
 
 

  

Abstract —Patient monitoring via video and physiological 
data recording can now be performed outside hospitals. This 
procedure, usually performed in a prolonged manner, generates 
a considerable amount of data, which calls for efficient ways for 
archiving and transmission. In this work, we present a 
specialized system to code the video and the physiological data 
recorded from a patient, aiming at a reduced bandwidth 
requirement compared to the conventional methods. We’ve 
developed an object-based approach to coding the monitoring 
video. By applying two change detection methods, we 
decompose a video frame into three video object planes (VOPs) 
representing the background, the stationary foreground and the 
moving foreground. These VOPs are coded at different frame 
rates, leading to a reduced overall bit rate. For coding the 
physiological data (using electroencephalogram, i.e. EEG, as an 
example), we present an effective solution by using a 
combination of the lifting scheme and the SPIHT algorithm. 
This approach is featured with a wavelet-quantization 
algorithm that enables a scalable transmission. The feasibility of 
this proposed system is demonstrated by our experimental 
results. 

1. INTRODUCTION 
Physiological data recording has been utilized for decades 

in hospitals for the purpose of patient monitoring. Some 
monitoring processes (e.g. epileptic patient monitoring) are 
accompanied by video recording to provide a cross reference 
for diagnostic evaluations. Recently, thanks to the 
development of telemedicine technology, these processes can 
be performed outside hospitals for home care applications.  
Usually carried out in an extensive amount of time (hours and 
days), these processes produce a large-scaled data set. There 
exists a demand for a coding system that is capable of highly 
efficient transmission and archiving of the monitoring data 
(including both the video and the physiological data). The 
existing systems, such as Bio-Logic and the Grass-Telefactor 
video/EEG systems are mostly based on general-purposed 
coding standards. These systems are not optimized for the 
need of coding the prolonged recordings and may not suit the 
home care applications, where the storage and transmission 
bandwidth are both very limited. For these reasons, we 
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develop a video and physiological coding system specialized 
for the patient monitoring purposes.  

In video monitoring, the features of the video should be 
specifically considered in the coding scheme. These features 
include, 1) hardly any global motion present in the video, 2) 
recording environment usually remaining unchanged, and 3) 
for most of the time, only small movements are present, such 
as those caused by body parts. Higher coding efficiency is 
expected if these features are utilized specifically in the 
design of a compression engine. For instance, the background 
regions should be coded with much relaxed quality (both 
spatial and temporal), in contrast to the foreground (i.e. the 
patient), especially the moving part of the foreground.  In the 
light of MPEG-4, these considerations can be formed into an 
object-based coding scheme, which decomposes a frame of a 
monitoring video into three video object planes (VOPs), one 
representing the recording environment (denoted by VOP1), 
one representing the stationary foreground (VOP2), and the 
other the moving foreground (VOP3). These VOPs are coded 
at different frame rates, with VOP3 the highest and VOP1 the 
lowest. Since VOP3 is usually small in size (in pixels), the 
overall bit rate can be reduced, while an essential quality on 
the foreground is preserved. 

For the coding of the physiological data, we adopt a 
device-adaptive strategy that allows a scalable transmission. 
This strategy was motivated by a fact that a considerable 
redundancy with respect to the data resolution may exist in 
the transmission. In most diagnostic evaluations, the 
physiological waveforms are visually examined.  The display 
resolution of these waveforms, however, is often lower than 
that of the data. This problem is particularly significant when 
portable devices, such as PDA or cell phone, are utilized to 
display the waveforms. Therefore, in many cases, a scalable 
transmission that suits the terminal device is desirable. We 
combine the SPIHT codec, the lifting scheme and wavelet 
quantization to tackle this problem. In this approach, the 
physiological data are transformed into wavelet coefficients 
by lifting scheme. These coefficients are quantized so that the 
resolution of the reconstructed data matches the remote 
display terminal.  

We present a preliminary system that implements the 
above coding schemes. The experimental results on 
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real-world data suggested a considerable improvement over 
the conventional coding systems for remote monitoring.  

2. OBJECT-BASED CODING FOR MONITORING VIDEO 
In our strategy, three video objects are defined based on 

the features of the monitoring video. A snapshot of the 
recording environment (i.e. the monitoring room) forms the 
VOP1. If the camera is allowed to pan and tilt, the 
background scene can be updated online [6]. Since the 
background rarely changes, the VOP1 is coded at very small 
frame rate, e.g. once per minute. The second video object, 
VOP2, is obtained by constituting the distinction between 
VOP1 and a video frame. Essentially, VOP2 is consisted of 
the patient and the changes of the background brought by the 
patient. The VOP2 is coded at a properly chosen interval, e.g. 
every second. Within this interval, VOP2 can be considered 
as stationary foreground regions. The dynamics within this 
interval are captured by the VOP3, constructed from multiple 
consecutive video frames by exploring the motion 
information. Therefore, the VOP3 is usually consisted of the 
moving body parts of the patient.  

