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ABSTRACT
In this paper, we propose an approach to learning appear-
ance models of moving objects directly from compressed
video. The appearance of a moving object changes dynam-
ically in video due to varying body poses, lighting condi-
tions, and partial occlusions. Efficiently mining the appear-
ance models of objects is a crucial and challenging tech-
nology to support content-based video coding, clustering,
indexing, and retrieval at the object level. The proposed
approach learns the appearance models of moving objects
in the spatial-temporal dimension of video data by taking
advantage of the MPEG video compression format. It de-
tects a moving object and recovers the trajectory of each
macro-block covered by the object using the motion vector
present in the compressed stream. The appearances are then
reconstructed in the DCT domain along the object’s trajec-
tory, and modeled as a mixture of Gaussians (MoG) using
DCT coefficients. We prove that, under certain assump-
tions, the MoG model learned from the DCT domain can
achieve pixel-level accuracy when transformed back to the
spatial domain, and has a better band-selectivity compared
to the MoG model learned in the spatial domain. We finally
cluster the MoG models to merge the appearance models of
the same object together for object-level content analysis.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Content Anal-
ysis nd Indexing; I.5.1 [Pattern Recognition]: Models

General Terms
object modeling

Keywords
video mining, appearance modeling, mixture of Gaussian,
DCT transform, compressed video
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1. INTRODUCTION
As video sources grow explosively, efficient methods for in-
dexing and retrieving unstructured video data at the object-
level are in high demand for many different applications.
Content analysis at the object-level allows us to create links
among objects in video; for example, jumping to the next
shot where the same object appears. Appearances of a mov-
ing object changes dynamically in video due to varying body
poses, lighting conditions, and partial occlusions. Modeling
object appearances of an object in video, therefore, requires
a large amount of training data, which is expensive to label
manually. Therefore, unsupervised object modeling in video
is desired, which depends on accurate object detection and
tracking. However, these two technical components usually
involve high computational cost. And, as the video data are
mostly presented in compressed digital formats, there is an
extra cost for video decompression if detecting and tracking
are conducted in the spatial domain. In this paper, we are
interested in the unsupervised mining of objects’ appearance
models in video at a low computational cost.

Extracting and modeling video objects have been investi-
gated by many researchers in both the computer vision and
multimedia communities. Much research has been directed
to extracting a video object from its background to segment
the boundary (arbitrary shape) of the object in each frame.
Although color [9], edge [8] and contour [16] are useful cues,
motion has been a dominant feature used for extracting ob-
jects from video [18, 9, 8, 16]. These methods are able to
extract a video object precisely at the pixel-level, which is
then coded as a collection of video object planes. However,
high accurate pixel-level extraction is very time consuming
and is not practical to application to large amounts of com-
pressed videos for learning appearance models.

An alternative approach is to learn a model to represent the
entire collection of video object appearances. To represent
the appearances of a video object, the model uses a compact
format to remember the appearances of all the video object
planes while at the same time keeping most of the appear-
ance information to support future video indexing and visual
analysis tasks. The video object planes of a video object
can contain rich and dynamic appearance information, such
as shape, color, texture and motion, that benefits content-
based video indexing and retrieval, and visual analysis such
as object classification. To build an appearance model, a



video object has to be tracked and extracted from its back-
ground first. By using a probabilistic model, background
pixels included in object appearances due to the inaccurate
extraction can be implicitly distinguished to achieve a sort
of pixel-level accuracy. Therefore, the extraction does not
require a pixel-level accuracy, but a block or macro-block
level. A large amount of work has been proposed by com-
puter vision researchers to model objects in a scene, such as
a mixture of Gaussians (MoG) method [5], adaptive filter
methods [10], minimal and maximal intensity value meth-
ods [14], PDE level set [6], Hidden Markov models (HMMs)
[12], and kernel density estimation techniques [13]. How-
ever, these algorithms are designed for accurate extraction
and paid little attention to efficiency in the application to
video in a compressed format, which we have to uncompress
before applying these methods.

