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Abstract

In ML-style module type theory, sealing often leads to sit-
uations in which type variables must leave scope, and this
creates a need for signatures that avoid such variables. Un-
fortunately, in general there is no best signature that avoids
a variable, so modules do not always enjoy principal signa-
tures. This observation is called the avoidance problem. In
the past, the problem has been circumvented using a vari-
ety of devices for moving variables so they can remain in
scope. These devices work, but have heretofore lacked a
logical foundation. They have also lacked a presentation in
which the dynamic semantics is given on the same phrases
as the static semantics, which limits their applications.

We can provide a best supersignature avoiding a variable
by fiat, by adding an existential signature that is the least
upper bound of its instances. This idea is old, but a workable
metatheory has not previously been worked out. This work
resolves the metatheoretic issues using ideas borrowed from
focused logic.

We show that the new theory results in a type disci-
pline very similar to the aforementioned devices used in prior
work. In passing, this gives a type-theoretic justification for
the generative stamps used in the early days of the static
semantics of ML modules. All the proofs are formalized in
Coq.

1 Introduction

One of the most famous contributions of Bob Harper’s in-
tellectual career has been ML-style modules. With Kevin
Mitchell, he was the first to implement the Standard ML
module system. He co-authored the type discipline for SML
modules [19] that developed into the Definition of Standard
ML’s stamp-based semantics [31]. And, with various co-
authors, he wrote a famous series of papers developing the
type-theoretic treatment of ML modules [20, 21, 18, 22, 46,
10, 24].

Harper’s thesis was that the static semantics of ML mod-
ules could and should be explained by type theory. He
argued that type theory—together with proof theory and
category theory—provides the most robust framework for
reasoning about programming. His thesis was ultimately
borne out, at least in part, when, with Chris Stone, he was
able to prove the type safety of Standard ML using the
type-theoretic definition [22], but the Definition’s stamp-
based semantics turned out to be unsuitable for a type
safety proof [49]. Later (with Daniel Lee) we used his type-

theoretic methodology to produce a fully machine-verified
proof of type safety for Standard ML [24, 8].

The mid-to-late 1990s and early 2000s were a fruitful
time for module-oriented type theory. Restricting our at-
tention only to those developments germane to our present
discussion: We saw the development of translucent sums
(a.k.a. manifest types) [18, 25, 30, 27], which justify putting
type definitions into ML signatures. That notion was soon
incorporated in the 1997 revision of the Standard ML def-
inition [32]. Singleton kinds regularized translucency as a
conventional kind discipline [46, 45, 3]. We saw principal sig-
natures for higher-order applicative modules [26], and fully
syntactic signatures [42], meaning that every module phrase
should enjoy a principal signature expressible in the type
theory. And we saw applicative functors that could be ap-
plied to arguments not in named form [39].

What was lacking was a single type theory that could
harmonize all those developments. In 2001, Harper, Derek
Dreyer, and I thought we had found that type theory.

The key idea was that sealing a module (i.e., making it
accessible only through a specified signature) constitutes a
form of computational effect. The notion is that whenever
a module is sealed, an adversary might come in and meddle
with the module’s internals, including its type components,
making it impossible for the module’s client to rely on its
internals.

By viewing sealing as an effect, we were able to harmo-
nize applicative and generative functors in a single setting:
applicative functors are total (i.e., applying them generates
no effect) while generative functors are partial (i.e., applying
them might generate an effect). Also, we were able to use a
static-semantic condition (purity), as opposed to a syntac-
tic condition (e.g., values or paths) to limit which modules
could have types projected from them.

The avoidance problem The identification of sealing as
an effect worked well, and it was eventually published in
2003 [10]. But there was another issue, one that was first
identified by Harper and Lillibridge during their translucent
sums work, and discussed in Lillibridge’s PhD thesis [30]. (A
similar issue arises in existential types with bounded quan-
tification [13].) Sometimes a type variable leaves scope. For
example, consider the SML code:

let
datatype t = C

in
struct val x = C end

end



What is the type of this program? Arguably it ought to be
rejected: since SML datatype declarations are generative,
there is no way to refer to t outside the let, so the program
has no well-scoped type.

But SML does not reject the program. Why not? Alas,
the situation is not always so simple. Consider:

let
structure I = ...

:> sig type t = int val x : t end
in
struct val y = I.x end

end

The signature of the body is sig val y : I.t end, but I
is leaving scope, so that cannot be the type of the let. Since
the definition of I is sealed, I cannot be substituted away.
However, since I.t is specified as equal to int, we can give
the let the signature sig val y : int end.

This example illustrates that we cannot simply reject a
program because a phrase’s type/signature mentions a vari-
able that is leaving scope. We must look for an alternative
type/signature that does not mention that variable.

Without subtyping, all alternatives are equivalent, so one
alternative is just as good as another. However, the type
theory of modules relies on a supersignature relation, and
that means we must find not just any supersignature, but
the best possible supersignature. For example, given the
code:

let
type t = int

in
struct type u = t val x = 12 end

end

it would not be good to infer the
signature sig type u val x : u end. We must infer the
better signature sig type u = int val x : u end.

The avoidance problem is that, in general, there is no
best supersignature that avoids mentioning a variable. For
example, consider the program:

structure M =
let

datatype t = C
in

...
:>
sig
type ’a u = t
datatype v = D of t
val x : int u
val y : bool u

end
end

There are infinitely many incomparable signatures that can
be assigned to M, but there exists no principal signature.
One signature is:

sig
type ’a u
datatype v = D of int u
val x : int u
val y : bool u

end

Given this signature, M.D M.x type checks and M.D M.y
does not. However, we could just as well give D the type
bool u -> v, in which case the opposite would happen. Or
we could give it the type string u -> v, in which case nei-
ther would type check. Without mentioning t, there is no
way to make both type check.

Existential signatures Standard ML resolves this problem
by allowing signatures to refer to type variables that are no
longer in scope. (OCaml takes a different approach, which I
discuss in Appendix A.) For example, in the final program
above, Standard ML of New Jersey reports:

structure M :
sig
type ’a u = ?.M.t
datatype v = D of ?.M.t
val x : int u
val y : bool u

end

Standard ML justifies this using the notion of a genera-
tive stamp (the Definition [31] calls them “type names”), a
dynamically allocated type identifier that outlives the scope
in which it is defined. The odd type ?.M.t is Standard ML
of New Jersey’s way to refer to a type stamp that is not
accessible through any identifier that remains in scope.