To construct the VOP2, we developed an illumination 
invariant change detection method [1] by combining a simple 
illumination model (“shading model”) and a statistical test 
approach.  This approach is robust against device noise and 
illumination variation and easy to implement. A sample result 
is shown in Fig. 1.The segmentation results can be improved, 
e.g. removing the holes, by a simple post-processing step. 

  

  

 
For VOP3, we developed a multiple-frame-based change 

detection method [2], which identifies moving pixels across a 
group of video frames. This method is more sensitive to small 
motions compared to traditional methods using frame pairs. A 
typical example is shown in Fig. 2, where the results of our 
method and a classic method (by Aach [3]) are compared. 

As these three VOPs have different activity levels, they 
are generated at different time and thus coded at different 
frame rates. The VOP1, VOP2 and VOP3 have life-spans of 
T1, T2 and T3 respectively, as shown in Fig. 3. The values of T1, 
T2 and T3 are determined experimentally and T3 is just the 
interval of two frames. 

 

  

 
In the decoding process, the time stamps are extracted and 

the video frame is reconstructed by means of overlaying: 
VOP3 is surmounted on top of VOPs and then on VOP1. 
Since these VOPs are coded at different frame rates, they are 
rendered at different time points. Accordingly, VOP1 and 
VOP2 are held for intervals of T1, T2 respectively after being 
decoded.  

3. PHYSIOLOGICAL DATA CODING 
We combine the 1D SPIHT [5] and the lifting scheme [4] 

to code the physiological data. The lifting scheme is a 
state-of-the-art method to implement the wavelet transform. It 
utilizes a ladder-like structure to compute wavelet transform, 
rather than the traditional filter bank. Because of this structure, 
the lifting scheme is more computationally efficient and can 
realize invertible integer-to-integer transform. The SPIHT is a 
well-known codec that is performed in wavelet domain. The 
wavelet coefficients are coded bit plane by bit plane, namely, 
the most significant bits of all the coefficients are output to 
the bit stream first, then the less significant bits. The coding is 

Fig. 3. The life-span of the VOPs. VOP1, VOP2 and VOP3 are coded at 
the intervals of T1, T2 and T3 respectively. T3 is just the interval of two 
frames. 

Fig. 1. Top-left: the VOP1, a background snapshot; top-right: a sample 
video frame; bottom-left: change detection mask, with the white 
regions denoting the “changed” and the black denoting the 
“unchanged”; bottom-right: VOP2 that is consisted of the patient and a 
deformed bed. The holes in the change detection mask can be 
compensated by morphological operations.  

Fig. 2. Top: a video frame that contains a moving hand; bottom-left: 
VOP3 detected by the multiple-frame-based change detection; 
bottom-right: change detection result of significance test method [3]. 



 
 

lossless if all the bit planes of the entire set of coefficients are 
coded. However, as mentioned previously, there exists a 
typical mismatch between the data resolution and the display 
resolution. In many cases, a lossless transmission is simply a 
waste of bandwidth. Therefore, we developed a 
device-adaptive approach to coding the physiological data.  

Let us consider the “vertical resolution” of the display 
window, which is the number of pixels available in the 
vertical direction. This resolution is often much less than the 
range of the data value. For example, EEG samples are 
usually 12-bit integers, ranged from -2048 to 2047, while a 
laptop screen has normally 768 pixels in the vertical 
dimension. In addition, physiological data is often recorded in 
multiple channels, thus each channel is allocated a small 
portion of the vertical pixels. Obviously, this redundancy can 
be reduced by transmitting only a portion of the bit planes. 
The key question is how to determine the quantization step.  

Let the data be B -bit integers, then the value range is 
BA 2= . Let the vertical dimension be n , then a single pixel 

represents a sub-range of n
A . Let b  be the number of bit 

planes (the least significant ones) to be omitted. Let e  be the 
quantization error in the original domain. If b is properly 
determined, then e  produces no visual effect in the display of 
the reconstructed waveform, which satisfies n

Ae < . We 
characterize e  in a statistical way: by assuming the 
distribution of the quantization residuals in the wavelet 
domain, we calculate the standard deviation of the 
reconstructed error e . After a multi-level wavelet 
decomposition, most coefficients are the detail coefficients. 
We only consider the error generated by quantizing the detail 
coefficients. Let jd  be the quantization residual of the detail 

coefficients at level j , and let 
jdσ be its standard deviation. 

