
Verifying the Hashgraph Consensus Algorithm

Karl Crary

Carnegie Mellon University

Abstract

The Hashgraph consensus algorithm is an algorithm for
asynchronous Byzantine fault tolerance intended for dis-
tributed shared ledgers. Its main distinguishing character-
istic is it achieves consensus without exchanging any extra
messages; each participant’s votes can be determined from
public information, so votes need not be transmitted.

In this paper, we discuss our experience formalizing the
Hashgraph algorithm and its correctness proof using the Coq
proof assistant. The paper is self-contained; it includes a
complete discussion of the algorithm and its correctness ar-
gument in English.

1 Introduction

Byzantine fault-tolerance is the problem of coordinating a
distributed system while some participants may maliciously
break the rules. Often other challenges are also present,
such as unreliable communications. The problem is at the
center of a variety of new applications such as cryptocur-
rencies. Such applications rely on distributed shared ledgers,
a form of Byzantine fault-tolerance in which a set of trans-
actions are assigned a place in a globally-agreed total order
that is immutable. The latter means that once a transaction
enters the order, no new transaction can enter at an earlier
position.

A distributed shared ledger makes it possible for all par-
ticipants to agree, at any point in the order, on the cur-
rent owner of a digital commodity such as a unit of cryp-
tocurrency. A transaction transferring ownership is valid
if the commodity’s current owner authorizes the transac-
tion. (The authorization mechanism—presumably using a
digital signature—is beyond the scope of the ledger itself.)
Because the order is total, one transaction out of any pair
has priority. Thus we can show that a commodity’s chain
of ownership is uniquely determined. Finally, because the
order is immutable, the chain of ownership cannot change
except by adding new transactions at the end.

Algorithms for Byzantine consensus (under various as-
sumptions) have existed for some time, indeed longer than
the problem has been named [12, 9]. Practical algorithms
are more recent; in 1999, Castro and Liskov [6] gave an algo-
rithm that when installed into the NFS file system slowed it
only 3%. As Byzantine consensus algorithms have become
more practical, they have been tailored to specific applica-
tions. Castro and Liskov’s algorithm was designed for fault-
tolerant state machine replication [13] and probably would

not perform well under the workload of a distributed shared
ledger.

However, in the last few years there have arisen
Byzantine fault-tolerance algorithms suitable for distributed
shared ledgers, notably HoneyBadgerBFT [10], BEAT [7],
and—the subject of this paper—Hashgraph [2]. Moreover,
the former two each claim to be the first practical asyn-
chronous BFT algorithm (with different standards of prac-
ticality). Hashgraph does not claim to be first, but is also
practical and asynchronous.

In parallel with that line of work has been the develop-
ment of distributed shared ledgers based on proof of work,
beginning with Bitcoin [11]. The idea behind proof of work
is to maintain agreement on the ledger by maintaining a list
of blocks of transactions, and to ensure that the list does not
become a tree. To ensure this, the rules state that (1) the
longest branch defines the list, and (2) to create a new block,
one must first solve a mathematical problem that takes the
list’s old head as one of its inputs. The problem’s solution
is much easier to verify than to obtain, so when one learns
of a new block, one’s incentive is to restart work from the
new head rather than continue work from the old head.

Bitcoin and some of its cousins are widely used, so in a
certain sense they are indisputably practical. They are also
truly permissionless, in a way that the BFT algorithms, in-
cluding Hashgraph, cannot quite claim. Nevertheless, they
offer severely limited throughput. Bitcoin is limited to seven
transactions per second and has a latency of one hour, while
its BFT competitors all do several orders of magnitude
better. Proof-of-work systems are also criticized for being
wasteful: an enormous amount of electricity is expended on
block-creation efforts that nearly always fail. Finally—more
to the point of this paper—the theoretical properties of proof
of work are not well understood.

The Hashgraph consensus algorithm is designed to sup-
port high-performance applications of a distributed shared
ledger. Like the other BFT systems, it is several orders of
magnitude faster than proof of work. Actual performance
depends very much on configuration choices (e.g., how many
peers, geographic distribution, tradeoff between latency and
throughput, etc.), but in all configurations published in
Miller, et. al [10] (for HoneyBadgerBFT) and Duan, et
al. [7] (for BEAT), the Hashgraph algorithm equals or ex-
ceeds the published performance figures [4]. A frequently
cited throughput goal is to equal the Visa credit-card net-
work. According to Visa’s published figures, Hashgraph can

handle Visa’s average load1 and is in the ballpark of Visa’s
claimed surge capacity.2

The key to the Hashgraph algorithm’s performance is
achieving nearly zero communications overhead. Previous
BFT systems exchange messages to achieve consensus, but
Hashgraph does not. In Hashgraph, no peer sends any mes-
sages it did not intend to send anyway. Moreover, the over-
head in each message it does send is light; each message con-
sists mostly of transactions that are new to the recipient. In
addition to the transaction payload, a message contains an
array of sequence numbers (to keep track of which blocks
each peer has seen), and the information needed by consen-
sus: just two hashes, a digital signature, and a timestamp.

In the Hashgraph algorithm, peers achieve consensus by
voting, but each vote is fully determined by publicly avail-
able information, so peers can determine each other’s votes
without communicating with them. This allows the con-
sensus election to be carried out virtually, with no extra
messages exchanged. There is no magic here; it still takes
multiple cycles of communication to achieve consensus, but
every message is just an ordinary block filled with new
transactions. Thus, consensus is essentially invisible from
a throughput perspective.

Another advantage of the Hashgraph algorithm is it re-
quires no sophisticated cryptography. The only require-
ments are digital signatures and cryptographic hashes, both
of which are now commonplace and have highly optimized
implementations available.

This work The Hashgraph consensus algorithm has been
realized as a large-scale, open-access, commercial system
called Hedera [3], so there is considerable interest in
machine-verifying that it is correct. In this paper, we discuss
the first steps toward doing so. Using the Coq proof assis-
tant [5], we formalized the batch-mode algorithm given in
Baird [2] and developed a machine-checkable proof of its cor-
rectness. As usual when one formalizes a human-language
proof, we found a few errors, but they were minor and eas-
ily corrected. The algorithm implemented in Hedera is an
online algorithm, inspired by the batch-mode algorithm dis-
cussed here, but obviously a bit different.3 We will discuss
some of the differences in Section 5.

We begin by giving an informal overview of the algo-
rithm, to build intuition. Then we give a human-language
mathematical definition of the algorithm and prove its prop-
erties, in Section 2. We discuss the formalization in Coq
starting in Section 3.

1.1 Hashgraphs in overview

A hashgraph is a directed graph that summarizes who has
said what to whom. Each peer maintains a hashgraph re-
flecting the communications it is aware of. In general, each
peer knows a different subset of the true graph, but because
of digital signatures and cryptographic hashes, they cannot
disagree about the information they have in common.

The nodes of a hashgraph are events. Each event is cre-
ated by a particular peer. Except for each peer’s initial
event, each event has two parents. One parent has the same
creator (we call that one the self-parent), and the other has a

13200 transactions per second in 2015 [14].
265,000 transactions per second in 2017 [15].
3As it happens, none of the minor errors we found appear to affect

the implemented online algorithm.

A1

A2

Alice

B1

B2

B3

B4

B5

Bob

C1

C2

C3

Cathy

D1

D2

Dave

Time

Figure 1: A Hashgraph

different creator (we call it the other-parent). Honest peers
do not create forks, where a fork is defined as two events
with the same creator in which neither is a self-ancestor of
the other.4 In other words, the events created by an honest
peer will form a chain.

