
Specifying and Proving Timing Properties with TIOA Tools

Dilsun Kaynar, Nancy Lynch, Sayan Mitra∗

MIT Computer Science and Artificial Intelligence Laboratory

32 Vassar Street, Cambridge, MA 02141, USA.

{dilsun,lynch,mitras }@csail.mit.edu

Abstract

This paper introduces the TIOA specification language
for timed systems, for example, communication protocols
with timeouts or timing-sensitive distributed algorithms.
TIOA specifications denote Timed Input/Output Automata,
which are composable state machines that evolve using both
discrete transitions and continuous trajectories. This paper
also outlines a scheme for translating TIOA specifications
to the language of the PVS theorem prover. A simple two-
task race example illustrates the translation and the use of
PVS in proving timing-dependent properties for timed I/O
automata.

1. Introduction

The Timed Input/Output Automaton (TIOA) modeling
framework is a basic mathematical framework that supports
description and analysis of timed systems, for example,
communication protocols with timeouts or timing-sensitive
distributed algorithms. A timed I/O Automaton is a kind of
nondeterministic, possibly infinite-state, state machine. The
state of a TIOA is described by a valuation of state vari-
ables that are internal to the automaton. The state of a TIOA
changes either instantaneously by the occurrence of adis-
crete transition, which is labeled by a discrete action, or ac-
cording to atrajectory, which is a function that describes the
evolution of the state variables over an interval of time. An
important feature of the TIOA modeling framework is its
support for compositional specification of timed systems.
The framework defines what it means for one TIOA toim-
plementanother:A implementsB if the external behavior
set (set of traces) ofA is contained in that ofB. The frame-
work also defines notions ofsimulations, such as forward
simulations and backward simulations, which provide suffi-

∗ Research supported by DARPA/AFOSR MURI Contract F49620-02-
1-0325 and AFOSR Contract FA9550-04-1-0121.

cient conditions for demonstrating implementation relation-
ships. The theory of timed I/O automata is presented in de-
tail in [3] and a shorter introduction to the framework ap-
pears in [4].

Recently, we have embarked on a project that will de-
velop: (a) a formal modeling language called TIOA, (b)
the front-end processor for TIOA, incorporating syntax
and static semantic checking, and providing interfaces to
computer-aided design tools, (c) a simulation tool allowing
simulation of automata, (d) a theorem-proving link through
an interface to the theorem-prover PVS [8], and (e) a suite
of examples to illustrate the use of the tools for modeling
and analyzing distributed algorithms, communication pro-
tocols, and other timing-based systems.

One line of our recent work focuses on proving timing-
related properties of timed I/O automata using PVS. In our
proofs we translate the example TIOA specifications to the
input language of PVS by hand and use our PVS theory
for timed I/O automata in doing the proofs. Working on ex-
amples in this fashion guides us in devising a translation
scheme from TIOA to PVS, implementation of which will
provide a TIOA to PVS interface. We also aim to identify
recurring patterns in proofs so that we can build PVS strate-
gies to mechanize these proofs as much as possible.

The described project builds upon the prior work on the
IOA language [2] and TAME [1].

2. The TIOA Language

We use theTwoTaskRace automaton [9] given in Fig-
ure 2.1, to illustrate the TIOA language, its translation to
PVS and a typical simulation proof. The signature, the state
variable declarations and transition definitions in the TIOA
language are similar to their counterparts in IOA [2]. Each
variable in TIOA has an explicitly declaredstatic typeand
an implicitly defineddynamic type. The built-in static types
in TIOA extend those of IOA by the addition of a new
type calledAugmentedReal . This type is essentially the



type Real extended with a constructor for infinity (∞).
The dynamic type of any variable of static typeReal or
AugmentedReal is the set of piecewise continuous func-
tions. The dynamic type of a variable whose type is neither
Real nor AugmentedReal , or is discrete Real , is the set
of piecewise constant functions. In other words, the value
of such a variable remains constant throughout trajectories.

Each transition definition has aprecondition specifying
when an action is enabled and aneffect clause specifying
the effects of making that transition.

The construct for specifying trajectories is a newly de-
signed part of the TIOA language. Each trajectory definition
defines a set of trajectories; the set of all trajectories for an
automaton is the concatenation closure of all of these sets. A
trajectory belongs to the set of trajectories defined by a tra-
jectory definition if it satisfies the predicate in itsinvariant
clause, the differential equations in theevolve clause and
the stopping condition expressed by thestop whenclause.
The stopping condition is satisfied by a trajectory if the only
state in which the condition holds is the last state of that
trajectory. In other words, time cannot advance beyond the
point where the stopping condition becomes true.