Generative stamps resolve the avoidance problem—if no
type ever becomes inaccessible, there is nothing to avoid—
but they are quite dissatisfying from a type-theoretic per-
spective. Furthermore, since some modules must be given
signatures that refer to internal, dynamically allocated state,
it can be difficult to break programs up into units that can
be compiled separately.

In order to put the generative stamps on a sounder type-
theoretic footing, Russo [39] invented existential signatures.
He would give M a signature something like:

∃t.
sig
type ’a u = t
datatype v = D of t
val x : int u
val y : bool u

end

This says that, for some unknown t, M has the signature
given by the existential’s body.

Existential signatures were a big improvement over
stamps in that signatures now had independent meaning,
without reference to dynamically allocated state. Neverthe-
less, Russo showed existential signatures to be equivalent to
the generative stamp mechanism. An existential signature
noted that a new type had been created, and each typing
rule contained machinery to float the existential bindings
upward.

The floating machinery was unusual, and, at the time,
did not seem to emerge organically from a conventional type
theory (see Section 2), so even though it was adopted by
other successful following work, there remained an interest
in resolving the avoidance problem using a more conven-
tional type theory. As it turns out, the floating machinery
does emerge organically from a conventional focused type
theory. The signature-synthesis algorithm developed and
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proven correct here is strikingly similar to Russo’s static se-
mantics, so this work can be seen as the type-theoretic vin-
dication of Russo’s floating machinery, and, by implication,
of the Definition’s generative stamps. But that is getting
ahead of the story.

Harper and Stone [22] proposed an alternative but re-
lated solution. In their elaborative semantics, they would
rewrite the program so that type variables never become in-
accessible to the type theory. Structure M would be rewritten
to something like:

structure M =
struct

structure HIDDEN =
struct

datatype t = C
end

structure VISIBLE =
...
:>
sig

type ’a u = HIDDEN.t
datatype v = D of HIDDEN.t
val x : int u
val y : bool u

end
end

The elaborator would ensure that any mention of M au-
tomatically became M.VISIBLE, so from the programmer’s
perspective, M seems to contain exactly what the program-
mer expects and the hidden field is inaccessible. However,
from the type theory’s perspective, t is still accessible (as
M.HIDDEN.t) so the avoidance problem never arises.

The signature of the elaborated code is:

sig
structure HIDDEN : sig datatype t = C end
structure VISIBLE :

sig
type ’a u = HIDDEN.t
datatype v = D of HIDDEN.t
val x : int u
val y : bool u

end
end

This is very much like Russo’s signature, with the whole
HIDDEN/VISIBLE mechanism playing the role of an existen-
tial signature.

Indeed, Harper, Dreyer, and I [10] eventually employed
an elaborator much like Harper and Stone’s, except we
replaced the HIDDEN/VISIBLE notation with an existential
quantifier. Unlike Russo’s existential, ours had no special
role in the type theory. The type theory treated it as an
ordinary dependent sum, but the elaborator recognized it
and knew to look only in its right-hand component for com-
ponents visible to the programmer.

The one that got away But in 2001, we thought we had a
better idea. The idea was to patch the type system so that,
by fiat, every signature does have a least supersignature not
mentioning any particular variable. We added a signature
∃m:σ1.σ2 which can be thought of as the union of σ2 over

all choices of m:σ1. We wrote the new connective using an
existential quantifier, since it plays a similar role to Russo’s
existential, but it can also be thought of as an indexed union
type.

The defining property of our existential was how it in-
teracted with subtyping:

Γ,m:σ1 ` σ2 ≤ σ Γ ` σ : sig

Γ ` ∃m:σ1.σ2 ≤ σ

Γ `M : σ1 Γ ` σ ≤ [M/m]σ2 Γ,m:σ1 ` σ2 : sig

Γ ` σ ≤ ∃m:σ1.σ2

The witness module M can be a variable, so the latter
rule allows us to derive m:σ1 ` σ2 ≤ ∃m:σ1.σ2. Conse-
quently, we get the following rule for let as a derived rule:

Γ `M1 : σ1 Γ,m:σ1 `M2 : σ2

Γ ` letm = M1 inM2 : ∃m:σ1.σ2

There were two delicate issues arising from our existen-
tial signatures, one minor and one major. The minor is-
sue was the second subtyping rule creates a problem for
a subtyping algorithm. We had a solution to this: a sim-
ple syntactic restriction that prevents problematic subtyping
queries from arising. (More on this in Section 6.3.)

The major issue was the need to extend the metatheory
of the singleton-kind type theory [46, 4] to account for ex-
istentials. This is difficult, for reasons that go beyond the
scope of this paper. However, we thought we had a strategy
to side-step the issue.

The abovementioned syntactic restriction also sufficed
to ensure that singletons never arise in an equivalence-
checking position. That is, we never need to ask whether
M ≈ M ′ : ∃m:σ1.σ2. We did need to deal with existentials
in a binding position, such as m:(∃m′:σ1.σ2) `M ≈M ′ : σ.
That problem we intended to deal with using the meta-rule
(for arbitrary judgement J ):

Γ,m′:σ1,m : σ2 ` J
Γ,m:(∃m′:σ1.σ2) ` J

(wrong)

This proposed rule, motivated by a left-rule from sequent
calculus, would ensure that the singleton-kind metatheory
would never need to see an existential signature, and there-
fore would not need to deal with them.

Unfortunately, the rule is fatally flawed, because it in-
validates the substitution principle. Suppose Γ ` M :
∃m′:σ1.σ2 and Γ,m:(∃m′:σ1.σ2) ` J . The substitution prin-
ciple should give us Γ ` [M/m]J . To push the induction
through the rule above, we need to obtain M ′ : σ1 such that
M : [M ′/m′]σ2. But if M is a variable, it may be that no
such M ′ exists.

We attempted to repair the idea by introducing a choice
operator (inspired by higher-order logic’s choice operator),
which would obtain the σ1 from an ∃m:σ1.σ2, which would
serve as such an M ′ for substitution. But we were never
able to make the choice operator’s metatheory work, and, in
retrospect, this current work explains why we should never
have expected it to work.