In order to improve efficiency, some researchers in the multi-
media community have proposed to perform video indexing
and retrieval in compressed video directly. For example, mo-
tion vectors in the MPEG codec have been used for video
object extraction. There are also some methods proposed to
build background models in the compressed domain [15, 17].
These methods have been developed for extracting moving
objects or for encoding purposes. Most algorithms use only
discrete cosine transform (DCT) energy (DC) coefficient and
work on the block-level. For example, the algorithm in [17]
extracts objects at a size of 8 × 8 blocks and cannot obtain
accurate object contour. [1] presented a method that could
extract video object precisely at the pixel-level. However,
the method requires a decoding step to obtain appearances
of each video object. Another effort in the compression do-
main is to use DCT coefficients to support image and video
indexing and retrieval [11, 19]. In this class of work, DCT
coefficients were used as texture features to train classifiers
or clusters to retrieve images or identify a specific object
in high-level visual analysis (e.g., a known human face). In
summary, the previous work on object appearance extrac-
tion and modeling has been studied in the compressed do-
main at the block-level.

In this paper, we propose an unsupervised algorithm for
mining object appearances in compressed video streams. We
construct appearance models using MPEG motion vectors
and DCT coefficients embedded in the MPEG video. The
proposed algorithm detects a moving object and recovers
the trajectory of each macro-block covered using the mo-
tion vector. The appearances are then reconstructed in the
DCT domain following the object’s trajectory, and modeled
as a mixture of Gaussian (MoG) using DCT coefficients.
We prove that, under certain assumptions, the MoG model
learned from the DCT domain can achieve pixel-level ac-
curacy after being transformed back to the spatial domain
and has better band-selectivity compared to the MoG model
learned in the spatial domain. Finally, the algorithm clus-
ters the extracted MoG models to merge the appearance
models of the same object together. Using the resulting
DCT domain appearance models, object-level video index-
ing and retrieval can be performed in compressed MPEG
video directly without decompression.
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Figure 1: The diagram of the proposed algorithm.

2. A SCHEME FOR MINING OBJECT AP-
PEARANCE MODELS IN COMPRESSED
VIDEO

Figure 1 illustrates the proposed scheme for mining video
objects from compressed video without decompression. The
decompression step can be computationally expensive when
we have to access a huge amount of video data in a limited
time, for example, building an index for a specific person
in 10 years of news video. The proposed scheme saves the
decompression step in both the appearance modeling and
object retrieval to improve the efficiency.

In this scheme, we first recover the trajectory of each block
using motion vectors coded in the compression domain. The
challenge is that the block partitions are all in regular lo-
cations in each frame, but a trajectory of a macro-block
through the video computed from motion vectors may not
always follow these regular locations. In fact, the trajectory
of a macro-block of a moving object aligns most likely be-
tween two or four regular blocks in reference frames. Section
3 discusses the trajectory recovery for regular and irregular
aligned blocks. Second, blocks within a macro-block are as-
sumed to have the same trajectory as the macro-block. We
then group together to segment individual objects (see sec-
tion 4). Third, appearance of the object is reconstructed
following its trajectory. The MoG model of the appearances
of each object is learned along its trajectory in the DCT
domain. Finally, we cluster the extracted MoG models to
merge the appearance models of the same object together.

3. RECOVERING BLOCK TRAJECTORIES
IN COMPRESSED VIDEO

Most current video data is stored in popular compression
formats, such as MPEG-1, 2, 4, and H.26X. As a common
feature of these formats, video frames are organized as a
sequence of three types of frames: I , P , B . Each I frame
consists of a list of 64-dimensional DCT coefficient vectors
in which each of the coefficient vectors is transformed from
an 8 × 8 size partition block of pixels in the original spatial
domain. A P frame also consists of a list of DCT coefficient
vectors. However, these coefficient vectors are not trans-
formed directly from the original spatial domain. Four ad-
jacent blocks are treated as a macro-block, which associates
with a motion vector pointing to the most similar macro-
block in a reference frame. The reference frame is usually
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Figure 3: An illustration of an irregular block refer-
enced by a motion vector.

the previous I or P frame as shown in Figure 2. The DCT
coefficient vectors in a P frame are transformed from the
residues of the macro-block and its reference. A B -frame
usually contains much fewer residues, which is not used in
this research.