We can visualize a hashgraph as shown in Figure 1. In
this example, all peers are behaving honestly.

In the Hashgraph network, each peer periodically chooses
another at random and sends that peer its latest event. The
recipient then creates a new event, with its own latest event
as self-parent and the event it just received as other-parent.
Every event is digitally signed, so there can be no dispute
over who created it. Each event also contains the hashes of
its two parents, so there is no dispute over parentage either.
The recipient of the event will request from the sender any of
the event’s ancestors that it does not have. (For simplicity,
we will ignore that part of the protocol in what follows.)
The recipient also puts a timestamp into the event, which
is ultimately used to determine a consensus timestamp for
other events.

Finally, each event contains a payload of transactions.
When a peer wishes to inject a new transaction into the
network, it stores it in a buffer of outgoing transactions.
The next time it creates an event (this happens multiple
times per second), it uses the contents of its buffer as the
new event’s payload. Transactions are just along for the ride
in the consensus algorithm, so we will discuss them little.

In the example, Dave sent D1 to Cathy, resulting in
Cathy creating C2. Then Cathy sent C2 back to Dave, re-
sulting in Dave creating D2. Bob sent B1 to both Alice and
Cathy, resulting in A2 and C3. At about the same time,
Alice sent A1 to Bob, resulting in B2. Alice sent A2 to Bob,
resulting in B3. Cathy sent C3 to Bob, resulting in B4.
Finally, Dave sent D2 to Bob, resulting in B5.

The algorithm partitions events into rounds, in a manner
that is easy for all peers to agree on. The first event created
by a peer in a round is called a witness. (Note that dishonest
peers may have multiple witnesses in a single round.) A
witness that is quickly propagated to most peers is called
famous. Identifying the famous witnesses is the main job of
the consensus algorithm.

Each round, the algorithm selects one famous witness
from each peer that has one to be a unique famous witness.

4A self-ancestor is an ancestor using only self-parent edges.

2

An honest peer will have at most one witness per round, so if
that witness turns out to be famous, it will also be unique. If
a dishonest peer happens to have multiple famous witnesses,
one of them is selected.

We say that an event has been received by the network
in the first round in which it is an ancestor of all the unique
famous witnesses. The round received is the primary de-
terminer of an event’s place in the order. Ties are broken
using a consensus timestamp that is computed using the
unique famous witnesses. Any remaining ties are broken in
an arbitrary but deterministic way. Finally, the ordering
of transactions is determined by the ordering of the events
in which they reside, with transactions in the same event
ordered by their position in the payload.

2 The Algorithm

We will begin by reviewing the Hashgraph consensus algo-
rithm [2], and defer discussion of the formalization until Sec-
tion 3. We will develop the algorithm in pieces, establishing
the properties of those pieces as we go. But first, the algo-
rithm relies on the following assumptions:

1. The network is asynchronous. However, the adversary
cannot disconnect honest peers indefinitely; every hon-
est peer will eventually communicate with every other
honest peer.

2. Every peer can determine any event’s creator and par-
ents. In the real world, this assumption means that the
adversary has insufficient computing power to forge a
digital signature, or to find two events with the same
hash.

3. A supermajority (defined to mean more than two-
thirds) of the peers are honest.

4. The coin mechanism discussed below satisfies a proba-
bility assumption. (Section 2.4.1.)

5. Various uncontroversial mathematical assumptions
hold. These are discussed in Section 3. For example,
the parent relation is well-founded. These assumptions
would ordinarily go unremarked, but formal verifica-
tion requires that they be specified.

For convenience, we will also assume that there are at
least two peers. (If there is only one peer, the consensus
problem is trivial.)

Suppose x and y are events. We will write x ≤ y when x
is a (non-strict) ancestor of y, and x < y when x is a strict
ancestor of y. We say x is a self-ancestor of y (and write
x v y) when x is an ancestor of y using only self-parent
edges, and we write x @ y for the strict version. In all cases,
note that the older event is on the left.

We will refer to events created by an honest peer as hon-
est events. We will refer to a set of events whose creators
constitute a supermajority of the peers as a supermajor set.
We will take N to be the total number of peers.

2.1 Seeing

Recall that events x and y form a fork if they have the same
creator, and if x 6v y and y 6v x. Note that forks are defined
so that no event forms a fork with itself. The main property
of honest peers is they never create forks.

We say that y sees x (written x E y) if (1) x ≤ y and (2)
there does not exist any fork z, z′ such that z, z′ ≤ y and
creator(x) = creator(z). Sees is the same as ancestor except
that when an event observes a fork, it blacklists the fork’s
creator and will see none of the fork’s creator’s events.

This brings us to the algorithm’s main technical concept:

Definition 2.1 We say that y strongly sees x (written x�
y) if there exists a supermajor set Z, such that for all z ∈ Z,
x E z ≤ y.

Informally, for y to strongly see x means that x has made
its way to most of the network, within the subgraph visible
to y, with hardly anyone observing x’s creator cheat.

For example, consider Figure 1. Every peer is behaving
honestly, so every ancestor is seen. Then we can say that B4
strongly sees B1, using A2, B4, and C3 as intermediaries.
(B4 has no intermediary on Dave, but it does not need one.
Three intermediaries is enough, since 3 > 2/3 · 4.) B4 also
strongly sees D1, using B4, C3, and D1 as intermediaries.
B4 does not strongly see A1 or C1, as it has only two inter-
mediaries for each. However, B5 does strongly see C1, using
intermediaries B5, C2, and D2. In most of these cases, other
choices could be made for the intermediaries as well.

We can state some useful properties of strongly-seeing:

Lemma 2.2

1. If x� y then x < y.

2. If x v y � z then x� z.

3. If x� y ≤ z then x� z.
Proof

For (1), suppose x � y. We can immediately see that
x ≤ y, but we also have x 6= y. Since y strongly sees x,
there must be intermediaries on a supermajority of peers,
at least one of which must not be y’s creator. (Since we
assume there are at least two peers, a supermajority is
at least two.) Let z be one such. Then x E z < y, so
x < y.

For (2), observe that x v y E z implies x E z, since x
and y have the same creator, so any fork on x’s creator
is a fork on y’s creator. (3) is immediate by transitivity
of ancestor.

We can now state the main technical lemma, which states
that at most one side of a fork can be strongly seen, even
by different events:

Lemma 2.3 (Strongly Seeing) Suppose x � v and y �
w. Then x and y do not form a fork.
Proof

Let Z = {z | x E z ≤ v} and Z′ = {z′ | y E z′ ≤ w}. By
the definition of strongly-sees, Z and Z′ are supermajor
sets. Also recall that a supermajority of peers are honest.
Any three supermajorities have an element in common.
Therefore there exist events z ∈ Z and z′ ∈ Z′ such z
and z′ share the same creator, and that creator is honest.
Since their creator is honest, either z v z′ or z′ v z.
Assume the latter. (The former case is similar.) Then
x, y ≤ z. Thus x and y cannot form a fork, since x E z.

The definition of strongly-sees limits the influence of dis-
honest peers, since at most one side of a fork can be strongly
seen. This is helpful in various ways; one important way is
it prevents dishonest peers from obtaining extra votes in
an election by creating extra witnesses, since votes must be
strongly seen to count.

3

2.2 Rounds

Every event is assigned to a round. (Note that the round an
event belongs to is different from the round that it is received
by the network.) Initial events belong to round zero. For
a non-initial event x, let i be the maximum of x’s parents’
rounds. Then x belongs to round i, unless x strongly sees
events in round i on a supermajority of peers, in which case
x belongs to round i+ 1.