Ultimately we adopted an elaborative solution based on
the Harper and Stone’s strategy. We retained the existential
notation but changed its meaning. As far as the type theory
was concerned, ∃m:σ1.σ2 meant exactly the same thing as
the module type theory’s strong sum Σm:σ1.σ2. However,
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the elaborator, when locating a field in a module, would
automatically project the second component from any exis-
tential, thereby making the first component inaccessible to
the programmer.

This solved the practical problem, circumventing the
avoidance problem by keeping any needed variables accessi-
ble to the type theory but inaccessible to the programmer.
However, the elaborative solution seemed inelegant and hin-
dered abstraction, leaving us wistful for the all-type-theory
solution we almost had.

The remainder of the paper is organized as follows. In
Section 2 I discuss the philosophical and practical require-
ments for a “type-theoretic solution.” In Section 3 I review
focused logic and see the key insight that motivates this
work. In Section 4 I review the module type theory I build
on. I give the new elements of the type theory in Section 5
and discuss type checking in Section 6. In Section 7 I com-
pare my system carefully with Russo’s, and draw some con-
clusions about Harper’s original generative-stamps system.
I briefly discuss the Coq formalization in Section 8 and then
conclude in Section 9.

2 Type theory and semantic objects

What constitutes an “all-type theory” solution? The version
of the work we published in 2003 dealt with the avoidance
problem and used types. Why is that not “all-type-theory”?

Indeed, the 2003 paper was but one in a long line that
dealt with the avoidance problem in a similar fashion. The
Definition maintained access to types leaving scope using
generative stamps with global scope. Russo [39] placed the
technique on a type-oriented footing using existential types.
(Later [40], he also used existential types to explain first-
class modules.) The key device was a non-standard rule
allowing existential types to float upward, thereby simulat-
ing the Definition’s global scope. (Much more on this in
Section 7.) All the work that followed (including this work),
although differing in many important ways, did essentially
the same thing when it came to the avoidance problem, al-
beit presented in different ways.

Harper and Stone [22], the 2003 paper, and Dreyer [9]
elaborated modules in such a way that variables were kept
available in strong sums even when they became invisible
to the programmer. Rossberg et al. [38] took elaboration
even further, eschewing a module type theory and instead
elaborating the entire module system into an Fω-like tar-
get language. Rossberg [37] later added first-class modules.
Unlike Stone and Harper, etc., they returned to Russo’s ex-
istential types, instead of strong sums, but they reorganized
so that Russo’s floating machinery appears in only two rules.

All of these (as well as the current work) produce a lan-
guage that is similar as it pertains to avoidance. All of them
use types. So why is another take on the avoidance problem
still needed?

We can coarsely taxonomize module calculi into two ap-
proaches: One is to define a language using whatever data
structures (called semantic objects) are necessary to get the
desired behavior. This approach goes back to Harper [19]
and its best known instance is the Definition [31]. The other
is to provide a type theory capable of faithfully expressing
fundamental elements of modules. In practice, such a type
theory cannot account for all the elements of modules, so
some elaborator invariably is required. This approach goes
back to Harper and Mitchell [20].

The question of what distinguishes type theory from se-
mantic objects is philosophical and also practical. The con-
nections between programming languages, logic, and cate-
gory theory are well-known. Harper refers to these connec-
tions as Computational Trinitarianism [16]: a single sub-
lime entity with three distinct aspects: types (program-
ming), propositions (communication of ideas), and struc-
tures (mathematical constructions). Nothing can be said to
be understood until it can be understood through multiple
lenses. Thus, no type theory can be canonical until it can
be explained in a reasonable logic, or in category theory.1

The type theory we develop here has a strong connection to
focused logic (Section 3), although we will not spell out a
Curry-Howard correspondence in detail.

On the practical side, we require that a type theory en-
joys a dynamic semantics defined on the same phrases as
the static semantics. We are particularly interested in a
structured operational semantics [35]. This allows one to
use the techniques of type theory without additional com-
plication. There are significant advantages to this: One can
define contextual equivalence (and other dynamic equiva-
lences) directly on source programs. Dynamic equivalences
are a prerequisite to formal reasoning about the behavior of
programs, or about the correctness of compilers [7]. One
can also prove a Reynolds-style abstraction theorem [5],
using which one can rigorously establish representation-
independence results that are one of the main reasons to
use modules in the first place. (Adapting those results to
the theory developed here is important future work.)

From this viewpoint, Biswas [2], Russo [39], and
Russo [40] employ the semantic object approach. So do
Rossberg, et al. [38] and Rossberg [37], with the valuable in-
novation that all their “semantic objects” are actually well-
typed syntactic objects expressible in Fω. Thus, they are
not merely data structures for a type checker; they provide
a dynamic interpretation which establishes type safety and
gives a strategy for compilation.

On the other hand, Harper and Stone [22], the 2003
paper, and Dreyer [9] employ type theories, but none of
those type theories deal with the avoidance problem except
through elaboration.

It may be observed that even with the current work
we still do not have an all-type-theory account of modules.
Some features, such as named fields, permutation, and width
subtyping, are probably not hard to accommodate. Others,
notably open declarations, are type-theoretically nonsense
and will probably always be elaborated.

This work even takes a step backward in one area. In
previous work we used effect inference to account for sealing
effects, but here—as we will see—we will use a monad in-
stead. This requires that modules using generativity/sealing
be written in monadic form. I would argue that focused logic
shows that the monad is the “right” way to deal with seal-
ing and generativity. Still, Standard ML works differently,
so we must elaborate something that we need not before.
Nevertheless, we clearly come out ahead: Elaborating to
monadic form is harmless from an abstraction perspective,
while elaborating hidden variables back into scope clearly
breaks abstraction.

1One wag refers to this program as “type-splaining,” a description
I cheerfully accept.
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3 Focusing

Focused logic is a restricted presentation of sequent calcu-
lus. It was first invented by Andreoli [1] as a proof search
strategy that employed the notion of focus to cut down an
otherwise unmanageably large search space. Andreoli ap-
plied the technique to linear logic, but it is not limited to
that.