The automatonTwoTaskRace increments a counter un-
til it performs aset action. After the occurrence of aset

action, it starts decrementing the counter and reports when
the counter reaches 0. The variablenow is used to keep track
of realtime. The timing constraints are expressed using ab-
solute times: (1) The variablesfirstmain andlastmain

record, respectively, the first time and the last time that an
action from the set{increment ,decrement ,report } is
allowed to occur. (2) The variablesfirstset andlastset

record, respectively, the first time and the last time that the
actionset is allowed to occur. There are two trajectory defi-
nitions corresponding to the two “modes” of the automaton.
The trajectory definitionspreset andpostset specify, re-
spectively, the trajectories of the automaton before and after
performing theset action. The only continuousReal vari-
able in this example isnow, which increases at the constant
rate 1 as expressed by the equationd(now) =1 in its evolve
clause. The evolve statements in this example are very sim-
ple; however, the TIOA language permits a large class of
differential and algebraic equations and inequalities.

In many timing-based systems, we are interested in find-
ing lower and the upper bounds on the time of occur-
rence of some action. For example, forTwoTaskRace we
want to prove that the upper bound on the time of occur-
rence of thereport action isb2 + a2 + b2(a2/a1). To
show this we create an abstract automatonAbs which sim-
ply performs thereport action within the aforemen-
tioned time. We then prove thatTwoTaskRace implements
Abs by showing the existence a forward simulation rela-
tion from TwoTaskRace to Abs. We specify theAbs au-
tomaton and the forward simulation relation in TIOA and

automaton TwoTaskRace(a1,a2,b1,b2 : Real)
s i g n a t u r e

i n t e r n a l increment, decrement, set
output report

s t a t e s
count: Nat: =0, flag: Bool: =false,
reported: Bool: =false, now: Real: =0,
firstmain: d i s c r e t e Real: =a1,
lastmain: d i s c r e t e AugmentedReal: =a2,
firstset: d i s c r e t e Real: =b1,
lastset: d i s c r e t e AugmentedReal: =b2

t r a n s i t i o n s
i n t e r n a l increment i n t e r n a l decrement
pre ¬flag ∧ pre flag ∧
now ≥ firstmain now ≥ firstmain ∧

count > 0
e f f e f f
count: =count+1; count: =count-1;
firstmain: =now+a1; firstmain: =now+a1;
lastmain: =now+a2 lastmain: =now+a2

i n t e r n a l set output report
pre ¬flag ∧ pre flag ∧ count =0
now ≥ firstset ¬reported

∧ now ≥ firstmain
e f f e f f
flag: =true; reported: =true;
firstset: =0; firstmain: =0;
lastset: =infty lastmain: =infty

t r a j e c t o r i e s
t r a j d e f preset t r a j d e f postset

i n v a r i a n t ¬flag i n v a r i a n t flag
s top when s top when
now = lastmain now = lastmain
∨ now = lastset evo l ve

evo l ve d(now) = 1 d(now) = 1

Figure 2.1. TIOA code for TwoTaskRace

then translate them to PVS. Owing to shortage of space
we omit these specifications from this paper; all the rel-
evant files can be found athttp://tioa.csail.
mit.edu/project/example-pages/counters .
Note also that the notion of a simulation relation is ex-
plained briefly in Section 1 and in more detail in [3] and
[4].

3. Translation to PVS

Our approach for translating TIOA specifications to the
PVS language uses the idea of TAME [1], which was devel-
oped for translating MMT automata [5] to PVS. The PVS



actions: DATATYPE

BEGIN

ν(timeof: (fintime?)): nu?
increment: increment?
decrement: decrement?
set: set?
report: report?

END actions

visible(a: actions): bool =

report?(a) OR nu?(a)

states: TYPE =

[# count: nat, flag: bool,
reported: bool, firstmain: real,
lastmain: time, firstset: real,
lastset: time, now: time #]

start(s: states): bool =

s = (# count := 0,flag := FALSE,

reported := FALSE,firstmain := a1,

lastmain := a2, firstset := b1,

lastset := b2, now := zero #)

Figure 3.2. PVS Spec for TwoTaskRace

specification of a TIOA consists of two parts: (a) auxiliary
declarations, and (b) the PVS formulation of the automa-
ton. The auxiliary declarations consist of theories describ-
ing the special data structures, such as stacks, timed-queues,
and their related theorems that are used in the automaton’s
state but are not available in the PVS library. For example,
the AugmentedReal type used inTwoTaskRace is not a
standard PVS type and requires explicit definition. Since the
type time included in the TAME library is identical to the
TIOA type AugmentedReal , we usetime instead of defin-
ing a new type forAugmentedReal in PVS. For a variablet
of typetime, if the value oft is finite, then we denote its real
part is bydur(t). Thefintime type is a subtype oftime con-
sisting only of positive reals.