For example, consider Figure 1. A1, B1, C1, and D1 are
initial events, so they belong to round 0. For every other
event, the maximum of the parents’ rounds is 0. Thus, every
other event also belongs to round 0, except B5. As noted
above, B4 can strongly see B1 and D1, but not A1 or C1,
so it remains in round 0. However, B5 strongly sees B1, C1,
and D1, so it advances to round 1.

The first event in a round on each peer (or first events, in
the case of a dishonest peer) are called witnesses. Witnesses
are the events that can cast votes in an election.

In Figure 1, the witnesses are A1, B1, C1, and D1
(round 0), and B5 (round 1).

Note that if a peer has not heard from anyone in a while,
it is possible for it to skip one or more rounds when it catches
up. Thus, a peer might not have a witness in any particular
round. Conversely, a dishonest peer can have multiple wit-
nesses in a round, but (by Lemma 2.3) at most one of them
can be strongly seen.

Two important properties of rounds follow more-or-less
directly:

Lemma 2.4 Suppose i < j and x belongs to round j. Then
there exists a supermajor set of round i witnesses W , such
that for all w ∈W , w � x.

Lemma 2.5 Suppose x and y are events. If there exists a
supermajor set W such that for all w ∈ W , x ≤ w � y,
then y’s round is strictly later than x’s round.

The main property we wish to establish about rounds is
progress, which says that every round is inhabited.

Lemma 2.6 (Broadcast) Suppose x is an honest event.
Then there exists an honest event y such that, in its ances-
try, x has reached every honest peer. That is, for every hon-
est peer a, there exists z created by a, such that x ≤ z ≤ y.

Proof Sketch

By induction on the number of honest peers, using the
assumption that every honest peer eventually communi-
cates with every other honest peer.

Lemma 2.7 (Progress) Every round is inhabited.

Proof

We prove the stronger property that for every round i,
there exists an inhabitant of some round j ≥ i. The
inhabitant can then be wound back to i using Lemma 2.4.

The proof is by induction on i. The case i = 0 is im-
mediate, so suppose i > 0. By induction there exists
an inhabitant x of round i− 1. Using Lemma 2.6, there
exists y such that x has reached every honest peer in
y’s ancestry. And again, there exists z such that y has
reached every honest peer in z’s ancestry.

Suppose a is an honest peer. We show that there exists
v created by a that x ≤ v � z. Since the honest peers

constitute a supermajority, it follows by Lemma 2.5 that
z’s round is later than i− 1, and is thus at least i.

By the specification of y, there exists v created by a such
that x ≤ v ≤ y. It remains to show v � z. For every
honest peer b, by the specification of z there exists w
created by b such that y ≤ w ≤ z. Since a is honest,
v E w ≤ z. Since the honest peers constitute a super-
majority, v � z.

2.3 Voting

One cannot use the raw witnesses to determine the round an
event was received by the network, because one can never
be sure that one has observed all the witnesses. Instead, we
will use the notion of a famous witness—eventually everyone
will know all the famous witnesses in any given round. The
main function of the consensus algorithm is to determine
which witnesses are famous.

Fame is determined by an election. Votes are cast by
witness events, not by peers. This is important because
one peer has no way of knowing what another peer knows.
In contrast, if a peer is aware of an event at all, it knows
that event’s entire ancestry. Thus, if voting is determinis-
tic, each witness’s vote can be determined by everyone who
is aware of the witness, without any additional communica-
tion. However, votes will be “collected” only from strongly-
seen witnesses, so there can be at most one meaningful voter
per peer per round.

We will refer to the witness whose fame is being deter-
mined as the candidate, and each witness that is casting
votes on the candidate’s fame as the voter. The election
begins d rounds after the candidate’s round, where d is a
parameter that is at least 1. Thus if the candidate belongs
to round i, the voters in the first round of the election belong
to round i+ d.

In the first round of an election, each voter will vote yes if
the candidate is among its ancestors. (In essence, you think
someone is famous if you have heard of them.) In successive
rounds, each voter votes the way it observed the majority
vote in the previous round.

We say that a round of an election is nearly unanimous if
voters on a supermajority of peers vote the same way. (Note
that this is a stronger condition than merely a supermajority
of the voters, since some peers might not be voting.) If
voter ever observes a nearly unanimous result in the previous
round, then the vote in the current round will be unanimous.
Clearly, once the election becomes unanimous, it will stay so.
Thus we can end the election as soon as any event observes
a nearly unanimous result the previous round.

Coins Under normal circumstances, this process will come
to consensus quickly, but an adversary with sufficient control
of the network can prevent it. Deterministically, the prob-
lem is insurmountable [8], but, as usual, it can be solved
with randomization.

Every c rounds (a parameter at least d+ 3), the election
will employ a coin round: Every voter who sees a nearly
unanimous result the previous round will continue to vote
with the majority. However, the remaining voters will de-
termine their votes using a coin flip. All the voters who
saw a nearly unanimous result will certainly vote the same
way, and eventually—by chance—the coin flippers will also
vote that way. The following round, every voter will see a

4

unanimous result and the election will end.5

Definition 2.8 (Voting) Suppose x is a round i witness
and y is a round j witness, with i+ d ≤ j. Then vote(x, y)
(that is, y’s vote on x’s fame) and election(x, y, t, f) (that is,
the votes on x’s fame observed by y are t yeas and f nays)
are defined simultaneously as follows:

� If i + d = j then vote(x, y) is yes if x ≤ y, and no
otherwise.

� If i+d < j and (j− i)mod c 6= 0 and election(x, y, t, f),
then vote(x, y) is yes if t ≥ f and no otherwise.

� If i+d < j and (j− i)mod c = 0 and election(x, y, t, f),
then

vote(x, y) =

 yes t > 2/3 ·N
no f > 2/3 ·N
coin(y) otherwise

� If i+ d < j, then election(x, y, t, f) holds if and only if:

W = {round j − 1 witnesses w such that w � y}
t = |{w ∈W | vote(x,w) = yes}|
f = |{w ∈W | vote(x,w) = no}|

In the above definition, coin(y) is a pseudo-random coin
flip computed by drawing a bit from the middle of a cryp-
tographic hash of y. It is important that the coin flip is
pseudo-random, not truly random, so that other peers can
reproduce it.

Definition 2.9 (Decision) Suppose x is a round i witness
and y is a round j witness, where i + d < j and j is not a
coin round (that is, j − i mod c 6= 0). Suppose further that
election(x, y, t, f). Then y decides β on x’s fame (written
decide(x, y, β)), if t > 2/3 ·N and β = yes, or if f > 2/3 ·N
and β = no.

The outcome of the election is determined as soon as any
peer decides, but other peers might not realize it right away.

2.4 Consensus

For the algorithm to work, we require four properties:

1. Decisions are pervasive: once one peer decides some-
one’s fame, that decision propagates to every other
peer. (Corollary 2.11.)

2. Every round will have at least one famous witness.
(Theorem 2.13.)

3. Late arrivals are not famous: if a witness is not well
disseminated within d+1 rounds (the earliest a decision
can be made), it will not be famous. (Corollary 2.15.)

4. Termination: eventually every witness will have its
fame decided. (Theorem 2.17.)

Lemma 2.10 (Decision-Vote Consistency) Suppose
w, x, and y are witnesses, where x and y belong to the same
round. If decide(w, x, β) and vote(w, y) = β′ then β = β′.

