
The Byzantine Generals Problem
Leslie Lamport, Robert Shostak, and Marshall Pease

ACM TOPLAS 1982

Practical Byzantine Fault Tolerance
Miguel Castro and Barbara Liskov

OSDI 1999

A definition
• Byzantine (www.m-w.com):

1: of, relating to, or characteristic of the ancient city of
Byzantium
 …
 4b: intricately involved : labyrinthine <rules of Byzantine
complexity>

• Lamport’s reason:
“I have long felt that, because it was posed as a cute
problem about philosophers seated around a table,
Dijkstra's dining philosopher's problem received much
more attention than it deserves.”
(http://research.microsoft.com/users/lamport/pubs/pubs.html#byz)

Byzantine Generals Problem

• Concerned with (binary) atomic broadcast
– All correct nodes receive same value
– If broadcaster correct, correct nodes receive

broadcasted value

• Can use broadcast to build consensus
protocols (aka, agreement)
– Consensus: think Byzantine fault-tolerant

(BFT) Paxos

Synchronous Asynchronous

Fail-stop Byzantine

Synchronous, Byzantine world

Cool note
Example Byzantine fault-tolerant system:
! Seawolf submarine’s control system

Sims, J. T. 1997. Redundancy Management Software Services for Seawolf
Ship Control System. In Proceedings of the 27th international Symposium on
Fault-Tolerant Computing (FTCS '97) (June 25 - 27, 1997). FTCS. IEEE
Computer Society, Washington, DC, 390.

But it remains to be seen if commodity
distributed systems are willing to pay to
have so many replicas in a system

Practical Byzantine Fault Tolerance:
Asynchronous, Byzantine

Synchronous Asynchronous

Fail-stop Byzantine

Practical Byzantine Fault Tolerance

•Why async BFT? BFT:
– Malicious attacks, software errors
– Need N-version programming?
– Faulty client can write garbage data, but can’t make

system inconsistent (violate operational semantics)
•Why async?

– Faulty network can violate timing assumptions
– But can also prevent liveness

[For different liveness properties, see, e.g., Cachin, C., Kursawe, K., and Shoup, V. 2000. Random oracles
in constantipole: practical asynchronous Byzantine agreement using cryptography (extended abstract). In
Proceedings of the Nineteenth Annual ACM Symposium on Principles of Distributed Computing (Portland,
Oregon, United States, July 16 - 19, 2000). PODC '00. ACM, New York, NY, 123-132.]

Distributed systems
• Async BFT consensus: Need 3f+1 nodes

– Sketch of proof: Divide 3f nodes into three groups of f, left,
middle, right, where middle f are faulty. When left+middle talk,
they must reach consensus (right may be crashed). Same for
right+middle. Faulty middle can steer partitions to different
values!

[See Bracha, G. and Toueg, S. 1985. Asynchronous consensus and broadcast protocols.
J. ACM 32, 4 (Oct. 1985), 824-840.]

• FLP impossibility: Async consensus may not terminate
– Sketch of proof: System starts in “bivalent” state (may decide 0

or 1). At some point, the system is one message away from
deciding on 0 or 1. If that message is delayed, another message
may move the system away from deciding.

– Holds even when servers can only crash (not Byzantine)!
– Hence, protocol cannot always be live (but there exist

randomized BFT variants that are probably live)
[See Fischer, M. J., Lynch, N. A., and Paterson, M. S. 1985. Impossibility of distributed
consensus with one faulty process. J. ACM 32, 2 (Apr. 1985), 374-382.]

Byzantine fault tolerance

Jinyang Li
With PBFT slides from Liskov

What we’ve learnt so far:
tolerate fail-stop failures

• Traditional RSM tolerates benign failures
– Node crashes
– Network partitions

• A RSM w/ 2f+1 replicas can tolerate f
simultaneous crashes

Byzantine faults

• Nodes fail arbitrarily
– Failed node performs incorrect computation
– Failed nodes collude

• Causes: attacks, software/hardware errors
• Examples:

– Client asks bank to deposit $100, a Byzantine
bank server substracts $100 instead.

– Client asks file system to store f1=“aaa”. A
Byzantine server returns f1=“bbb” to clients.

Strawman defense

• Clients sign inputs.
• Clients verify computation based on signed inputs.
• Example: C stores signed file f1=“aaa” with server. C

verifies that returned f1 is signed correctly.
• Problems:

– Byzantine node can return stale/correct computation
• E.g. Client stores signed f1=“aaa” and later stores signed f1=“bbb”,

a Byzantine node can always return f1=“aaa”.

– Inefficient: clients have to perform computations!

PBFT ideas
• PBFT, “Practical Byzantine Fault Tolerance”, M.