Since the motion vector of a macro-block points to the lo-
cation of this macro-block in the previous reference frame,
it is possible to back-track the locations of the macro-block
in the previous sequence. This sequence of locations is the
trajectory of the macro-block, which is recovered first in our
approach. For the blocks in each macro-block, we assume
that they share the same motion vector. Recovering the
trajectory of a block that is always at regular locations in
video is a trivial task. However, blocks are usually located
at irregular locations in reference frames, as shown in Figure
3.

The reference block B′ of the current block B in its reference
frame is located between four blocks B1, B2, B3, and B4,
since the block B′ is not located at a regular place. There
is no motion vector corresponding to the block B′ to the
next reference frame. To obtain the motion vector of the
block B′, we perform interpolation using the motion vectors
of the four covered blocks B1,2,3,4. The motion vectors of
the blocks B1,2,3,4 are denoted by mv(Bi), i = 1, 2, 3, 4. The
common sub-blocks shared by blocks Bi and B′ are defined
as B′TBi. The area of a block or sub-block is defined as
|B|. We therefore interpolate the motion vector mv(B′) of
the block B′ to the next reference frame as:

mv(B′) =
4
X

i=1

|B′TBi|

|Bi|
mv(Bi). (1)

4. GROUPING AN OBJECT USING BLOCK
TRAJECTORIES

Blocks of a video object are believed to have similar motion
behaviors in a short period of time as assumed by pixel-or
feature- based motion extraction approaches. Let us con-
sider the trajectory of each block as a feature and then group
the blocks that have similar trajectories into one video ob-
ject. Formally, a trajectory TB = (mv0(B), . . . , mvt(B)) of
a block B is a sequence of velocities in the x and y direction
from frame 0 to frame t. To simplify the grouping process,
we extract trajectory vectors with a sliding window of n

frames overlapped by n
2

frames. The trajectory vectors of
all blocks in a frame are first clustered using K-means in
the euclidian space. Since the goal of this step is to extract
foreground motion and background motion, the number of
clusters is set as 2. We then group the outlier motion blocks
into objects according to their spatial correlations. Isolated
blocks are merged into their neighbors to obtain fewer video
objects in each sliding window. A video object may cross
more than n frame in a video. To simplify this research, we
did not track video objects across the sliding window though
it is possible to do so.

5. OBJECT APPEARANCE MODELING
Object appearance modeling is essential to identify an object
or track an object in video. The goal is to remember what
an object looks like in previous frames, and then recognize
and localize the object in a new frame. The appearance of
a video object in a frame is represented by the appearances
of the blocks of pixels belonging to the video object. In the
spatial domain, the appearances of a block object can be
collected by cropping the reference blocks in its trajectory.
However, the extraction of appearances of a block in the
DCT domain is not easy because spatial cropping is not
straight-forward in the DCT domain. In this section, we
first present the method of extracting appearances of blocks
in the DCT domain.

5.1 Extracting appearance of an irregular block
in DCT domain

The appearance of a regular block in the DCT domain of an
I frame is a 64-dimensional DCT coefficient vector packed
in the compressed video stream. The appearance of an ir-
regular block in an I frame, which may be referenced by
a block in the nearest P frame, is unfortunately not di-
rectly coded in the compression video. For example, Figure
4 shows that an irregular block in a reference frame. It con-
tains the contents from four regular blocks, which are coded
in DCT coefficients.

To compute the DCT coefficient vector DCT (B′) of the
block B′, an intuitive method is to perform inverse DCT
transform to the block DCT (B1,2,3,4), then crop the sub-
blocks B13,31,24,42 to reconstruct the block B′ in the spatial
domain, and finally compute the DCT (B′). However, this
method consists of DCT transform and inverse DCT trans-
form steps, which are computationally expensive.
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an I frame consists of the information from all the
regular blocks it covers.