5This is an important theoretical property, but as a practical mat-
ter, in the unlikely event an adversary has enough control over the
network to force coin rounds, it will be able to grind the algorithm to
a halt for rounds exponential in the number of peers.

Proof

Let j be the round of x and y. Observe that
vote(w, y) is given by the second case of the def-
inition of voting. Unpacking the definitions, let
election(w, x, t, f) and election(w, y, t′, f ′). Let Vz =
{round j − 1 witnesses v such that v � z}.
Suppose β = yes. (The other case is similar.) Then
|T | > 2/3 · N where T = {v ∈ Vx | vote(w, v) = yes}.
Thus T is a supermajor set. By Lemma 2.4, Vy is also a
supermajor set. Observe that T and Vy are both sets of
round j − 1 witnesses. Any two supermajorities of the
same set have a majority in common. Thus a majority
of Vy agrees with T , but T all vote yes. Hence t′ > f ′ so
β′ = yes.

Note that the proof illustrates why decisions cannot be
made in coin rounds. In a coin round, y would have to see a
supermajority to determine its vote, not merely a majority,
and we cannot guarantee a supermajority. Thus the lemma
would fail to hold.

Corollary 2.11 (Propagation) Suppose x makes a deci-
sion on w. Then in every round after x’s, except coin
rounds, every witness decides the same way as x did.

Proof Sketch

Let j be the round of x. By Lemma 2.10, every witness in
round j votes β. It is easy to see that unanimity persists.
Thus every witness in any round after j decides β, unless
it is prohibited from doing so because it is a coin round.

An easy corollary is that all decisions agree:

Corollary 2.12 (Consistency) Suppose decide(w, x, β)
and decide(w, y, β′). Then β = β′.

Proof

Let z be a witness in a later round than x and y that is
not a coin round. (Such a witness exists by Lemma 2.7.)
By Corollary 2.11, decide(w, z, β) and decide(w, z, β′).
Hence β = β′.

Theorem 2.13 (Existence) Every round has at least one
famous witness.

Proof

If S is a set of events, define backward(j, S) =
{w | w is a round j witness and ∃v ∈ S.w � v}.
Suppose S is an inhabited set of round k witnesses and
j < k. By Lemma 2.4, 2/3 ·N < |backward(j, S)| ≤ N .

Let i be arbitrary, and let z be an arbitrary witness in
round i+ d+ 2, then let:

S3 = {z}
S2 = backward(i+ d+ 1, S3)
S1 = backward(i+ d, S2)
S0 = backward(i, S1)

Now consider a bipartite graph between S0 and S1, where
there is an edge between x ∈ S0 and y ∈ S1 if x ≤ y.
Since strongly-seeing implies ancestor, Lemma 2.4 tells
us that every event in S1 is the terminus of more than
2/3 ·N edges. Thus there are over 2/3 ·N · |S1| edges total.
Since there are at most N events in S0, by the pigeonhole
principle there is at least one event in S0 that is the origin

5

of over 2/3 · |S1| edges. Let x be such an event. We will
show that x is famous.

By the specification, x is an ancestor of over two-thirds
of the events in S1. Thus, over two-thirds of S1 will vote
yes. We claim that every event in S2 will vote yes. It
follows that z will decide yes. (We know i + d + 2 will
not be a coin round since c ≥ d+ 3 by assumption.)

Suppose y ∈ S2. The events sending votes to y are
exactly backward(i + d, {y}) and, as above, 2/3 · N <
|backward(i+ d, {y})|. Thus, the events in S1 voting yes
and the events in S1 sending votes to y are both super-
major, so they have a majority in common. Thus y will
see more yeas than nays, and will vote yes itself.

Lemma 2.14 If vote(x, y) = yes then x ≤ y.

Proof Sketch

By well-founded induction on y using the strict-ancestor
order (<). In the first voting round, a voter will vote
yes only if it is a descendant of x. Thereafter, a voter
cannot vote yes without receiving some yes votes (half
in regular rounds and a third in coin rounds), and one
only receives votes from ancestors.

Corollary 2.15 (No Late Fame) Suppose x is a round i
witness and y is a round j witness, where i + d < j and
(j − i) mod c 6= 0. If x 6≤ y then decide(x, y, no).

Proof

Any voter sending votes to y must be an ancestor of y,
and therefore it cannot be a descendant of x. Thus, by
Lemma 2.14, y will see only no votes. Since j is a round
in which one is permitted to decide, y will decide no.

2.4.1 Termination

The delicate aspect of the termination proof is the proba-
bility assumption. There are two things going in the prob-
ability assumption:

The first is just a fact from probability. With probabil-
ity one, a sequence of independent random variables, each
with a finite range (in our case an N -tuple of booleans), will
eventually hit a target value, provided that target is speci-
fied in such a way as makes reference only to earlier values
in the sequence.6

The second is more subtle. We assume that the above
holds even though coin flips are not actually random. That
is, we assume that the coin flip, which is actually pseudo-
random, behaves on honest peers as though it really is ran-
dom. Certainly any peer can easily dictate an event’s coin
flip (which is drawn from a cryptographic hash of the event)
by tweaking the event’s payload, but we assume honest peers
will not do that. Beyond that, in principle the adversary
might orchestrate the network in order to control the pay-
loads and thereby dictate the coin flips. We assume that it
has insufficient computing power to do so, or least that it
cannot do so forever.

We will not reason explicitly about probability. Instead,
we will simply assume that the coins eventually agree with
the target value. Put more precisely, we assume there is
a sample space that dictates random outcomes. Rather
than equip the sample space with a measure and assume—or
prove—that agreement takes place in a subset of measure 1,

6Without the proviso, one could prevent hitting the target by just
setting the target to any value other than the one obtained.

we will instead just restrict our attention to points in the
sample space in which agreement takes place. This is for-
malized in Section 3.6.

Lemma 2.16 (Good Coins) Suppose x is a round i wit-
ness. Then there exists a round j > i, a round j witness y,
and a boolean β such that:

1. (j − i) mod c = 0,

2. β = yes if and only if y receives as many yes votes for
x as no votes, and

3. for all honest round j witnesses w, coin(w) = β.
Proof Sketch

We construct our sequence by looking at every c-th round
starting at i+c. So let rk = i+c ·(k+1). Suppose round
rk has mk honest witnesses. Note that mk is at most
the number of honest peers. Let Xk be the mk tuple
consisting of the coin for every honest, round rk witness.

For every k, let yk be an arbitrary round rk witness. Let
βk = yes if and only if y receives as many yes votes on
x than no votes. Let the target Tk be the mk tuple in
which every element is βk.

By the probability assumption, there exists k such that
Xk = Tk. Let j = rk and y = yk and β = βk. The
required properties hold by construction.

Theorem 2.17 (Termination) For every witness x, there
exists z and β such that decide(x, z, β).
Proof

Let i be the round of x. Let j, y, and β be as given by
Lemma 2.16. We claim that every round j vote will be
β. Then, let z be an arbitrary round j + 1 witness. By
Lemma 2.4, z receives votes from a supermajor set, and
j + 1 is not a coin round, so decide(x, z, β).

To show the claim, suppose w is a round j witness. If w
uses its coin, the result is immediate. Suppose, instead,
w receives a supermajority. As we have seen before, when
there is a supermajority, every witness (in particular, y)
will receive a majority that agrees with the supermajor-
ity, and y receives a majority of β. Thus, the super-
majority that w receives (and therefore w’s vote) must
be β.