The connectives are divided into negative and posi-
tive [14], and asynchronous rules (i.e., left rules for posi-
tive connectives, right for negative) are employed first. Syn-
chronous rules (i.e., left rules for negative connectives, right
for positive) can then be employed, but only after taking
focus. Once focus has been taken, only the type under focus
can be decomposed, and focus remains on the type(s) into
which it is decomposed, until proof search reaches a type of
the wrong polarity to remain under focus (i.e., positive on
the left, negative on the right). This dramatically cuts back
the search space, because the order in which asynchronous
rules are applied is immaterial, and once focus is obtained,
only a small number of choices are applicable at each step.
For readers new to focused logic, a good introduction is Sim-
mons [44].

Years later there was an explosion of interest in focused
logic as a variety of new applications were discovered. One
important application is for type theories that give control
over order-of-evaluation [52]. Another application by Bob
Harper and others [29, 41, 43], which directly influenced
this work, is to use focusing as a framework to reconcile
negative and positive connectives in a logical framework.
(The original logical framework [17] supported only negative
connectives.) Interestingly, both applications were to some
extent anticipated by earlier work, the former by call-by-
push-value [28], the latter by Concurrent LF [50, 51], but
the focused presentation generalized the earlier work and
argued for its canonicity.

The same could be said about the current work: We take
the long-standing stamp/existential approach and argue for
its canonicity by placing it on a logical foundation.

Strong and weak sums One way to characterize negative
and positive connectives is this: Negative connectives are
defined by their elimination form (i.e., how they are used),
while positive connectives are defined by their introduction
form (i.e., how they are constructed). For example, the
defining property of a function is that it can be applied to
an argument, so the arrow type is negative. On the other
hand, the defining property of a disjoint sum is that it is
either one thing or another, so the sum type is positive.

As a consequence, negative types have clean, open-scope
elimination forms (e.g., M N or π1M), while positive types
have closed-scope elimination forms that pattern-match on
the intro (e.g., caseM of inlx⇒ N1 | inr y ⇒ N2).

One of the two main signature connectives is the strong
sum, written in Dreyer et al. as Σm:σ1.σ2. This is a depen-
dent form of product, used to implement the signature of a
structure. Thus, the signature:

sig
type t
val x : t

end

is represented something like Σt:Type.t. (We need to develop
some formalities before we can give its precise representa-
tion.)

What makes the sum strong is that its components can
be obtained by projection. (Within the type theory we will
use π1 or π2 instead of the named form—M.t or M.x—used
in ML’s external syntax.) Thus, according to the previous
discussion, we expect the strong sum to be a negative type.
Despite some complications, we can devise a focused logic
that realizes that intuition [6].

In contrast, the components of a weak sum are obtained
by opening the sum for a particular scope. (This form of
sum is also commonly called an existential type [33].) Thus,
the weak sum is a positive type.

The key observation that motivates this work is that exis-
tential signatures are weak sums, and are therefore positive,
not negative. They are defined by how they are constructed:
M belongs to ∃m′:σ1.σ2 exactly when there exists M ′ : σ1

such that M : [M ′/m′]σ2. They are not defined by how they
are used—in fact, our goal is to use them silently.

In this paper, we carry this observation through to a
workable type theory of existential signatures that solves
the avoidance problem. Fortunately, we will not require the
full syntax of focused logic, which is quite baroque. We only
really need three mechanisms: First, we will sort signatures
into negative and positive. Second, a lax modality (a.k.a.
monad) will encapsulate sealing. Third, the monad’s bind
operator will be given a typing rule taken directly from the
left-inversion rules of focused logic.

None of these mechanisms are precisely new. Each
of them, or something similar, appears in prior work on
modules: implicitly in Biswas [2], and more explicitly in
Russo [39] and later Rossberg, et al. [38], among others. The
novelty here is that all of these mechanisms work precisely
as dictated by focused logic, and the resulting language en-
joys a structured operational semantics given directly on the
syntax.

Looking back, it is striking how close we came in 2001.
The subsignature rules governing existential signatures are
used essentially verbatim (although I write them here in a
more modern notation). The incorrect existential-splitting
rule above is very similar to the left-inversion rule for exis-
tentials we use here. And the syntactic restriction to avoid
problematic subsignature queries works just as we intended.

As an aside, we can also see now why the choice-operator
experiment was doomed: Existential signatures are positive,
but the notion of projecting out the first component makes
sense only if they are negative.

4 Preliminaries

We will begin with a pure module calculus that does not
support sealing or generativity. In the absence of seal-
ing/generativity, all modules are transparent, so the avoid-
ance problem does not arise. We will reintroduce sealing in
Section 5.

The pure module calculus is not a contribution of this
work. It is a fragment of the system in Crary [5], which
in turn is adapted from Dreyer [9]. It omits generative
functors, sealing, module bindings at the module level, and
existential-type unpacking at the module level. It also omits
effect inference in the static semantics, as that will be re-
placed by a monad.

The module calculus, even after we extend it with seal-
ing, is not intended to account for all the functionality of ML
modules. We still assume that an elaborator takes care of
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such features as named fields and open declarations. I con-
jecture that named fields could be added without too much
difficulty. However, open declarations, despite being useful,
are type-theoretically nonsense (the language’s very binding
structure becomes dependent on the static semantics) and
will probably always remain the province of elaboration.2

The module calculus can be broken into the static ex-
pressions: kinds (k), type constructors (c and τ , we will use
τ for constructors that are intended to be types), and sig-
natures (σ)—and the dynamic expressions: terms (e) and
modules (M). Signatures serve as the types for modules.
The calculus is designed to respect the phase distinction [21],
meaning that the meaning and equivalence of static expres-
sions can be determined without executing any dynamic ex-
pressions. The syntax (minus sealing) is given in Figure 1.

Constructors and kinds The constructor and kind portion
is the singleton kind calculus of Stone and Harper [46], sup-
plemented with type operators. The type constructors are
all standard. The kind Type contains constructors that hap-
pen to be types. We use the metavariable τ for constructors
that are intended to be types. The kind 1 contains the unit
constructor ?.