To avoid performing DCT and inverse DCT transforms,
Chang and Messerschmitt [3] proposed a method to com-
pute DCT (B′) through transcoding. In their method, a
sub-block (for example B13) can be cropped from the block
B1 and shifted to the top-left corner in the spatial domain
by two sparse 8 × 8 matrices:

B13 = V1B1H1, (2)

where,

V1 =

»

0 Ih

0 0

–

, (3)

H1 =

»

0 0
Iw 0

–

. (4)

h and w are overlapped height and width, respectively. The
block B′ can then be reconstructed as:

B
′ =

4
X

i=1

ViBiHi. (5)

According the orthogonality of the DCT, the DCT (B′) is
therefore computed as:

DCT (B′) =
4
X

i=1

DCT (Vi)DCT (Bi)DCT (Hi). (6)

The DCT transformations of all the possible Vi and Hi can
be pre-computed in this algorithm. To make this method
even faster, Chaparro et. al. [4] proposed a fast algorithm
exploiting the similarities among these matrices and saved
44.3% computation cost on in average in comparison with
the intuitive inverse DCT plus DCT approach.

The obtained DCT (B′) is just the residual from the block
and its reference. Because the DCT is a linear transform, the
DCT appearance of a block in a P frame can be extracted
using motion compensation once we obtain the appearance
of its reference block. Let us denote the residue values in
block B in a P frame as B: B = B + B′. The DCT appear-
ance of the block B can be calculated as:

DCT (B) = DCT (B) + DCT (B′). (7)

Thus, all the DCT appearances of a block on its trajectory
can be extracted without transforming the compressed video
back to the spatial domain.

5.2 A mixture of Gaussians in spatial domain
Mixture of Gaussian was proposed to model the background
and foreground of a video by Stauffer et al. [2]. The idea is
that for each location x in image, we model the pixel values
f1...t(x) in t frames by a mixture of k Gaussian N(µ(x), σ(x), w(x)),
where µ(x), σ(x) and w(x) are three k-dimensional vec-
tors, µ(x) = (µx

i )i=1,...,k, σ(x) = (σx
i )i=1,...,k and w(x) =

(wx
i )i=1,...,k. The model is optimized theoretically by maxi-

mizing the log-likelihood of pixel values stream ft(x):

(µ∗(x), σ∗(x)) = arg max
µ(x),σ(x)

t
X

j=1

log

 

k
X

i=1

wi(x)pij(x)

!

,

(8)
where

pij(x) = p (fj(x)|µx
i , σx

i )

= 1√
2πσx

i

e

0

@− (fj (x)−µx
i ))2

2σx
i
2

1

A

,

(9)

and

wi(x) = p(µx
i , σx

i )

=
Pt

j=1 p(fj(x)|µx
i ,σx

i )
P

k
h=1

P

t
j=1

p(fj(x)|µx
h

,σx
h)

.
(10)

The more number of Gaussian components k used in the
model, the model fits better the appearances in the training
data. To train a model with a standard EM algorithm is
very time consuming and requires predefined k in advance.
In practice, the number of Gaussians k is determined using
a Direchlet-like process, which can learn the parameter k

in the model training. By following the trajectory of each
pixel, where x is a variable along time t, this algorithm is can
model a moving object as well as stationary backgrounds.

The pixel-level models treat pixels independently of each
other, and can be extended to the block-level. Considering
the total 64 locations in an 8×8 block B, we define the vector
of pixel values in the block B at time t as Ft = (ft(x))x∈B.
Here, we use a vector form of the block B instead of the
matrix form to simplify the representation in the future dis-
cussion. We should emphasize that x are relative locations
in block B, and the location of the block B varies along its
trajectory.