It can be shown that for the lifting implementation of 
symmetric interpolating filters [4], we may have

jde ασσ ≤ , 

where eσ is the standard deviation of e. If we quantize the 

detail coefficients of J  levels, 

2

))(~1( 2∑+
≈ k

e kgJ
α where )(~ kge denotes the 

coefficients of the bandpass wavelet filter g~ [4]. Assuming 

jd  is uniformly distributed, we have 
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of the error e, where m is a chosen constant. Then the 
quantization step b2 can be numerically obtained by 
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We evaluated this quantization method by testing a large 
scale EEG data. The quantization errors vs. the number of 
omitted bit planes (i.e. b) are shown in Fig. 4. Each plot shows 
the reconstructed error generated from the quantization of the 
coefficients on a single level.  In addition to the standard 
deviation of the quantization error (in dash lines), the 
maximum error (in solid line)  is also shown in Fig. 4, which 
is approximately three times the standard deviation. Our 
measure, i.e. 

jdασ , is plotted in a thick solid line, serving as 

an upper bound of the eσ , which is compatible with our 
derivation.  
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4. SYSTEM EVALUATION 
 In our test system, we utilized Microsoft ConferenceXP 
and Directshow APIs to implement the video coding. We 
focused on designing the modules that implement video 
object construction to be embedded as add-on components in 
the platform. For simplicity, we used RTTP as the video 
transmission protocol and FTP to transmit EEG data. In this 
case, the EEG sequences were coded to files, each containing 
an epoch defined as one second data of all the channels. We 
used the time stamps that labeled the video stream as the file 
names of the EEG files, which enabled the synchronization of 
the EEG and the video stream.   
 The experimental video was in the 4SIF format (i.e. 
704 × 480 pixels) recorded by a JVC DV3000 camcorder. 
Samples of constructed VOP2 and VOP3 and the 
rate-distortion plots at constant bit rates are shown in Fig. 5. 

Fig. 4. The standard deviation (dash lines), the maximum (solid lines), 
and the derived estimate (the thick line) of the error of the 
reconstructed sequence vs. the number of the omitted bit plane. Each 
plot shows the error from the quantization of the detail coefficients on a 
single level. The derived estimate serves as an upper bound of the 
reconstructed error, which is compatible with the derivation.  



 
 

We compare the coding efficiency of our object-based 
approach and the conventional frame-based compression by 
examining the PSNR of the foreground regions. It is seen that 
the object-based method provided a superior quality of the 
foreground to that by the conventional method. This is 
because the frame-based method allocated more bandwidth 
on the background regions, which is a waste in this 
application. 
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 For the physiological data, we tested a set of multi-channel 

EEG sequences recorded at the University of Pittsburgh 
Medical Center. Concerning the display qualities, we show in 
Fig. 6 the screen dumps of the lossless sequence and the 

sequence reconstructed from quantized wavelet coefficients. 
At virtually the same display quality, the bit rates were 
reduced from 38.4 Kbps to 9.9 Kbps for coding the 16 
channels of EEG.  

 5. CONCLUSION 
We’ve presented a specialized video and physiological data 
coding system for patient monitoring. An object-based 
approach has been proposed to advance the video coding 
efficiency. We showed that a three-object representation of 
the monitoring video may be utilized to launch content-driven 
applications. The underlining concept is to selectively code 
the video content so as to reduce the overall bandwidth 
requirement, and facilitate future archiving and retrieval 
functions. Experimental results on a variety of monitoring 
video sequences showed that the object-based scheme 
outperformed the frame-based coding in a wide margin. In 
addition to the video coding, we’ve also presented a 
device-adaptive approach to coding physiological waveforms. 
Considering that the waveforms are usually diagnosed 
visually on a display device, we propose to transmit the 
physiological data at the resolution that matches the 
resolution available at the display terminal. This redundancy 
reduction may be significant for displaying waveforms on 
portable devices, such as PDA and cell phones, where both 
the transmission bandwidth and the display resolution are 
very limited. A wavelet quantization scheme has been 
provided along with analytical derivation of the proper 
quantization step. Experimental results on a large scaled EEG 
data set validated the proposed scheme. We believe both the 
video and physiological coding schemes presented in this 
work would enlighten some health care applications both in- 
and outside hospitals. 
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Fig. 5 Experimental results on object-based coding of the patient 
monitoring video. The top panels show a sample of constructed VOP2 
(left) and VOP3 (right) respectively. The rate-distortion plots of both the 
object-based method (in circle plot) and a conventional frame-based one 
are compared. We compare the quality (in terms of PSNR) of the 
foreground regions for both methods. We see that the object-based 
method provided a superior quality of the foreground to that by the 
conventional method.  

Fig. 6. Screen dumps of two windows displaying 16 channels of EEG 
segments. The left panel shows a lossless transmission at 38.4 Kbps; 
the right panel shows a reconstructed data from a lossy transmission at 
9.9 Kbps. There are hardly any visible distortions observed from the 
lossy sequence. 