The singleton kind [46], S(c), classifies the constructors
that are definitionally equivalent to the constructor c. It
is used to model type definitions and type sharing speci-
fications. Singletons create dependencies of kinds on con-
structors, so function and product kinds take dependent
form, Πα:k1.k2 and Σα:k1.k2, respectively. As usual, when
α does not appear free in k2, we sometimes write Πα:k1.k2

as k1→ k2, and Σα:k1.k2 as k1 × k2.
Constructor equivalence is induced by beta and exten-

sionality rules, together with rules pertaining to singleton
kinds: Singleton introduction says c belongs to S(c), pro-
vided c : Type. (Singletons for higher kinds are definable
using primitive singletons and dependent kinds [46].) The
singleton elimination rule conversely says c : S(c′) implies
c ≡ c′ : Type. Consequently, constructor equivalence is
context-sensitive. For example, we have α:S(int) ` α ≡ int :
Type. Constructor equivalence also depends on the kind at
which constructors are compared. For example, λα:Type.α
and λα:Type.int are non-equivalent at Type→Type, but are
equivalent at the superkind S(int)→ Type.

Terms and modules The syntax for terms is largely stan-
dard. Following Crary [7], the type system imposes a value
restriction on the body of polymorphic functions by requir-
ing they have the form Λα:k.sv , where sv is a class of val-
ues. The value restriction does not interact with the avoid-
ance problem, so we will not discuss it further. The re-
cursion form fixτ e has the type τ , provided e has the type
(unit→ τ)→ τ , and we evaluate fixτ e to e(λ :unit. fixτ e).

3

The module language contains static atomic modules
(L c M), which contain a single constructor; dynamic atomic
modules (〈| e |〉), which contain a single term; functors; pairs;
and let bindings of terms. For simplicity, pairs are non-
dependent (but it would easy to add dependent pairs). For
example, the ML module:

2As it happens, the same elaborative device—identifier
resolution—used to deal with open can also neatly address named
fields [22], but it need not.

3Observe that the argument to e is a value, so this evaluation
behaves acceptably in a call-by-value setting. That would not be the
case with the evaluation to e(fixτ e) that would be implied by a more
conventional typing.

k ::= 1 unit kind
| Type types
| S(c) singleton kind
| Πα:k.k dependent functions
| Σα:k.k dependent pairs

c, τ ::= α
| ? unit constructor
| λα:k.c | c c lambda, application
| 〈c, c〉 pair
| π1c | π2c projection
| unit unit type
| τ1→ τ2 functions
| τ1 × τ2 products
| ∀α:k.τ universals
| ∃α:k.τ existentials

e ::= x
| ? unit term
| λx:τ.e | e e lambda, application
| 〈e, e〉 pair
| π1e | π2e projection
| Λα:k.e polymorphic fun.
| e[c] polymorphic app.
| pack [c, e] as∃α:k.τ existential package
| unpack [α, x] = e in e unpack
| fixτ e recursion
| letx = e in e term binding
| ExtM extraction

M ::= m
| ? unit module
| L c M atomic module
| 〈| e |〉 atomic module
| λα/m:σ.M functor
| MM functor application
| 〈M,M〉 pair
| π1M | π2M projection
| letx = e inM term binding

σ ::= 1 unit signature
| L k M atomic signature
| 〈| τ |〉 atomic signature
| Πα:σ.σ functors
| Σα:σ.σ pairs

Γ ::= ε empty context
| Γ, α:k constr. hypothesis
| Γ, x:τ term hypothesis
| Γ, α/m:σ module hypothesis

Figure 1: Syntax (minus sealing)
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struct
type t = int
val x = 12

end

could be elaborated 〈L int M, 〈| 12 |〉〉.4

Extraction and twinned variables To extract a term from
a dynamic atom, one uses the form ExtM . However, to
extract a type constructor from a static atom, we employ
a judgement rather than a syntactic form. The judgement
Fst(M) � c says that c is the static portion of M .5 In
particular, Fst(L c M)� c.

The reason for this design, invented by Dreyer [9], is it
removes any syntactic dependency of static phrases (such as
types) on terms or modules. By disentangling the singleton
kind calculus from all dynamic phrases, we are able to use
Stone and Harper’s singleton-kind metatheory [46] off the
shelf.

For static extraction to work compositionally, we must
be able to compute the static portion of any module, not
only static-atom literals. The rules for doing so are given in
Figure 2. A subtle point arises: For any module variable m,
we must be able to compute m’s static portion, but of course
that cannot be known, so we must have a type-constructor
variable prepared to stand in for m’s static portion. This
leads to the concept of twinned variables [24]: Every module
variable m is twinned with a constructor variable α, written
α/m, where α is the static portion of m.6 However, when α
is not used, I will often leave it out. Twinned variables are
recorded in the context and static portions depend on them,
so the static portion judgement is written as Γ ` Fst(M)�
c.

Signatures Signature forms include signatures for atomic
modules, applicative functors, and pairs. The signatures for
functors and for pairs are dependent, so one might expect to
write them with a twinned left-hand-side, like Σα/m:σ1.σ2.
However, since a module can never appear within a signature
(signatures being static phrases), the m variable will never
be used, so I do not bother to write it. (As usual, when α
does not appear free in σ2, I sometimes write Σα:σ1.σ2 as
σ1 × σ2.)

In a twinned binding α/m:σ, or in the binding α:σ within
a dependent signature, α stands for the static portion of
some module belonging to σ. Thus, α will have kind Fst(σ),
which stands for the static portion of σ. The definition of
Fst appears in Figure 2. Whenever Γ ` M : σ and Γ `
Fst(M)� c, we have Γ ` c : Fst(σ).

Higher-order singletons The primitive singleton kind S(c)
is well-formed only when c is a type. However, singletons at
higher kinds (written S(c : k)) are definable using dependent
kinds. For example, S(c : k1→k2) = Πα:k1.S(c α : k2), since
a constructor is equivalent to c in kind k1→k2 precisely when
it takes an argument of kind k1 and does with it whatever
c does with it.

4Plus some sort of metadata supporting field resolution [22].
5The name Fst is motivated by the connection to phase separation,

which explicitly renders modules as a pair of a static and dynamic
component.

6An alternative [21, 9] is to use a naming convention to associate
module and constructor variables, but this complicates binding and
substitution. Sorting out those complications carefully leaves you
with something very close to twinned variables.

Fst(σ) : kind

Fst(1)
def
= 1

Fst(L k M) def
= k

Fst(〈| τ |〉) def
= 1

Fst(Πα:σ1.σ2)
def
= Πα: Fst(σ1).Fst(σ2)

Fst(Σα:σ1.σ2)
def
= Σα: Fst(σ1).Fst(σ2)

Γ ` Fst(M)� c

α/m ∈ Dom(Γ)

Γ ` Fst(m)� α Γ ` Fst(?)� ? Γ ` Fst(L c M)� c

Γ ` Fst(〈| e |〉)� ?