Correspondingly, we define the mean vector of the ith gaus-
sian component as µi = (µi(x))x∈B, and define the vari-
ance vector as σi = (σi(x))x∈B. The Gaussian mixtures
are still represented as three vectors µ = (µi)i=1,...,k

′ , σ =

(σi)i=1,...,k
′ and w = (wi)i=1,...,k

′ . Eq. 8 can then be ex-
tended to the block level as:

(µ∗
, σ

∗) = arg max
µ,σ

t
X

j=1

log

0

@

k
′

X

i=1

wiPij

1

A, (11)



where

Pij = p (Fj |µi, σi)

= 1√
2πσ

e(−
1
2
(Fj−µi)

T (σIσT )−1(Fj−µi)),
(12)

and

wi = p(µi, σi)

=
Pt

j=1 p(Fj |µi,σi)
P

k
′

h=1

P

t
j=1 p(Fj |µh,σh)

. (13)

I is a 64 × 64 identity matrix. Since there is a strong inde-
pendent assumption among pixels in a block, the covariance
matrix σIσT of the Gaussian mixtures is constrained to be
diagonal.

If the independence assumption is satisfied and the trajec-
tory is long enough, the block level model is a combination
of 64 pixel-level models associated with the block, and the

number of block-level Gaussians k
′

theoretically can be k64

for all the possible combinations. Given the 64 pixel-level
models, this block-level model can be uniquely constructed
by assigning each possible combinations a 64-dimensional
Gaussian, and conversely, pixel-level models can be recov-
ered from this constructed block-level model. In practice,
most of the pixels are dependent and the trajectory is not
long enough to estimate all Gaussians. Therefore, a block-
level model directly estimated from a video is a good ap-
proximation, but not completely equivalent to the original

pixel-level models defined in Eq. 8. We can use the k
′

Gaus-
sians (µi(x), σi(x)) and weights wi provided by the block-
level model for each pixel x to approximate a pixel-level
model by using sampling-based estimation. When there are
many similar Gaussians, we can easily reduce the number
of Gaussians by merging similar Gaussians with associated
weights together.

5.3 A mixture of Gaussians in DCT domain
The same modeling can be performed in the DCT domain.
Let us transform a block B into the DCT domain to ob-
tain DCT (B). By keeping the same ordering method as we
did in the spatial domain, the DCT (B) is a 64-dimensional
vector denoted as D. The DCT transform process can be
represented as an orthogonal and unique DCT matrix K

multiplied by the pixel-value vector F of the block B, which
is formally defined as the following:

D = KF, (14)

The inverse DCT transform is then defined as:

F = K
T
D, (15)

where the orthogonal matrix K has the property that:

K
−1 = K

T
. (16)

The MoG model is then built on top of coefficient vector D

through t frames using the same optimization approach as in
the spatial domain. The 64-dimensional vector of the mean
of the ith Gaussian component is denoted as Λi, while the

variance vector is denoted as Ξi. The k
′

-dimensional model
vectors are defined as Λ = (Λi)i=1,...,k

′ , Ξ = (Ξi)i=1,...,k
′

and wd = (wd
i )

i=1,...,k
′ . Then following Eq. 11, the MoG

model in the DCT domain can be estimated as:

(Λ∗
, Ξ∗) = arg max

Λ,Ξ

t
X

j=1

log

0

@

k
′

X

i=1

w
d
i P

d
ij

1

A (17)

where

P d
ij = p (Dj |Λ

∗
i , Ξ∗

i )

= 1

(2π)32|Ξ∗

i
|
1
2

e

“

− 1
2 (Dj−Λ∗

i )
T

Ξ∗−1
i (Dj−Λ∗

i )
”

,
(18)

and

wd
i = p(Λ∗

i , Ξ∗
i )

=
Pt

j=1 p(Dj |Λ∗

i ,Ξ∗

i )
P

k
′

h=1

P

t
j=1

p(Dj |Λ∗

h
,Ξ∗

h)
.

(19)

This block-level model has a close relationship with the
block-level in spatial domain, which is discussed in the next
subsection. We can also build coefficient-level models by
considering each coefficient independently. Fortunately, since
DCT is a orthogonal transform, the 64 dimensions of the
coefficient are linearly independent. Therefore, the inverse
covariance matrix Ξ−1

i of each Gaussian component is diag-
onal and the coefficient-level MoG model can be estimated
for each of the 64 dimensions individually without imposing
an additional independence assumption.