The second part of the PVS specification, which consists
of components describing the TIOA, is described below.

Actions, State, and Transitions.To represent the actions of
the TIOA, we define a PVS datatype calledactions. This
datatype consists of individual constructors for each action
of the automaton (see Figure 3.2). To represent the trajec-
tory definitions of TIOA we use the specialtime-passage
actionν. The functionvisible declares the external actions
of the automaton; it returnsTRUE for the external actions.
The third component is a type declaration for the states of
the automaton;state is defined as a PVS record with differ-
ent state components. Thestart predicate defines the start
states of the automaton. The fifth and the final components
are functions defining the precondition and the effect of
each transition definition of the automaton (see Figure 3.3).

Trajectory Definitions.The trajectory definitions of the
TIOA are captured in terms of special time-passage transi-
tion definitions. TheTwoTaskRace automaton has two tra-
jectory definitions with disjoint invariants and the same
evolve clause. Each trajectory definition is determinis-
tic in the sense that the state that is reached at the end of a
given amount of time-passage is uniquely determined. We
use a single transition definitionν in the PVS specifica-
tion to represent these two trajectory definitions. As shown

in Figure 3.3, theenabled predicate forν(delta t) specifies
the stopping condition of the trajectory definitions. For ex-
ample, the stopping conditions on the trajectory definitions
of TwoTaskRace require time to stop whenever any dead-
line set bylastmain or lastset is reached. These stop-
ping conditions are enforced by the two conjuncts in
the precondition ofν(delta t): now(s) + delta t ≤ last-
main(s), andnow(s) + delta t ≤ lastset(s). The first con-
dition states thatdelta t units of time can advance from a
given state only if the resulting timenow(s) + delta t does
not exceed thelastmain(s) deadline. Time-passage is en-
abled only if none of the disjuncts in the stopping condi-
tions is violated.

The trans function gives the last state of a trajectory of
lengthdelta t that results from solving the differential equa-
tions in theevolvepart of the TIOA specification. This trans-
lation scheme assumes that there exists a unique closed
form solution to the set of differential equations in the TIOA
specification, and that the user can provide this solution.
In theTwoTaskRace automaton, for example, the constant
differential equations have a straightforward solution: for
any trajectoryτ , τ(t).now = τ(0).now + t. This solution
is immediately translated in terms ofdelta t in the transi-
tion definition forν.

Although the trajectory definitions in this example are
simple, our translation approach also works for more com-
plex types of trajectories. For example, a set of overlapping
trajectory definitions of a TIOA are specified by multiple
time passage actions; each with its own enabling condition
and transition definition. Trajectory definitions with nonde-
terminism in theevolveclause can be specified in PVS by
adding extra parameters in the corresponding time-passage
transition definition. For example, anevolve clause with
d(now) > 0 can be modeled by a time passage action

ν(timeof: (fintime?), k:pos real): nu? with two parameters,
and the corresponding transition definition:ν(delta t,k): s
WITH [now := now(s) + k ∗ delta t].

4. Forward Simulation Proof

Using this approach of translating TIOA specifica-
tions to PVS we construct PVS theories for theAbs and
the TwoTaskRace automata. Recall thatAbs is the ab-
stract automaton that captures the essential timing prop-
erties of TwoTaskRace . Then we use the approach
described in [6] to express a forward simulation rela-
tion from TwoTaskRace to Abs in a separate PVS theory.
To show that the relation is indeed a forward simula-
tion, we have to show that (a) for every start state of
TwoTaskRace there is a start state ofAbs that is re-
lated to it, and (b) every action ofTwoTaskRace can be
“matched by” a sequence of actions ofAbs such that if
the pre-states are related then the post states are also re-



enabled(a: actions, s: states): bool =

CASESa OF

ν(delta t): delta t > zero ∧ now(s) + delta t≤ lastmain(s)

∧ now(s) + delta t≤ lastset(s),

increment: (¬ flag(s)) ∧ dur(now(s))≥ firstmain(s),

set: (¬ flag(s)) ∧ dur(now(s))≥ firstset(s),

decrement: flag(s) ∧ count(s) > 0

∧ dur(now(s))≥ firstmain(s),

report: flag(s) ∧ count(s) = 0 ∧ ¬ reported(s)

∧ dur(now(s))≥ firstmain(s)

