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Abstract

During the last decade, research in the field of Spoken Dialogue
Systems (SDS) has experienced increasing growth. However,
the design and optimization of SDS is not only about combin-
ing speech and language processing systems such as Automatic
Speech Recognition (ASR), parsers, Natural Language Gener-
ation (NLG), and Text-to-Speech (TTS) synthesis systems. It
also requires the development of dialogue strategies taking at
least into account the performances of these subsystems (and
others), the nature of the task (e.g. form filling, tutoring, robot
control, or database search/browsing), and the user’s behaviour
(e.g. cooperativeness, expertise). Due to the great variability
of these factors, reuse of previous hand-crafted designs is also
made very difficult. For these reasons, statistical machine learn-
ing (ML) methods applied to automatic SDS optimization have
been a leading research area for the last few years. In this paper,
we provide a short review of the field and of recent advances.

Index Terms: Spoken Dialogue Systems, Machine Learning

1. The promise of ML techniques
Levin, Pieraccini, and Eckert [1] were the first researchers to
model human-machine dialogue as a Markov Decision Process
(MDP), thus making development of spoken dialogue systems
amenable to machine learning approaches. Ten years later, au-
tomatic learning of optimal dialogue strategies is now a lead-
ing domain of research, with several recent advances being
driven by EC funding (see e.g. the TALK project www.talk-
project.org). Among machine learning techniques for spoken
dialogue strategy optimization, reinforcement learning [2] us-
ing Markov Decision Processes (MDPs) [1, 3, 4, 5, 6, 7] and
Partially Observable MDP (POMDPs) [8, 9, 10] has become a
particular focus.

Why is this? Statistical computational learning approaches
offer several key potential advantages over the standard rule-
based hand-coding approach to dialogue systems development:

• data-driven development cycle

• provably optimal action policies

• a precise mathematical model for action selection

• possibilities for generalization to unseen states

• reduced development and deployment costs for industry.

However, it is worth noting that several aspects of the MDP
approach have been questioned, e.g. [11].

2. Problems and approaches
2.1. Tractability, and dimensionality reduction methods

One of the most pressing issues for learning approaches is the
issue of tractable learning with large state-action spaces [2].
Many early approaches to policy learning for dialogue systems
used small state spaces and action sets, and concentrated on
only limited policy learning experiments (for example, type of
confirmation, or type of initiative [12].) In recent years, how-
ever, resarchers have started to use a variety of dimensionality
reduction methods, amongst them Linear Function Approxima-
tion [7], Hierarchical RL [13], and Summary POMDPs [14].
Use of these methods has allowed researchers to learn policies
for complete dialogue action sets (i.e. all possible dialogue acts
available to the system), often using complex state representa-
tions (e.g. dialogue history in addition to filled/confirmed slots)
rather than limited action choices [7]. State generalization tech-
niques also allow previously unseen dialogue situations to be
dealt with robustly.

2.2. Corpora and user simulations

One critical concern for such data-hungry learning approaches
is the development of appropriate dialogue corpora for train-
ing and testing. The COMMUNICATOR dataset [15] is the
largest available corpus of human-machine dialogues, and has
been further annotated with dialogue contexts [16]. This cor-
pus has been extensively used for training and testing dialogue
managers [7] and user simulations [17]. However useful it has
been, COMMUNICATOR is restricted to information seeking
dialogues (in the flight booking domain) for a small number of
user-provided constraints (e.g. destination city, departure date),
and the original annotations are somewhat lacking in consis-
tency. Thus, new data collections, focussing on different as-
pects of dialogue and different genres (e.g. tutorial dialogue)
are a top priority for the research community as a whole [18]. It
is vital that newly collected corpora include reward annotations
to allow reinforcement techniques.

Even when large data sets are available, in exploratory
learning of dialogue strategies it is rarely the case that enough
training data is available to sufficiently explore the vast space of
possible dialogue states and strategies, and the best strategy may
often not even be present in a given dataset. A promising ap-
proach is to use existing (small) corpora to train stochastic mod-
els for simulating user behavior, i.e. the way users interact with
the system in order to accomplish their goals. Using real users
would require much more time and effort – for example in cur-
rent RL work tens of thousands of dialogues are often required
for training. For these reasons dialogue simulation is often re-

INTERSPEECH 2007

August 27-31, Antwerp, Belgium2685



quired to expand the existing dataset and human-machine spo-
ken dialogue stochastic modelling and simulation has become a
lively research field in its own right [3, 4, 5, 19, 20, 21, 22].