At this point we know that all peers can agree on the
identity of the famous witnesses: For any given witness,
eventually someone will decide (Theorem 2.17). Once some-
one decides, everyone else will make the same decision in
short order (Corollary 2.11). Once a peer has settled the
fame of every witness it has heard of, it can consider itself
done, since any additional witnesses it hasn’t heard of are
guaranteed not to be famous (Corollary 2.15). Moreover, at
least one famous witness will exist (Theorem 2.13).

2.5 Round Received

At this point the real work is done. Next, we identify at most
one famous witness per peer as a unique famous witness. If
a peer has only one famous witness (as will be always be the
case for honest peers), that famous witness will be unique.
In the unlikely event that a peer has multiple famous wit-
nesses, one of them is chosen to be unique in an arbitrary
but deterministic manner. (Textual comparison of the data
that expresses the event will do fine.)

Then, using the unique famous witnesses, we define an
event’s round received:

6

Definition 2.18 Suppose x is an event. The round x is
received by the network is the earliest round i for which all
the round i unique famous witnesses are descendants of x.

2.6 The Consensus Timestamp

Suppose x is an event that is received in round i. We com-
pute the consensus timestamp for x as the median of the
timestamps assigned to x by the unique famous witnesses
of round i. (If there is an even number of unique famous
witnesses, we take the median to be the smaller of the two
central elements. This provides the useful property that the
consensus timestamp is the timestamp from some particular
peer.)

Suppose y is a round i unique famous witness. The times-
tamp y assigns to x is the timestamp of the earliest z such
that x ≤ z v y. Note that z certainly exists, since x ≤ y,
and that z is uniquely defined since the self-ancestors of y
are totally ordered.

2.7 The Consensus Order

We can now define the consensus order:

Definition 2.19 Suppose x and y are events. Let i and i′

be the rounds x and y are received by the network. Let t and
t′ be the consensus timestamps of x and y. Then x precedes
y in the consensus order if:

� i < i′, or

� i = i′ and t < t′, or

� i = i′ and t = t′ and x is less than y using the arbitrary
comparison used to select unique famous witnesses.

It is clear that the consensus order is a total order. Since
all peers can agree on the unique famous witnesses, they
can all agree on the consensus order. Finally, the order is
immutable: the unique famous witnesses do not change once
determined, and their ancestries never change either.

3 Formalization

Our work builds on lessons learned from a previous effort
to verify the Hashgraph consensus algorithm by Gregory
Malecha and Ryan Wisnesky. In that earlier effort the al-
gorithm was expressed by implementing it as a function in
Gallina (the Coq specification language). This allowed the
code to be directly executed within Coq, and it was thought
that such code could be more easily related to the actual
code in the commercial Hashgraph implementation, Hedera.

However, the specification as a Gallina implementation
was challenging to work with. Although the effort did not
hit a show-stopping problem, the concreteness of the imple-
mentation made it clumsy to work with. Moreover, express-
ing the algorithm using recursive functions, rather than in-
ductive relations, meant that one was denied nice induction
principles.

In this work we started over with new definitions, mak-
ing events and other objects of interest abstract, and using
inductive relations for most definitions. This allowed for
streamlined proofs that usually closely resemble the human-
language proofs, and nice induction principles in most cases.
(An important exception, induction over votes, is discussed
in Section 3.4.)

The axioms that define hashgraphs are just 258 lines.
This is the trusted part of the development, apart from Coq
itself.

The full proof is 14 thousand lines of Coq (version 8.9.1),
including comments and whitespace. It takes 25 seconds to
check using a single core of a 1.8 GHz Intel Core i5. Not
all of these lines are allocated to matters that are conceptu-
ally interesting: the largest and third-largest files (2.6k lines
between them) are dedicated to defining and establishing
properties of the cardinalities of sets, and medians.

We will discuss changes we made from the original algo-
rithm in Baird [2], and then touch on interesting points that
arose during the formalization. The survey here will not be
complete; the complete development is available at:

cs.cmu.edu/~crary/papers/2020/hashgraph-formal.tgz

3.1 Changes from the original algorithm

As typically happens when formalizing a human-language
proof, we did uncover a few errors, but they were minor and
easily corrected.7 These corrections are already reflected in
Section 2:

1. The original definition of strongly-sees was a bit differ-
ent: it said that y strongly sees x if x E z E y (for all
z in some supermajor set). But that definition didn’t
provide the “stickiness” property of Lemma 2.2 (that
is, x� y ≤ w implies x� w) since w might observe a
fork that y does not.

2. Because of that change, strongly-seeing does not nec-
essary imply seeing. The original rule for first-round
voting required that for y to vote yes on x, y must see
x and not merely be a descendant of x. But that meant
that y strongly seeing x was not enough for y to vote
yes for x, which breaks the proof of the existence of
famous witnesses (Theorem 2.13).

3. Originally, when a peer had multiple famous witnesses,
instead of choosing one to consider unique, none of
them were. But then it was not obvious that unique
famous witnesses always exist.

In addition to these changes, we added a careful proof of
Progress (Lemma 2.7). Also, a trivial difference is our first
round is 0, instead of 1. This is preferable so every natural
number is a round number.

3.2 Peers and Events

To illustrate the abstract style we used to formalize the al-
gorithm, these are definitions of peers and events:

Parameter peer : Type.

Axiom peer_eq_dec
: forall (a b : peer), {a = b} + {a <> b}.

The axiom states that it is decidable whether two peers
are the same. This is a good example of the sort of uncontro-
versial mathematical assumption we alluded to in Section 2.
A typical human-language proof would not bother to make
such an assumption explicit.

7These errors pertain to the batch-mode algorithm discussed here,
not to the online algorithm that the Hedera implementation is based
on. We discuss some of the differences in Section 5. For example, the
online algorithm defines strongly seeing somewhat differently.

7

Parameter number_peers : nat.

Axiom number_of_peers
: cardinality (@every peer) number_peers.

Axiom number_peers_minimum : number_peers >= 2.

There exists a natural number that is the number of
peers, and that number is at least two. (In the preceding we
called it N .) The code “@every peer” denotes the set of all
peers.

Parameter honest : peer -> Prop.

Axiom supermajority_honest
: supermajority honest every.

The set of honest peers is a supermajority of the set of
all peers.

Parameter event : Type.

Axiom event_eq_dec
: forall (e f : event), {e = f} + {e <> f}.

Parameter creator : event -> peer.

The equality of events is decidable, and every event has
a creator.

Parameter parents
: event -> event -> event -> Prop.

Axiom parents_fun :
forall e e’ f f’ g,

parents e f g
-> parents e’ f’ g
-> e = e’ /\ f = f’.

Axiom parents_creator :
forall e f g,

parents e f g
-> creator e = creator g.

We write parents e f g when e and f are the self-parent
and other-parent of g. The axioms say parents are uniquely
defined, and the self-parent has the same creator as the
event.

Definition initial (e : event) : Prop :=
~ exists f g, parents f g e.

Axiom initial_decide :
forall e,

initial e \/ exists f g, parents f g e.

An initial event is one without parents, and it is decidable
whether an event is initial.

Inductive parent : event -> event -> Prop :=
| parent1 {e f g} :

parents e f g
-> parent e g

| parent2 {e f g} :
parents e f g
-> parent f g.

Definition self_parent (e f : event) : Prop :=
exists g, parents e g f.

Axiom parent_well_founded
: well_founded parent.