Γ, α/m:σ ` Fst(M)� c

Γ ` Fst(λα/m:σ.M)� λα: Fst(σ).c

Γ ` Fst(M1)� c1 Γ ` Fst(M2)� c2

Γ ` Fst(M1 M2)� c1c2
Γ ` Fst(〈M1,M2〉)� 〈c1, c2〉

Γ ` Fst(M)� c

Γ ` Fst(πiM)� πic

Γ ` Fst(M)� c

Γ ` Fst(letx = e inM)� c

Figure 2: Static portions

We can use the same technique to define singleton sig-
natures. Suppose c : Fst(σ). Then the singleton signature
S(c : σ) contains all modules in σ whose static component
is equivalent to c. For instance S(c : L k M) = L S(c : k) M. The
definitions of higher-order singletons are given in Figure 3.
Note that when the static component of σ is trivial (i.e.,
when Fst(σ) = 1), S(c : σ) = σ, since all static components
are equivalent at kind 1.

Semantics The static semantics is given by several judge-
ments, summarized in Figure 4. The full rules are given in
Appendix B.

The dynamic semantics is given by a standard, call-by-
value, structured operational semantics, written Γ ` e 7→ e′

and Γ ` M 7→ M ′. (It is convenient to be able to evaluate
open terms, but in the typical case in which Γ is empty, we
will omit the turnstile.)

5 Positive Signatures and Lax Modules

The signatures we considered in the pure calculus are neg-
ative. We now add positive signatures as a new syntactic
class:

negative signatures σ ::= · · · | ©ρ
positive signatures ρ ::= ↓σ | ∃α:k.ρ

As usual in recent presentations of focused logic, we use
an explicit down-shift connective (↓) to include negative sig-
natures into the positives. It would not be uncommon also
to include positive signatures into the negatives using an
explicit up-shift (↑). However, up-shift often creates sticky
technical problems in focused logics [51, 6], problems that
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S(c : k) : kind

S(c : 1)
def
= 1

S(c : Type)
def
= S(c)

S(c : S(c′))
def
= S(c)

S(c : Πα:k1.k2)
def
= Πα:k1.S(c α : k2)

S(c : Σα:k1.k2)
def
= S(π1c : k1)× S(π2c : [π1c/α]k2)

S(c : σ) : signature

S(c : 1)
def
= 1

S(c : L k M) def
= L S(c : k) M

S(c : 〈| τ |〉) def
= 〈| τ |〉

S(c : Πα:σ1.σ2)
def
= Πα:σ1.S(c α : σ2)

S(c : Σα:σ1.σ2)
def
= S(π1c : σ1)× S(π2c : [π1c/α]σ2)

Figure 3: Higher-order singletons

` Γ ok context formation
Γ ` k : kind kind formation
Γ ` k ≡ k′ : kind kind equivalence
Γ ` k ≤ k′ : kind subkind
Γ ` c : k constructor formation
Γ ` c ≡ c′ : k constructor equivalence
Γ ` σ : sig signature formation
Γ ` σ ≡ σ′ : sig signature equivalence
Γ ` σ ≤ σ′ : sig subsignature
Γ ` e : τ term formation
Γ `M : σ module formation
Γ ` Fst(M)� c static portion

Figure 4: Static semantic judgements

are solved by replacing the up-shift with a lax modality [12].
The lax modality (also known as a monad [34]) isolates terms
that depend on eliminating positive types, so they do not
infect the negative types.

It appears that up-shift would create problems in this
setting as well. With up-shift, it would be necessary to
define a Fst translation for positive types, in particular for
existential signatures. This would presumably have to be
some sort of existential kind, and extending the singleton-
kind theory to support existential kinds is exactly the sort
of complication we are hoping to avoid. With a lax modality
instead, we will be able to avoid ever asking for the Fst of a
positive signature.

But even if up-shift could work out (perhaps it can), it is
still worthwhile to adopt the lax modality, because it offers
an opportunity to simplify the treatment of sealing. Monads
have long been recognized as a mechanism to isolate effectful
computations within an otherwise-pure language. In this
case the effect of interest is sealing.

We have two sorts of modules. Ordinary modules (M)
are pure (they contain no sealing or generativity) and in-
habit negative signatures. Lax modules (L) may contain
sealing/generativity, and inhabit positive signatures. The
signature ©ρ contains modules of the form circ L, which is
a suspension of the lax module L. (Note that we use the
monad only for sealing effects, not for ordinary term-level
computational effects.)

modules M ::= · · · | circ L
lax modules L ::= retM |M :> σ

| bindα/m←M in L
| unpack [α, x] = e inL

terms e ::= · · · | letα/m = L in e

There are four forms of lax module. The form retM is the
usual monadic unit. The other base case is the sealing form
M :> σ. This is like ret except it imposes a signature. The
monadic bind forces a suspension, possibly releasing effects.
Finally, the form to unpack an existential type is also a lax
module, since the term could compute types dynamically
and must therefore be treated as generative.

We allow the form to let-bind a module in a term to take
a lax module. This is consistent with Crary [5], wherein the
module being let-bound is permitted to be impure.

Note that let-binding for lax modules is syntactic sugar:7

letα/m = L1 in L2
def
= bindα/m← circ L1 in L2

Also note that in this formulation, we need not have a
signature form for generative functors. Instead, a generative
functor is just a functor that returns a suspension:

Πgenα:σ.ρ
def
= Πα:σ.©ρ

One aspect of this formulation that may be surprising
is the polarization of functor signatures. Ordinarily one
would expect the function’s domain to be positive, so in
the non-dependent case we would expect to see something
like ρ → σ, instead of the σ → σ′ we have. However, al-
lowing a non-trivial positive domain would create complica-
tions in the dependent case. A functor signature would look

7If let-binding for ordinary modules is desired, it can be obtained
as syntactic sugar from lambda and application in the usual manner,
or it could be added as a primitive to avoid the domain annotation.
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like Πpat :ρ.σ, where pat is a pattern that dismantles a ρ.
Without nontrivial positive functor domains, we can get by
without ever defining such patterns, and I have no examples
that suggest that such a facility would be useful. Moreover,
it turns out that the syntactic condition that we will impose
(for unrelated reasons) would prevent nontrivial positive do-
mains from arising during type-checking anyway. For these
reasons, we limit ourselves to the fragment (↓σ)→ σ′ (and
its dependent analogue) and elide the down-shift.