Castro and B. Liskov, SOSP 1999
• Replicate service across many nodes

– Assumption: only a small fraction of nodes are Byzantine
– Rely on a super-majority of votes to decide on correct

computation.
• PBFT property: tolerates <=f failures using a RSM

with 3f+1 replicas

Why doesn’t traditional RSM
work with Byzantine nodes?

• Cannot rely on the primary to assign seqno
– Malicious primary can assign the same seqno to

different requests!
• Cannot use Paxos for view change

– Paxos uses a majority accept-quorum to tolerate f
benign faults out of 2f+1 nodes

– Does the intersection of two quorums always
contain one honest node?

– Bad node tells different things to different quorums!
• E.g. tell N1 accept=val1 and tell N2 accept=val2

Paxos under Byzantine faults

Prepare vid=1, myn=N0:1
OK val=null

N0 N1

N2

nh=N0:1nh=N0:1

Prepare vid=1, myn=N0:1
OK val=null

Paxos under Byzantine faults

accept vid=1, myn=N0:1, val=xyz
OK

N0 N1

N2

nh=N0:1nh=N0:1

X
N0 decides on

Vid1=xyz

Paxos under Byzantine faults

prepare vid=1, myn=N1:1, val=abc
OK val=null

N0 N1

N2

nh=N0:1nh=N0:1

X
N0 decides on

Vid1=xyz

Paxos under Byzantine faults

accept vid=1, myn=N1:1, val=abc
OK

N0 N1

N2

nh=N1:1nh=N0:1

X

N1 decides on
Vid1=abc

N0 decides on
Vid1=xyz

Agreement
conflict!

PBFT main ideas

• Static configuration (same 3f+1 nodes)
• To deal with malicious primary

– Use a 3-phase protocol to agree on
sequence number

• To deal with loss of agreement
– Use a bigger quorum (2f+1 out of 3f+1

nodes)
• Need to authenticate communications

1. State: …A
2. State: …A

3. State: …A
4. State: …

BFT requires a 2f+1 quorum
out of 3f+1 nodes

Servers

Clients

writ
e A

write A
X

w
ri

te
 Aw

rite A

For liveness, the quorum size must be at most N - f

…A …A B …B …B

BFT Quorums

write B
w

rit
e

B
X

w
ri

te
 B

write B

Servers

Clients

1. State: 2. State: 3. State: 4. State:

For correctness, any two quorums must intersect at least
one honest node: (N-f) + (N-f) - N >= f+1 N >= 3f+1

PBFT Strategy
• Primary runs the protocol in the normal

case
• Replicas watch the primary and do a

view change if it fails

Replica state
• A replica id i (between 0 and N-1)

– Replica 0, replica 1, …
• A view number v#, initially 0
• Primary is the replica with id

i = v# mod N
• A log of <op, seq#, status> entries

– Status = pre-prepared or prepared or
committed

Normal Case
• Client sends request to primary

– or to all

Normal Case
• Primary sends pre-prepare message to all
• Pre-prepare contains <v#,seq#,op>

– Records operation in log as pre-prepared

– Keep in mind that primary might be malicious
• Send different seq# for the same op to different replicas
• Use a duplicate seq# for op

Normal Case
• Replicas check the pre-prepare and if it is ok:

– Record operation in log as pre-prepared
– Send prepare messages to all
– Prepare contains <i,v#,seq#,op>

• All to all communication

Normal Case:
• Replicas wait for 2f+1 matching prepares

– Record operation in log as prepared
– Send commit message to all
– Commit contains <i,v#,seq#,op>

• What does this stage achieve:
– All honest nodes that are prepared prepare the

same value

Normal Case:

• Replicas wait for 2f+1 matching
commits
– Record operation in log as committed
– Execute the operation
– Send result to the client

Normal Case

• Client waits for f+1 matching replies

BFT

Client

Primary

Replica 2

Replica 3

Replica 4

Request Pre-Prepare Prepare Commit Reply

View Change
• Replicas watch the primary
• Request a view change

• Commit point: when 2f+1 replicas have
prepared

View Change
• Replicas watch the primary
• Request a view change

– send a do-viewchange request to all
– new primary requires 2f+1 requests
– sends new-view with this certificate

• Rest is similar

Additional Issues
• State transfer
• Checkpoints (garbage collection of the

log)
• Selection of the primary
• Timing of view changes

Possible improvements

• Lower latency for writes (4 messages)
– Replicas respond at prepare
– Client waits for 2f+1 matching responses

• Fast reads (one round trip)
– Client sends to all; they respond

immediately
– Client waits for 2f+1 matching responses

Practical limitations of BFTs

• Expensive
• Protection is achieved only when <= f

nodes fail
– Is 1 node more or less secure than 4 nodes?

• Does not prevent many types of attacks:
– Turn a machine into a botnet node
– Steal SSNs from servers