5.4 Relationship between MoG models in DCT
and spatial domains

The MoG model estimated in the DCT domain using the
method proposed in subsection 5.3 has a close relationship
with the MoG model of the same block estimated in the
spatial domain using the method described in subsection 5.2.
To exploit this relationship, let us first transform the mean
and variance vectors of the MoG model in DCT domain into
the spatial domain using Eq. 15:

µ = K
T Λ, (20)

and

Σ = K
T ΞK. (21)

Substituting the above two equations and Eq. 14 into Eq.
17, we convert a the optimization function from the DCT
domain back to the spatial domain, in which the target func-
tion is:

(µ∗
, Σ∗) = arg max

µ,Σ

t
X

j=1

log

0

@

k
′

X

i=1

wiP ij

1

A, (22)

where

P ij = p (Dj |Λ
∗
i , Ξ∗

i )

= 1

(2π)32|KΣ∗

i
KT |

1
2

e

“

− 1
2 (KFj−Kµ∗

i )
T

KΣ∗−1
i

KT (KFj−Kµ∗

i )
”

= p (Fj |µ
∗
i , Σ∗

i ) .

(23)
and

wi = p(Λ∗
i , Ξ∗

i )
= p(µ∗

i , Σ∗
i ).

(24)



Table 1: An algorithm to estimate Gaussian mix-
tures for one DCT coefficient

Dc a sequence of the cth DCT coefficients in t frames;
Mc an empty set for Gaussian mixtures.
1. From the first frame j = 0 to t, perform step 2 to

5.
2. For each Gaussian (λc

i , ξ
c
i , w

c
j ) in Mc, check if the

current Dc
j matches the Gaussian by examining

|Dc
j − λc

i | < 2.5ξc
i :

3. If true, update (λc
i , ξ

c
i ) as:

λc
i (new) = (1 − ρ)λc

i + ρDc
j

ξc
i
2(new) = (1 − ρ)xici

2 + ρ(Dc
j − λc

i (new))2

ρ = β√
2π

e
−

(Dc
j −λc

i (new))2

2xic
i
2

4. If false, update the weight as:
wc

j (new) = (1 − β)wc
j

5. If none of the Gaussian in M matches the coeffi-
cient, add a new Gaussian (Dc

j , α
c, 1.0) into Mc.

αc is a constant.

The vectors (µ∗ and Σ∗) are the optimal values of the MoG
model in the spatial domain of the block B. In comparing
with the MoG model estimated using Eq. 8, the only dif-
ference is that the covariance matrix σ∗

i Iσ∗T
i in Eq. 8 is

diagonal, which is a special case of the covariance matrix
Σ∗

i . This is because the model in the spatial domain is con-
strained by imposing the independence assumption among
pixels. In other words, if the independence assumption made
by the MoG method in the spatial domain is satisfied, ev-
ery covariance matrix Σ∗

i is then a diagonal matrix and Eq.
22 is equivalent to Eq. 8. This also means that the MoG
model estimated in the DCT domain is equivalent to the
MoG model estimated in the spatial domain if the optimal
vector of the model is unique.

In practice, the independence assumption is rarely satisfied.
The MoG method in the DCT domain provides a potentially
better model because it models the correlations between pix-
els in a block.

6. THE ALGORITHM OF APPEARANCE
MODEL EXTRACTION

Instead of modeling at the block-level directly, we can model
each coefficient individually because the DCT coefficients
are independent of each other. The formal presentation of
this modeling is very similar to the pixel-level modeling,
and therefore is not repeated here. Since the conventional
optimization includes an EM process, which is expensive
to apply on a large data set (e.g., video data), we use the
Direchlet-like process proposed by Stauffer et. al. [2]. Let
(λc

i , ξ
c
i ) denotes the ith Gaussian of the cth DCT coefficient

and wc
i denotes its weight. The algorithm is briefly described

in Table 1.