We say parent x y when x is either parent of y, and
self_parent x y when x is the self-parent of y. We as-
sume that the parent relation is well-founded, which means
we can do induction using that relation. (In classical logic,
that is equivalent to saying there are no infinite descending
chains.) From that assumption, we can show that the self-
parent, strict ancestor, and strict self-ancestor relations are
also well-founded.

3.3 Rounds

In Baird [2] the definitions of rounds and witnesses are mu-
tually dependent. As here, a witness was the first event
created by a peer in a round. Unlike here, to advance to
the next round an event would need to strongly see many
witnesses in the current round, while we require it only to
strongly see many events in the current round. It is not hard
to see that the definitions are equivalent, but our version has
the virtue that rounds can be defined without reference to
witnesses.

Our formalization of rounds then is:

Inductive round : nat -> event -> Prop :=
| round_initial {x} :

initial x
-> round 0 x

| round_advance {x y z m n A} :
parents y z x
-> round m y
-> round n z
-> supermajority A every
-> (forall a,

A a
-> exists w,

creator w = a
/\ stsees w x
/\ round (max m n) w)

-> round (S (max m n)) x.

8

| round_nadvance {x y z m n A} :
parents y z x
-> round m y
-> round n z
-> superminority A every
-> (forall a w,

A a
-> creator w = a
-> stsees w x
-> exists i,

i < max m n /\ round i w)
-> round (max m n) x

The first case says initial events belong to round 0. In
each of the other two cases, x’s parents’ rounds are m and
n. Then, in the second case, we advance to the next round
(i.e., give x the round max(m,n) + 1) if there exists a set
of peers A, comprising a supermajority of the peers, such
that for each peer a ∈ A, there exists w created by a in
round max(m,n) where w � x. The third case expresses
the negation of that condition. There S is a “superminor-
ity” of T if S contains at least one-third of T ’s elements.
That is, a superminority is a subset large enough to deny a
supermajority to its complement.

It is necessary to express the conditions for advancing
or not advancing to the next round as a pair of affirmative
properties. One might imagine saying something like:

...
-> (b = true

<->
(.. x stsees enough from this round ..))

-> round (max m n + if b then 1 else 0) x

but with such a definition, the “strongly sees enough” por-
tion could not be implemented, since it could not mention
rounds. Any mention of rounds in that position would be a
non-positive occurrence of the relation being defined, which
is not permissible in an inductive definition.

The benefit to going to the trouble to use an inductive
definition is one can do induction over the derivation of an
event’s round. When one is reasoning about rounds, this
produces exactly the cases you want: one base case, one
inductive case where you advance, and one where you don’t.

3.4 Voting

Expressing voting as an inductive definition is a bit tricky.
We gave vote the type:

sample -> event -> event -> bool -> Prop

Here, vote s x y b means y’s vote on whether x is famous
is b. The s is a point in the sample space, and can be
safely ignored for now. (We discuss the sample space in the
Section 3.6.)

The case for the first round of voting is straightforward:

| vote_first {s x y m n v} :
rwitness m x
-> rwitness n y
-> m < n
-> m + first_regular >= n
-> (Is_true v <-> x @ y)
-> vote s x y v

Here, first_regular is the formalization’s name for the pa-
rameter d, rwitness m x means that x is a round m witness,
and @ means strict ancestor (<, formalized as the transitive
closure of parent). Then y votes yes if y is a strict descen-
dant of x, and no otherwise, provided round(x) < round(y) ≤
round(x) + d.8

The complications begin in the next case:

(* not a coin round *)
| vote_regular {s x y m n t f v} :

rwitness m x
-> rwitness n y
-> m + first_regular < n
-> (n - m) mod coin_freq <> 0
-> election (vote s x) (pred n) y t f
-> ((t >= f /\ v = true)

\/ (f > t /\ v = false))
-> vote s x y v

The first four premises say that more than d rounds have
elapsed since x, and it is not currently a coin round. Then
election (vote s x) (pred n) y t f says that when y
collects votes on x from the previous round, it receives t
yeas and f nays. Then y’s vote is true if t ≥ f and false
otherwise.

The trickiness lies in election. It has type:

(event -> bool -> Prop)
-> nat -> event -> nat -> nat -> Prop

The first argument abstracts over the recursive call to vote,
in order to disentangle election and vote. We fill it in
with vote s x to give it access to everyone’s votes on x.
The second argument is the round to collect votes from; we
fill it in with round(y)− 1.

An auxiliary definition, elector n w y, specifies the
round n witnesses w that can send votes to y:

Definition elector (n : nat) (w y : event) :=
rwitness n w /\ stsees w y.

At this point, we might imagine defining
election V n y t f as follows:

cardinality
(fun w =>

elector n w y /\ V w true) t
/\
cardinality

(fun w =>
elector n w y /\ V w false) f

Indeed, this is a perfectly good definition. However, if we
define election this way, vote is not allowed to call it as
above. Since vote calls election with a recursive instance
of vote, election must use V only positively, and this def-
inition does not (because cardinality does not use its first
argument only positively). Thus vote would be ill-defined.

Instead, we code around the problem:

8This is a minor departure from the definition in Section 2.3. It
is convenient to allow witnesses to vote before the required d rounds
have elapsed, but such early votes are ignored.

9

Definition election
(V : event -> bool -> Prop)
(n : nat) (y : event) (t f : nat)
:=
exists T F,

cardinality
(fun w => elector n w y) (t + f)

/\ cardinality T t
/\ cardinality F f
/\ (forall w, T w

-> elector n w y /\ V w true)
/\ (forall w, F w

-> elector n w y /\ V w false)

We existentially quantify over two sets T and F , where the
intention is that T is the yeas and F the nays. The final
two conjuncts check that every element of T (F) is indeed
an elector and votes yes (no). The previous two conjuncts
check that the cardinalities of T and F are t and f .

Finally, the first conjunct ensures that we are not miss-
ing any votes: If we assume that V does not allow a single
witness to vote both ways (which vote s x will not), it fol-
lows that T and F are disjoint. Thus, in order to check that
every vote is accounted for, we need only check that there
are t+ f electors total.

The remaining two cases of vote implement coin rounds.
They call election in the same manner as above, in order
to find out whether a supermajority already exists.

(* coin round but supermajority exists *)
| vote_coin_super {s x y m n t f} {v : bool} :

rwitness m x
-> rwitness n y
-> m < n
-> (n - m) mod coin_freq = 0
-> election (vote s x) (pred n) y t f
-> (if v then t else f)

> two_thirds number_peers
-> vote s x y v

(* coin round and no supermajority exists *)
| vote_coin {s x y m n t f} :

rwitness m x
-> rwitness n y
-> m < n
-> (n - m) mod coin_freq = 0
-> election (vote s x) (pred n) y t f
-> t <= two_thirds number_peers
-> f <= two_thirds number_peers
-> vote s x y (coin y s)

In the final case, coin y s gives y’s pseudo-random coin flip.

Induction Although Coq accepts the definition of vote,
since all its recursive occurrences are positive, the definition
is still too complicated for Coq to give it a useful induction
principle. It does, however, provide a useful case-analysis
principle. Thus, Coq essentially promises that vote is a
fixed point, but not a least fixed point.

This is inconvenient, because there are many times one
would like to do induction over votes. Fortunately, we can
work around the problem. The recursive instances of vote
always deal with strict ancestors of the vote in question,
so one can employ well-founded induction using the strict-
ancestor relation. Within that induction, one can then do

a case analysis over the vote in question. This provides the
power of the induction principle that one would have liked
Coq to provide automatically.