The validity of the assumption that performance in a sim-
ulated dialogue is an accurate indication of how the system
would perform with real users is still an open research question
(though see [23]) and reliable objective metrics for the evalua-
tion of user simulations are a matter of debate [22, 24, 25, 26].

3. Main research areas - State of the Art
3.1. Policy learning with MDPs

In the MDP formalism, a discrete-time stochastic system inter-
acting with its environment through actions is described by a
finite or infinite number of states {si} in which a given num-
ber of actions {aj} can be performed. Each state-action pair
is associated with a transition probability T a

ss′ : the probability
of stepping from state s at time t to state s′ at time t + 1 af-
ter having performed action a when in state s. This transition
is also associated with a reinforcement signal (or reward) rt+1

describing how good the result of action a was when performed
in state s. If we denote the expected immediate reward by Ra

ss′ ,
the couple {T ,R} defines the dynamics of the system.

To control a system described as an MDP, one then needs
a strategy or policy π mapping all states to actions: π(s) =
P (a|s) (or π(s) = a if the strategy is deterministic). In this
framework, a RL agent is a system aiming at optimally map-
ping states to actions, i.e. finding the best strategy π∗ so as to
maximize an overall reward R which is a function (most often
a weighted sum) of all the immediate rewards. If the transition
probabilities are known, an analytical solution can be computed
by dynamic programming, otherwise the system has to learn
the optimal strategy by a trial-and-error process [2]. In the most
challenging cases, actions may affect not only the immediate
reward, but also the next situation and, through that, all subse-
quent rewards. Trial-and-error search and delayed rewards are
the two main features of RL.

In this framework, task-oriented human-machine dialogue
can be modelled as a turn-taking process in which a human user
and a Dialogue Manager (DM) exchange information through
different channels, processing speech inputs and outputs (ASR,
TTS ...). In the specific case of dialogue management policy
learning, it is the DM strategy that has to be optimized and the
DM will therefore be the learning agent. The learning envi-
ronment includes everything but the DM: the human user, the
communication channels (ASR, TTS ...), and any external infor-
mation source (database, sensors etc.). In this context, at each
dialogue turn t the DM has to choose an action at according to
its current policy πt and its internal state st, so as to attempt
to complete the task it has been designed for. The dialogue
state1 is often built in a manner which reflects the amount of in-
formation received from the environment during the t previous
turns (e.g. the filled and confirmed information “slots” such as
departure date). Several dialogue action types have to be intro-
duced, such as greetings, constraining questions, confirmations,
data presentation etc. Performing these results in a response
from the DM’s environment (real user speech input, simulated
user dialogue acts, returned database records etc.), considered
as an observation ot, which leads to a DM internal state update

1Note that a common misunderstanding is that the Markov Prop-
erty constrains models of dialogue state to exclude the dialogue history.
However, it is possible to use variables in the current state which repre-
sent features of the dialogue history [27, 7, 6].

(st+1). In the MDP paradigm, it is assumed that a direct map-
ping between observations and states can be found (see section
3.2 for a discussion of partial observability).

In the MDP formalism, a reinforcement signal rt+1 is also
required. In [1], the reinforcement signal was intuitively set to a
weighted sum of objective and subjective parameters linked to
the task. In [3] it was proposed to use actions’ contributions to
the user’s satisfaction. Although this seems very subjective, the
PARADISE study has shown that such a reward could be ap-
proximated by a linear combination of objective measures such
as the duration of the dialogue, the ASR performances, and task
completion [28]. Within this framework, it has been shown that
effective dialogue policies can be learned [1, 3, 4, 7, 5, 6, 23]
rather than crafted “by-hand”.

3.2. Policy learning with POMDPs

MDPs provide a principled framework for Reinforcement
Learning, but do not allow for uncertainty about observations
of the environment. In dialogue systems, uncertainty is undeni-
ably present, even if speech recognition is perfect. As well as
the multiple possible speech recognition hypotheses that should
be taken into account, there are semantic and pragmatic ambi-
guities also leading to uncertainties about the user’s goals and
intentions [29, 14] which mean that a partially observable view
of dialogue context is much more accurate than the standard
MDP model. In POMDPs, the dialogue policy is based not on
the context at time t, but on the distribution over possible con-
texts at time t. The optimal system dialogue act to perform at
time t then automatically takes account of the uncertainty in
the context. The use of POMDPs in dialogue systems has so
far been limited [14, 30, 31, 10], since the inference algorithms
needed to choose a system action are computationally complex
[29]. However, this is an extremely attractive model, offering
graceful error handling and recovery, if the the tractability is-
sues can be overcome.