This algorithm has no iteration, and estimates a MoG model
by only scanning the video data once. The obtained DCT
coefficient models Mc have many advantages compared to
the corresponding pixel-level models estimated in the spatial
domain to perform video object clustering, indexing, and re-
trieval. First, the estimation of DCT models is faster than
the estimation of pixel-level models because many DCT co-
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Figure 5: Recover trajectories of macro-blocks us-
ing MPEG motion vectors. (a) original frame; (b)
MPEG motion vectors; (c, d) locations of macro-
blocks on the trajectories.

efficients are zero after MPEG quantization. Second, DCT
models are able to provide band-selective filtering during the
estimation, which may enhance the video object appear-
ances for special purposes. For example, low-pass filter is
preferred to obtain smoothed appearances while high-pass
filter leads to edge-enhanced appearances. To apply a band-
selective filter, we can estimate the selected frequency or ori-
entations with more Gaussians by adjusting the constants αc

of the corresponding coefficients. Finally, model matching
in the DCT domain can also be band-selective. Different
weights can be used in the matching process to emphasize
selected frequencies or orientations in a video-object clus-
tering or retrieval task.

Statistical object modeling approaches, such as the MoG
method, provide object appearance models and the back-
ground models at the same time. Learned object models
implicitly discriminate the background from the object be-
cause the pdfs of object pixels concentrate on several Gaus-
sians due to the tracking, but the pdfs of background pixels
are more flat. In other words, background pixels usually
have low data likelihood values conditioned on the model of
the video object. Therefore, the background pixels have less
effect on the matching decision in video object matching.

DCT domain models have the same function, omitting the
effects of background in video object matching. To illus-
trate this function, we first build a DCT domain model for
a video object using the proposed approach. For example
the video object can be a “tree” in a garden sequence com-
pressed in MPEG-1 format. Figure 5 illustrates the recover-
ing of macro-block trajectories using MPEG motion vectors.
Large percentage macro-blocks are well-tracked by the mo-
tion vectors. Some are missing due to the noise of the motion
vectors. Therefore, some recovered trajectories may also be
noisy and have various lengths, which may introduce errors
at the boundary of a video object.
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Figure 6: Grouped macro-blocks for the video ob-
ject “tree”, and the histogram of number of Gaus-
sians in the learned DCT model.

By grouping the trajectories, the macro-blocks of each video
object can be clustered together. Figure 6 (a) shows the
macro-blocks of the “tree”. All small and isolated macro-
blocks are merged into their neighbors. A DCT model is
then learned at the coefficient-level along the trajectories.
Different coefficients may have various number of Gaussians.
Figure 6 (b) shows the histogram of the number of Gaussians
in the DCT model of the “tree”. Most of the coefficients
have about 3 to 6 Gaussians.

Figure 7: A reconstruction image from the learned
DCT model using the means of the best match Gaus-
sians.

The drawback of DCT models is that they are difficult to
visualize. To visualize DCT coefficient models, the models
need to be reconstructed into a block-level model and then
transformed back to the spatial domain using Eq. 20 and
21. The construction of a block-level model from individual
DCT coefficient models is a similar process to construct-
ing a block-level model using pixel-level models in spatial
domain, which is discussed in Section 5.2. Theoretically, a
block-level model should consist of all possible combinations
of Gaussians of individual coefficients. This may lead to a
huge number of Gaussians in a block-level model, which is
not practically computable. To address this problem, Monte
Carlo (MC) methods [7] can be used to approximate a block-
level model by sampling the best matches in the DCT do-
main. MC methods ensure the convergence of approxima-
tion of the block-level model given enough samples. In the
worst case, the MC method may sample all frames in the
trajectory and the obtained model is exactly same as esti-
mated directly in block unit using Eq. 22.

To visualize the learned DCT model, we convert it back to
the spatial domain using Monte Carlo methods. Figure 7

shows the reconstructed image from the model using the
means of the best matched Gaussians to the original image
displayed in the Figure 5. The function of discriminating
the background can be shown by computing the data like-
lihood of the same image given the model. In Figure 8,
we plot the log values of the data likelihoods of the video
object “tree”. The values are reverse-displayed to empha-
size the background pixels, which means that the low val-
ues corresponding to the background are assigned high gray
values in the figure. Most of the background pixels are cor-
rectly located in the boundary blocks of the video object
“tree”. The spatial model has a pixel-level accuracy, prob-
abilistically. Since the spatial model is directly transformed
from the DCT model we learned in compressed video, the
DCT model also performs the function of reducing the ef-
fects of the background pixels in video object matching, and
provides a sort of pixel-level or sub-block-level accuracy of
modeling.