3.5 Worlds

We use worlds to talk about potentially incompatible evo-
lutions of the hashgraph. (The term is motivated by the
use of the term in Kripke models.) In a modest loosening of
the rules from our informal presentation, we allow that an
event x might have two distinct self-children y and z, even
if x’s creator is honest, provided that y and z exist only in
distinct futures. However, y and z can never coexist in the
same future (again, if the creator is honest). That is, two
events in the same world cannot form a fork on an honest
peer.

Thus, a world is a set of events that is closed under an-
cestor, and contains no forks:9

Definition fork (e f : event) : Prop :=
creator e = creator f
/\ ~ e $= f
/\ ~ f $= e.

Record world : Type :=
mk_world

{ member : event -> Prop;

world_closed :
forall x y,

x @= y -> member y -> member x;

world_forks :
forall a,

honest a
-> ~ exists e f,

member e /\ member f /\
fork e f /\ creator e = a }.

Here @= means ancestor (≤), and $= means self-ancestor (v).
Many facts rely only on the events themselves, not any

worlds they inhabit, but some require a world assump-
tion. For example, consider the strongly seeing lemma
(Lemma 2.3):

Lemma strongly_seeing :
forall W x y v w,
member W v
-> member W w
-> fork x y
-> stsees x v
-> stsees y w
-> False.

Recall that, in the proof, we obtained events z and z′,
sharing the same honest creator, where x E z ≤ v and
y E z′ ≤ w. We concluded that either z v z′ or z′ v z,
since otherwise z and z′ would constitute a fork on a hon-
est peer. But in the formalization, forks are possible—even
on an honest peer—if the sides of the fork belong to differ-
ent futures. Requiring v and w (and therefore z and z′) to
belong to the same world rules that out.

9Note that nothing requires a world to contain all the events, even
at a particular point in time. Thus, for example, we can also use
worlds to express the knowledge that a particular peer has about the
hashgraph.

10

3.6 Pseudo-probability

The first element in our treatment of pseudo-probability is
a sample space. A point in the sample space determines
the outcome of every random or nondeterministic action, as
well as the behavior of the adversary. However, unlike a
true treatment of probability, we do not establish a measure
for the sample space and compute probabilities. Instead, we
will simply exclude any point in the sample space in which
something happens that (informally speaking) has discrete
probability zero. Specifically, we exclude any point that vi-
olates the probability assumption that was given informally
in Section 2.4.1 and formally by eventual_agreement below.

This is formalized as the type sample, which one can
think of as the type of all points in the sample space that
are not being excluded.

Since a point in the sample space determines everything
that takes place, and specifically determines what events get
created, a sample determines a world. We call this the global
world determined by that sample.

global : sample -> world

For now we can think of global as primitive, but once we
develop some more machinery, we can actually define it.

At this point we can state the termination theorem (The-
orem 2.17):

Theorem fame_consensus :
forall s x,

member (global s) x
-> witness x
-> exists y v,

member (global s) y
/\ decision s x y v.

If s is a sample, and x is a witness that gets created in the
timeline resulting from s, then there exists some y from the
same timeline, such that y makes a decision on x.

Recall that termination relied on a good coins lemma
(Lemma 2.16), which we can state thus:

Lemma good_coins :
forall s i x,

rwitness i x
-> exists j y t f b,

i < j
/\ (j - i) mod coin_freq = 0
/\ member (global s) y
/\ rwitness j y
/\ election (vote s x) (pred j) y t f
/\ ((t >= f /\ b = true)

\/ (f > t /\ b = false))
/\ forall w,

member (global s) w
-> rwitness j w
-> honest (creator w)
-> coin w s = b.

3.6.1 Eventual agreement

Good coins depends in turn on the probability assumption.
Before we can state it, we need a little more machinery. The
probability assumption says that eventually all coins will
agree with a target, provided the target is specified using
only information available earlier. We get this notion of
“earlier” from spawn order, defined by:

Axiom spawn_inj :
forall s i j,
spawn s i = spawn s j -> i = j.

Axiom spawn_parent :
forall s x i,
parent x (spawn s i)
-> exists j, x = spawn s j /\ j < i.

Axiom spawn_forks :
forall s i j,
honest (creator (spawn s i))
-> fork (spawn s i) (spawn s j)
-> False.

Axiom honest_peers_sync :
forall s i a b,
honest a
-> honest b
-> a <> b
-> exists j k,

i <= j
/\ j <= k
/\ creator (spawn s j) = a
/\ creator (spawn s k) = b
/\ spawn s j @ spawn s k.

Axiom no_orphans :
forall x, exists s i, x = spawn s i.

Figure 2: Spawn order axioms

spawn : sample -> nat -> event

Suppose s is a point in the sample space. Then there exists
a set S of all the events that will be created in the world s
determines. (In order words, S contains all the elements of
global s.) Then sort S according to the order the events are
created in real time to obtain x0, x1, x2, Then we define
spawn s i = xi. Obviously, the “real time” ordering cannot
be used by any participant, it is used only in reasoning about
the algorithm.

Several axioms (appearing in Figure 2) govern spawn or-
der: (1) No event spawns more than once. (2) An event’s
parents spawn before it does. The next two axioms are gen-
eral rules of hashgraphs that are convenient to formalize in
terms of spawn order: (3) Honest peers do not create forks.
(4) Every honest peer eventually communicates with every
other honest peer. (5) Finally, it is convenient to exclude
any event that is part of no future.

We can define the global world global s using
spawn order as the set of all events x such that
exists i, spawn s i = x. The spawn_parent axiom pro-
vides the world_closed specification, and spawn_forks pro-
vides world_forks.

To define the eventual agreement axiom, we need to for-
malize the notion of a target depending only on earlier infor-
mation. We will say that two samples are similar up to the
ith spawn if their first i spawned events are the same, and
they give the same coin flip for all of them except possibly
the last:

11

Definition similar (s s’ : sample) i :=
(forall j,

j <= i -> spawn s j = spawn s’ j) /\
(forall j,

j < i -> coin (spawn s j) s
= coin (spawn s j) s’).

This is the information the ith event’s coin’s target can de-
pend on, which is why it includes the ith event, but not its
coin. Then the axiom says:

Axiom eventual_agreement :
forall
(n : nat)
(s : sample)
(Q : nat -> event -> Prop)
(P : nat -> sample -> Prop),

(forall i j x, Q i x -> Q j x -> i = j)
-> (forall i x,

Q i x -> honest (creator x))
-> (forall i, cardinality_lt (Q i) n)
-> (forall i k s’,

Q i (spawn s k)
-> similar s s’ k
-> P i s <-> P i s’)

-> exists i v,
(forall x, Q i x -> coin x s = v)
/\ (Is_true v <-> P i s).

This says that, for any n and any sample s, if:

1. Q is a sequence of disjoint sets of honest events, each
of size less than n (e.g., the honest witnesses of each
round), and

2. P is a sequence of predicates (the targets), such that
Pi depends only on events earlier than every event in
Qi,

then there exists some i such that all Qi’s events’ coin flips
agree with Pi.

The axiom’s final antecedent expresses the second con-
dition above. It says if i is a position in the sequence, and k
is the spawn order of some element of Qi, and s′ is another
sample that is similar to s up to the kth spawn, then Pi is
insensitive to whether it sees s or s′.