As an aside, one could almost eliminate strong sums in
favor of existentials, non-dependent products, and single-
tons, writing Σα:σ1.σ2 as ↑(∃α: Fst(σ1).↓(S(α : σ1) × σ2)).
Unfortunately, this requires up-shift, which we do not sup-
port. Moreover, even if we did support up-shift, the en-
coding would still run afoul of the syntactic restriction we
impose in Section 6.3.

5.1 Typing lax modules

The typing rules for lax modules are given in Figure 5.
Down-shift is covariant, as one would expect. We also in-
clude subtyping rules for eliminating and introducing exis-
tential signatures along the lines discussed in Section 1.

Note that compatibility for existential signatures is ad-
missible:

Γ ` k : kind Γ, α:k ` ρ ≤ ρ′ : sig+

Γ ` ∃α:k.ρ ≤ ∃α:k.ρ′ : sig+

The most important rule, the one that makes the system
work, is the typing rule for bind (and a similar rule for let-
binding lax modules in terms):

Γ `M :©ρ1 ρ1 ⇒ Γ′.σ Γ,Γ′, α/m:σ ` L : ρ2

Dom(Γ′, α/m:σ) ∩ FV (ρ2) = ∅
Γ ` bindα/m←M in L : ρ2

Here, M is a suspension of a lax module. As a positive sig-
nature, ρ1 must have the form ∃α1:k1 . . .∃αn:kn.↓σ. When
we type-check the body, we bind α/m with signature σ, but,
before that, we introduce Γ′ = α1:k1 . . . αn:kn so that σ is
meaningful. As usual, the resulting signature ρ2 must not
rely on any variables leaving scope.

The left inversion judgement ρ1 ⇒ Γ′.σ splits the posi-
tive signature into those component parts, the prefix of kind
bindings, and the negative signature that depends on them.
This judgement is taken directly from focused logic, except
that we do not explicitly employ a pattern. In focused logic,
the judgement would typically look like pat :ρ ⇒ Γ, where
pat is a pattern that matches against elements of ρ, thereby
determining the names of the variables in Γ. In this system,
however, the only accessible binding is that of α/m, so most
of the variable names are immaterial. Consequently, it is
more convenient to factor the definition differently, dealing
with the rump pattern in the bind rule rather than in the
left-inversion judgement.

This process of left inversion is very much like the flawed
rule from Section 1 that split existential signatures in the
context. Recall that flawed rule failed because it invali-
dated the substitution principle. No such problem occurs
here because left inversion operates on positive signatures,
not negative, and there is no such thing as a variable rang-
ing over lax modules. Consequently, any lax module with
an existential signature must have been introduced into the

Γ `M : σ
Γ ` L : ρ

Γ ` circ L :©ρ

Γ ` L : ρ

Γ `M : σ
Γ ` retM : ↓σ

Γ `M : σ
Γ `M :> σ : ↓σ

Γ `M :©ρ1 ρ1 ⇒ Γ′.σ Γ,Γ′, α/m:σ ` L : ρ2

Dom(Γ′, α/m:σ) ∩ FV (ρ2) = ∅
Γ ` bindα/m←M in L : ρ2

Γ ` e : ∃α:k.τ Γ, α:k, x:τ ` L : ρ α 6∈ FV (ρ)

Γ ` unpack [α, x] = e inL : ρ

Γ ` L : ρ Γ ` ρ ≤ ρ′ : sig+

Γ ` L : ρ′

Γ ` e : τ

Γ ` L : ρ ρ⇒ Γ′.σ Γ,Γ′, α/m:σ ` e : τ
Dom(Γ′, α/m:σ) ∩ FV (τ) = ∅

Γ ` letα/m = L in e : τ

ρ⇒ Γ.σ

↓σ ⇒ ε.σ

ρ⇒ Γ.σ

∃α:k.ρ⇒ α:k,Γ.σ

Γ ` ρ ≤ ρ′ : sig+

Γ ` σ ≤ σ′ : sig

Γ ` ↓σ ≤ ↓σ′ : sig+

Γ ` k : kind Γ, α:k ` ρ ≤ ρ′ : sig+ Γ ` ρ′ : sig+

Γ ` ∃α:k.ρ ≤ ρ′ : sig+

Γ ` c : k Γ ` ρ ≤ [c/α]ρ′ : sig+ Γ, α:k ` ρ′ : sig+

Γ ` ρ ≤ ∃α:k.ρ′ : sig+

Figure 5: Typing Lax Modules
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Γ ` s : Γ′

Γ ` ∅ : ε

Γ ` s : Γ′ Γ ` c : s(k)

Γ ` (s, α 7→ c) : Γ′, α:k

Γ ` s : Γ′ Γ ` e : s(τ)

Γ ` (s, x 7→ e) : Γ′, x:τ

Γ ` s : Γ′ Γ `M : s(σ) Γ ` Fst(M)� c

Γ ` (s, α 7→ c,m 7→M) : Γ′, α/m:σ

Figure 6: Substitution typing

existential—it cannot have begun there like a variable can—
so the witness constructors must exist. Put more formally,
the only form a lax-module value can take is retM , and we
can show (Lemma 5.2) that if ret M : ρ and ρ ⇒ Γ.σ, then
there exists an appropriate substitution for Γ.

Moreover, unlike the flawed rule, left inversion is not a
free-floating rule. This greatly simplifies the meta-theory,
since left inversion is applicable only in certain places
(specifically, when typing a bind), instead of everywhere.

As a technical note, we employ the usual convention that
variables bound in a context must be distinct. In the case of
the bind rule (and also the rule for let-binding a module in a
term) that means that the domains of Γ and Γ′ are distinct
from one another, and from α and m. When this is not the
case, one can alpha-vary α/m or the bindings produced by
left inversion.

Degenerate static portions We also must revisit modules’
static portions in light of positive signatures and lax mod-
ules, and provide cases for Fst(©ρ) and Fst(circ L). Since
generative computations create types at run time (at least
notionally, and sometimes actually), they have no interest-
ing static component. Since we must nevertheless provide
those cases, we make them trivial:

Fst(©ρ)
def
= 1

Γ ` Fst(circ L)� ?