3.3. User simulation techniques

As discussed previously, the small amount of data available for
learning and testing dialogue strategies has led to a new field
of research: human-machine stochastic dialogue modelling and
simulation [19, 3, 4, 20, 21]. Among state-of-the-art simulation
methods, one can distinguish between state-transition or global
methods, like those proposed in [3], and methods based on mod-
ular simulation environments as described in [19, 4, 20, 21].
The first type of method is very task-dependent, as is the mixed
method proposed in [4]. The second type of method integrates
models of each component of a SDS including the speech pro-
cessing systems but also the user. User modelling for spoken
interaction is currently an important domain of investigation
within the broad field of research on SDS and statistical meth-
ods are of particular interest.

Most of the simulation methods suppose that the interac-
tion can be modelled at the intention level. From this, several
statistical methods manipulating intentions to generate user be-
haviors have been proposed in the literature. First, the N-Gram
model proposed in [32] assumes that the next user’s utterance
ut can be inferred from the history ht of the interaction us-
ing a set of conditional probabilities P (ut|ht). Since a model
conditioning the probability on all possible histories was im-
possible to train given the available amount of data, a bigram
was used and only the previous system sentence is taken into
account (P (ut|syst−1)). In [19], the same authors propose to
use a set of general conditional probabilities to generate more
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task-independent user behaviors. However, the one-step mem-
ory of the model makes it somewhat inconsistent. A similar
method is used in [33, 34], but the authors propose to add a
memory to the user so as to ensure that generated dialogues
are coherent according to the user’s goal and knowledge about
the task. The N-gram idea has also been investigated further in
[22] where longer histories are studied as well as richer dialogue
state representations. In [4], a graph-based method is proposed
combining rule-based decisions to model goal-directed user be-
havior while a stochastic model is used to generate the conver-
sational behavior. Bayesian networks have also been proposed
in [5, 35]. Recent work has also led to approaches based on
Hidden Markov Models [36].

A large number of different approaches have also con-
tributed to the development of user model evaluation methods
[37, 24, 26]. This is very much an open domain of research.

3.4. Context-sensitive speech recognition

A related area of research is that on exploiting high-level con-
textual features in speech recognition, e.g. [38]. For exam-
ple, a 60% reduction in the ASR error rate has been achieved
for a complex task-based dialogue system using memory-based
learning and dialogue context [39]. This research shows that a
combination of low-level and context-based features is critical
in improving dialogue system performance.

In general, contextual feedback can be accomplished by al-
lowing higher level dialogue processing modules to select from
lists of hypotheses provided by the lower level modules. This is
sometimes called a reranking approach [40]. The effect is that
the highest ranking hypotheses after reranking are those which
are consistent with both the constraints from the lower levels
and plausibility constraints from higher level modules.

3.5. Trainable Natural Language Generation

“Trainable” Natural Language Generation (NLG) [41, 42] is a
recent approach where automatic techniques are used to train
NLG modules, or to adapt them to specific domains and/or types
of user. In SPaRKy [42], for example, candidate sentence plans
are generated and then ranked. This process outputs a set of
text-plan trees, which consist of speech acts to be communi-
cated, and the rhetorical relations between them, which are then
sent to a surface realizer. The candidate sentence plans are gen-
erated by an ordered set of clause-combining operations, while
the stochastic part of the process is limited to training the sen-
tence plan ranker, which uses rules learned from a labelled set
of examples, using the RankBoost algorithm.

4. Conclusions
Theoretical and technological advances in several fields of
human-machine spoken communication have made possible the
recent investigation of spoken dialogue systems as statistical
systems, using computational learning techniques. Although
the necessary data to train a wide range of systems is not yet
available, we have described several successful approaches to
dialogue policy learning, and simulation techniques that will al-
low the expansion of existing small datasets to many unseen
situations. Current results in the field of dialogue systems opti-
mization using data-driven methods are very promising. How-
ever, this is still a relatively new and open research area, provid-
ing many opportunities for new theoretical advances and appli-
cations. The area is also generating new research topics, such as
evaluation methods for user simulations. Further related areas

are statistical parsing for speech and statistical semantic inter-
pretation, see e.g. [43], and their relation to dialogue context
models.
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