The alert reader might wonder why P returns a propo-
sition and not a boolean, when that proposition must then
be converted into a boolean (v). This gives us the flexibil-
ity to resolve a technical issue related to Coq’s type system
and constructivity. In the proof of good_coins, one needs
the target to agree with the supermajority, if a supermajor-
ity exists. To ensure this, we make the round i target be
whatever majority is observed by some arbitrary event in
Qi (specifically, we use the first element of Qi to spawn). In
Coq we cannot pluck an element from a set without some
form of the axiom of choice, which we prefer to avoid. How-
ever, we can describe an element, and then state the target
based on that, but we can do that only if we are giving the
target as a proposition rather than a boolean, so we have
access to the needed logical machinery.

4 Fairness

We also formalized an unpublished fairness theorem by
Baird [1].

Lemma 4.1 Suppose d ≥ 2. Suppose also that x is a round
i witness. If there exists y such that x� y and both parents
of y belong to a round no later than i, then x will be famous.

Proof

Suppose w is an arbitrary round i+d witness. We claim
that x ≤ w. It follows that w votes yes. Since w is
arbitrary, every round i + d witness votes yes, so x will
be decided to be famous in round i+ d+ 1.

Since x� y, the set U = {u | x E u ≤ y} is supermajor.
By Lemma 2.4, there exists a supermajor set V of round
i+d−1 witnesses such that forall v ∈ V , v � w. The in-
tersection of three supermajorities is nonempty, so there
exists an honest peer a and events u and v created by
a such that x E u ≤ y and v � w. Since a is honest,
either u v v or v @ u.

If u v v then we are done, since x ≤ u ≤ v ≤ w, so let us
assume v @ u. Then v < y. Thus v is an ancestor of one
of y’s parents, both of whom belong to a round no later
than i. But v belongs to round i+d−1, which is at least
i+ 1 since d ≥ 2. This is a contradiction, since v cannot
belong to a later round than any of its descendants.

Theorem 4.2 (Fairness) If d ≥ 2 then every round’s set
of famous witnesses is supermajor.

Proof

Let i be a round number. By Lemma 2.7, there exists a
round i+1 witness x. By following back x’s ancestry, we
can obtain a round i+1 witness y (possibly x itself), both
of whose parents belong to round at most i. Since neither
of y’s parents belong to round i+ 1, y must strongly see
a supermajor set of round i witnesses. By Lemma 4.1,
all those witnesses will be famous.

The significance of the fairness theorem is that it means
a majority of the famous witnesses in any round must be
honest. Consequently, every event’s consensus timestamp is
governed by honest peers. The timestamp might come from
a dishonest peer, but even if so, it will be bracketed on both
sides by timestamps from honest peers.

The formalization of the fairness theorem and its con-
sequences regarding timestamps is just under 700 lines of
Coq.

5 Further Developments and Future Work

The ultimate goal of this work is a fully verified implemen-
tation of the Hashgraph consensus algorithm. There are a
number of differences between the algorithm given here and
the one that is implemented. We have incorporated many
of them into the formalization already, but some others are
future work.

� We have completed a version of the algorithm that
supports weighted peers (a.k.a., proof-of-stake) instead
of giving an equal weight to every peer. In that ver-
sion, a supermajority of the weight must belong to hon-
est peers. This change is largely straightforward, but
there were some complications in the re-proof of Theo-
rem 2.13 stemming mainly from the need for a weighted
version of the pigeonhole principle.

� The algorithm here is a batch algorithm, while the im-
plemented system is online. Moving to an online ver-
sion requires two main changes:

12

– We cannot permanently blacklist peers who cre-
ate a fork, since this would require retaining in-
formation about them indefinitely. Instead we
introduce a consistent way of establishing prior-
ity between the forked events, and one can only
“see” the higher priority event. This is sufficient
to reestablish Lemma 2.3, since the heart of the
proof was the construction of an impossible event
that sees both sides of a fork, and that remains
impossible. This development is complete.

– Since the participants of the network change
over time, we need a way to deal with changing
weights. (When a participant leaves the network,
we can view that as its weight going to zero.) This
is future work, although a prerequisite (having
weights at all) is already done. The main compli-
cation is ensuring that all peers always agree on
all the weights, when the weights are determined
by previous transactions.

� The algorithm includes some operations that are ex-
pensive to perform and that we want to avoid as much
as possible. A good example is strongly seeing, which
requires one to count all the different peers one can pass
through between one event and another. That involves
exploring many different paths. However, one can show
that one can limit oneself to exploring certain canonical
paths without sacrificing any key properties. A version
incorporating this and other optimizations is complete.

In addition, one would like to establish the fairness theo-
rem for d = 1. This is an important area for research, since
d = 1 is preferable (faster consensus) but provably honest
timestamps are also desirable.

References

[1] Leemon Baird. Personal communication.

[2] Leemon Baird. The Swirlds Hashgraph consensus algo-
rithm: Fair, fast, Byzantine fault tolerance. Technical
Report SWIRLDS-TR-2016-01, Swirlds Inc., May 2016.

[3] Leemon Baird, Mance Harmon, and Paul Madsen.
Hedera: A public Hashgraph network & governing
council. White paper at https://www.hedera.com/
hh-whitepaper-v2.0-17Sep19.pdf, August 2019.

[4] Leemon Baird and Atul Luykx. The Hashgraph pro-
tocol: Efficient asynchronous BFT for high-throughput
distributed ledgers. In IEEE International Conference
on Omni-layer Intelligent Systems (COINS), 2020. To
appear.

[5] Bruno Barras, Samuel Boutin, Cristina Cornes, Ju-
dicaël Courant, Jean-Christophe Filliâtre, Eduardo
Giménez, Hugo Herbelin, Gérard Huet, César Muñoz,
Chetan Murthy, Catherine Parent, Christine Paulin-
Mohring, Amokrane Säıbi, and Benjamin Werner.
The Coq Proof Assistant Reference Manual. INRIA-
Rocquencourt, CNRS and ENS Lyon, 1996.

[6] Miguel Castro and Barbara Liskov. Practical Byzan-
tine fault tolerance. In Third Symposium on Operat-
ing Systems Design and Implementation, New Orleans,
Louisiana, February 1999.

[7] Sisi Duan, Michael K. Reiter, and Haibin Zhang.
BEAT: Asynchronous BFT made practical. In ACM
SIGSAC Conference on Computer and Communica-
tions Security, January 2018.

[8] Michael J. Fischer, Nancy A. Lynch, and Michael S.
Paterson. Impossibility of distributed consensus with
one faulty process. Journal of the ACM, 32(2):374–382,
April 1985.

[9] Leslie Lamport, Robert Shostak, and Marshall Pease.
The Byzantine generals problem. ACM Transactions
on Programming Languages and Systems, 4(3), July
1982.

[10] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and
Dawn Song. The honey badger of BFT protocols. In
ACM SIGSAC Conference on Computer and Commu-
nications Security, pages 31–42, October 2016.

[11] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system. Disseminated to The Cryptography Mail-
ing List, November 2008.

[12] Marshall Pease, Robert Shostak, and Leslie Lamport.
Reaching agreement in the presence of faults. Journal
of the ACM, 27(2), April 1980.

[13] Fred B. Schneider. Implementing fault-tolerant services
using the state machine approach: A tutorial. ACM
Computing Surveys, 22(4), December 1990.

[14] Visa Corporation. Visa Inc. at a glance.
Marketing document at https://usa.visa.
com/dam/VCOM/download/corporate/media/
visa-fact-sheet-Jun2015.pdf, 2015. Retrieved
July 2020.

[15] Visa Corporation. Visa fact sheet. Marketing
document at https://usa.visa.com/dam/VCOM/
download/corporate/media/visanet-technology/
aboutvisafactsheet.pdf, 2020. Retrieved July 2020.

13