Figure 8: The data likelihood values (log values) of
the “tree” (reversed grayscale for display).

7. CLUSTERING APPEARANCE MODELS
Using the above algorithm, we can extract appearance mod-
els of an object in a short period of time. Tracking failure
of a moving object after a couple of seconds may break the
appearances of the same object in a video into separated
models. Objects entering or existence video scene also pro-
duce separated models. To obtain models corresponding to
each object, we cluster the extracted MoG models using the
spectral clustering algorithm.

In a spectral clustering algorithm, MoG models are treated
as nodes in a graph G = (S,E), where E is the affinity
matrix encoding the similarity between any two nodes in
the node set S. An affinity Eij is defined as:

Eij = exp−
d2(si, sj)

2σ2
, (25)

where d(si, sj) is denoted as a distance measure between
the node si and the node sj . We use the Bhattacharyya
coefficient to measure this distance. The parameter σ is
usually a predefined constant.

We construct a matrix L(E) =
“

D− 1
2 (E) E D− 1

2 (E)
”

, where

D(E) is the degree matrix of E, and compute the eigenvec-
tors of the matrix L. A matrix Y = [y1y2...yh] is then con-
structed by stacking the h largest eigenvectors of the matrix
L in columns. We then normalize each row of the matrix



Y to have unit length and cluster the normalized rows into
K clusters using the K-means algorithm. Each row of the
matrix Y corresponds to one node (a MoG model). There-
fore if the K corresponds to the number of objects in the
video, we can merge the models in the same cluster into one
to model the appearances of the object in the video.

8. EXPERIMENTS
To evaluate the proposed algorithm, we perform the model
extraction algorithm on a 24-hour surveillance video cap-
tured at a door entrance. The algorithm extracts 409 ap-
pearance models for 24 people and a food cart. Appearances
consist of object coming in and out at the entrance. Both
the persons and the food cart have various of appearances
because of the motions in the video. Figure 9 shows some
video snap-shots of extracted models.

Figure 9: Some snap-shots extracted from the video
stream used in our experiments. Each row corre-
sponds to a learned appearance model.

We evaluate the extracted model with manually labeled ground
truth. The algorithm has a 100% recall, which means all the
entering and exiting activities are extracted. 68 models are
extracted because of tracking failures in the motion vectors.
The individual models are clustered using the spectral clus-
tering algorithm. The affinity matrix is depicted in Figure
10, in which models are ordered using the ground truth.
The diagonal values are set to be always zero. We selected
only 10 middle frequency coefficients in the DCT models to
compute the distance in the infinity matrix. We can see that
most models from the same person are similar to each other,
which form the squares along the diagonal of the matrix.

Performance of spectral clustering is plotted in Figure 11.
We applied the spectral clustering algorithm onto the infin-

Figure 10: The affinity matrix of the extracted mod-
els.

ity matrix with varying the number of eigenvectors h. The
algorithm achieves a 78% percent accuracy according to the
ground truth. The performance increases quickly when the
value h is increased from one and reaches the peek at h = 6.
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Figure 11: The performance of appearance cluster-
ing using the Spectral algorithm.

9. CONCLUSIONS
We have proposed an approach to extract and learn video
object models directly from compressed video data. The
proposed method effectively utilizes the motion and appear-
ance information contained in motion vectors and DCT coef-
ficients in the compressed video to extract video objects and
model their appearances. The approach recovers the tra-
jectories of macro-blocks using MPEG motion vectors and
extracts video objects by clustering these macro-blocks. It
further reconstructs the appearances of each macro-block
along its trajectory in the DCT domain and learns an MoG
model to represent the video object. Extracted models are
then clustered using the spectral method to merge the ap-
pearances of the same object together. Experiments have
shown that object appearance models can be automatically
learned and extracted in a large quantity of compressed



video streams at a reasonable accuracy.
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