Concurrency Theory
procedures. Typical guiding steps include proving finiteness __ Volume 527, pages 408-423, 1991. _

of the variables involved in the inequality or explicitly con- [0 S: Mitraand M. Archer. Reusable PVS proof strategies for

erting an expression of tvaine to the correspondingeal proving abstraction properties of i/o automata.SITNRATE-
vering xp ! ypene p Inga GIES 2004, IJCAR Workshop on strategies in automated de-

expression. duction Cork, Ireland, July 2004.

[7] C. Mufioz and M. Mayero. Real automation in the field.
Technical Report NASA/CR-2001-211271 Interim ICASE
Report No. 39, ICASE-NASA Langley, ICASE Mail Stop
132C, NASA Langley Research Center, Hampton VA 23681-

5. Status of the TIOA Tools 5199, USA, December 2001.

[8] S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M.K. Sri-
vas. PVS: Combining specification, proof checking, and
model checking. In Rajeev Alur and Thomas A. Henzinger,
editors,Computer-Aided Verification, CAV '96umber 1102

The work presented in this paper was carried out within
the scope of a larger tool development project described in
the introduction. This project involves the integration of the in Lecture Notes in Computer Science, pages 411414, New
front-end of the language with back-end tools such as the Brunswick, NJ, July/August 1996. Spri’nger-VerIag. '
simulator and the theorem-prover PVS. Currently, the front- 191 A pnueli. Personal communication, 1988.
end of the TIOA language has been partially implemented. [10] Ben L. Di Vito. A PVS prover strategy package for common
The simulator and the TIOA to PVS translator are in their manipulations. Technical Report TM-2002-211647, NASA,
design stage. April 2002.