ENDCASES

trans(a: actions, s: states): states =

CASESa OF

ν(delta t): s WITH [now := now(s) + delta t],
increment: s WITH [count := count(s) + 1,

firstmain := dur(now(s)) + a1, lastmain := now(s) + a2],

set: s WITH [flag := TRUE, firstset := 0, lastset := infinity],

decrement: s WITH [count := count(s)− 1,

firstmain := dur(now(s)) + a1, lastmain := now(s) + a2],

report: s WITH [reported := TRUE,

firstmain := 0, lastmain := infinity]

ENDCASES

Figure 3.3. PVS Spec for TwoTaskRace (cont.)

lated. Finding the matching sequence of actions is usu-
ally the key proof step. Note that in the TIOA framework,
we use a separate case for time-passage steps in manual for-
ward simulation proofs. In the PVS proofs, we deal only
with actions since we represent time-passage in an automa-
ton by a special time-passage action.

The proof of this forward simulation is carried out in-
teractively in the PVS prover using some of the special-
ized strategies presented in [6]. These strategies break down
the proof into the base case and the inductive cases for
each action ofTwoTaskRace . Most of the trivial subgoals
generated at this stage are automatically discharged by
the PVS decision procedure. Proofs of the non-trivial sub-
goals often rely on some simple invariant properties of the
TwoTaskRace automaton most of which are proved auto-
matically using TAME strategies and PVS decision proce-
dures. Proving the simulation relation itself involves prov-
ing several inequalities involvingreal and time variables.
We prove most of these inequalities by initially providing
some guiding steps and then applying the strategies in the
Field [7], and the Manip [10] packages, or the PVS decision
procedures. Typical guiding steps include proving finiteness
of the variables involved in the inequality or explicitly con-
verting an expression of typetime to the correspondingreal
expression.

5. Status of the TIOA Tools

The work presented in this paper was carried out within
the scope of a larger tool development project described in
the introduction. This project involves the integration of the
front-end of the language with back-end tools such as the
simulator and the theorem-prover PVS. Currently, the front-
end of the TIOA language has been partially implemented.
The simulator and the TIOA to PVS translator are in their
design stage.

References

[1] M. Archer. TAME: PVS Strategies for special purpose the-
orem proving.Annals of Mathematics and Artificial Intelli-
gence, 29(1/4), February 2001.

[2] S. Garland, N. A. Lynch, J. Tauber, and M. Vaziri.IOA
User Guide and Reference Manual. MIT Computer Sci-
ence and Artificial Intelligence Laboratory, Cambridge, MA,
2003. Available athttp://theory.lcs.mit.edu/
tds/ioa.html .

[3] D. Kaynar, N. Lynch, R. Segala, and F. Vaandrager.
The theory of timed I/O automata. Technical Report
MIT/LCS/TR-917a, MIT Laboratory for Computer Science,
2004. Available athttp://theory.lcs.mit.edu/
tds/reflist.html .

[4] D. K. Kaynar, N. A. Lynch, R. Segala, and F. Vaandrager.
Timed I/O automata: A mathematical framework for model-
ing and analyzing real-time system. InRTSS 2003: The 24th
IEEE International Real-Time Systems Symposium, Can-
cun,Mexico, December 2003.

[5] M. Merritt, F. Modugno, and M. Tuttle. Time constrained au-
tomata. In J. C. M. Baeten andJ. F. Goote, editor,CONCUR
’91: 2nd International Conference of Concurrency Theory,
volume 527, pages 408–423, 1991.

[6] S. Mitra and M. Archer. Reusable PVS proof strategies for
proving abstraction properties of i/o automata. InSTRATE-
GIES 2004, IJCAR Workshop on strategies in automated de-
duction, Cork, Ireland, July 2004.

[7] C. Muñoz and M. Mayero. Real automation in the field.
Technical Report NASA/CR-2001-211271 Interim ICASE
Report No. 39, ICASE-NASA Langley, ICASE Mail Stop
132C, NASA Langley Research Center, Hampton VA 23681-
2199, USA, December 2001.

[8] S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M.K. Sri-
vas. PVS: Combining specification, proof checking, and
model checking. In Rajeev Alur and Thomas A. Henzinger,
editors,Computer-Aided Verification, CAV ’96, number 1102
in Lecture Notes in Computer Science, pages 411–414, New
Brunswick, NJ, July/August 1996. Springer-Verlag.

[9] A. Pnueli. Personal communication, 1988.
[10] Ben L. Di Vito. A PVS prover strategy package for common

manipulations. Technical Report TM-2002-211647, NASA,
April 2002.