5.2 Metatheory

In order to prove type safety for this system, we require two
lemmas pertaining to lax modules. First, we define typing
for substitutions as in Figure 6.8 Next we define canonical
forms for positive signatures:

Γ `M : σ
Γ ` retM ::: ↓σ

Γ ` c : k Γ ` L ::: [c/α]ρ

Γ ` L ::: ∃α:k.ρ

(no other rules)

Then we can state the canonical forms lemma:

Lemma 5.1 (Lax canonical forms) If Γ ` retM : ρ then
Γ ` retM ::: ρ.

8The definition is more general than we need right now.

Γ ` k ⇐ kind Algorithmic kind formation
Γ ` k � k′ Algorithmic subkind
Γ ` c⇒ k Algorithmic kind synthesis
Γ ` c ⇓ c′ Weak-head-normal form
Γ ` c⇔ c′ : k Algorithmic constructor equivalence
Γ ` σ ⇐ sig Algorithmic signature formation
Γ ` ρ⇐ sig+ Algorithmic pos. signature formation
Γ ` σ � σ′ Algorithmic subsignature
Γ ` ρ � ρ′ Algorithmic positive subsignature
Γ ` e⇒ τ Algorithmic type synthesis
Γ `M ⇒ σ Algorithmic signature synthesis
Γ ` L⇒ ρ Algorithmic pos. signature synthesis

Figure 7: Algorithmic Judgements

Proof Sketch

By induction on the derivation, using a lemma stating
that canonical forms respect subsumption.

Using this, we can prove a cut principle for positive sig-
natures. This is the key lemma for type preservation with
existential signatures.

Lemma 5.2 (Cut) If Γ ` ret M : ρ and ρ ⇒ Γ′.σ then
there exists a substitution s such that Γ ` s : Γ′ and Γ `M :
s(σ).

Proof Sketch

By induction on the first derivation.

With these in hand, we can prove type safety. The cut
lemma arises in the preservation case for bind.

Theorem 5.3 (Type preservation) If ` Γ ok then:

� If Γ ` e : τ and Γ ` e 7→ e′ then Γ ` e′ : τ .

� If Γ `M : σ and Γ `M 7→M ′ then Γ `M ′ : σ.

� If Γ ` L : ρ and Γ ` L 7→ L′ then Γ ` L′ : ρ.

� If Γ ` M : σ and Γ ` Fst(M) � c and Γ ` M 7→ M ′

then Γ ` Fst(M ′)� c′ and Γ ` c ≡ c′ : Fst(σ).

Theorem 5.4 (Progress) If ` e : τ then either e is a
value or takes a step. If ` M : σ then either M is a value
or takes a step. If ` L : ρ then either L is a value or takes
a step.

6 Type Checking and the Avoidance Problem

Our type synthesis algorithm is given by a variety of judge-
ments, summarized in Figure 7. The algorithm for kind and
constructor formation, subkinding, and constructor equiva-
lence is taken directly from Stone and Harper [46] (except
for our different collection of primitive type operators). The
algorithm for term, module, and lax module formation is
new. We write it Γ ` E ⇒ A, in which E is a term, mod-
ule, or lax module, and A is its type, principal signature, or
principal positive signature.
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6.1 Terms

The declarative typing rule for term-level unpack is:

Γ ` e1 : ∃α:k1.τ1 Γ, α:k1, x:τ1 ` e2 : τ2 α 6∈ FV (τ2)

Γ ` unpack [α, x] = e1 in e2 : τ2

This requires that the result type τ2 be well-formed in
the ambient context. However, we cannot reject the pro-
gram if the type we synthesize mentions α, because we must
determine if there exists an alternative type that does not
mention α. This is like the avoidance problem, but since
there is no subtyping, we only need to look for an equivalent
alternative, not a best alternative.

Every kind is inhabited, so suppose Γ ` c : k1. Certainly
Γ ` [c/α]τ2 : Type. We then check whether Γ, α:k1 ` τ2 ≡
[c/α]τ2 : Type. If so, [c/α]τ2 is a suitable alternative.

Conversely suppose there exists an alternative τ ′2. That
is, Γ, α:k1 ` τ2 ≡ τ ′2 : Type and Γ ` τ ′2 : Type. Then
Γ ` [c/α]τ2 ≡ [c/α]τ ′2 : Type by substitution. But α does not
appear free in τ ′2, so [c/α]τ ′2 = τ ′2. Then, using weakening,
Γ, α:k1 ` τ2 ≡ τ ′2 = [c/α]τ ′2 ≡ [c/α]τ2 : Type. Thus, if any
alternative exists, then [c/α]τ2 will serve.

This gives us the type synthesis rule:

Γ ` e1 ⇒ τ1 Γ ` τ1 ⇓ ∃α:k.τ Γ, α:k, x:τ ` e2 ⇒ τ2
Γ, α:k ` τ2 ⇔ [Ik/α]τ2 : Type

Γ ` unpack [α, x] = e1 in e2 ⇒ [Ik/α]τ2

Here, the judgement Γ ` τ1 ⇓ ∃α:k.τ places τ1 into weak-
head-normal form, which is necessary because τ1 might be
equivalent to an existential, but not in the form of an exis-
tential. Like the other constructor-oriented judgements, it
is taken from Stone and Harper.

The constructor Ik is an arbitrary inhabitant of k. We
can define it:

IType
def
= unit

IS(c)
def
= c

IΠα:k1.k2

def
= λα:k1.Ik2

IΣα:k1.k2

def
= 〈Ik1 , I[Ik1

/α]k2
〉

This suffices for the purposes in this paper. As a practical
matter, however, when unit appears in error messages out of
the blue, it can be confusing to programmers. It is better,
instead, to replace unit with an abstract type that is used
for no other purpose.

A similar phenomenon occurs with the rule for let-
binding modules in terms:

Γ ` L : ρ ρ⇒ Γ′.σ Γ,Γ′, α/m:σ ` e : τ
(Dom(Γ′) ∪ {α}) ∩ FV (τ) = ∅

Γ ` letα/m = L in e : τ

except in this case we must substitute for every variable in
Γ′, as well as α:

Γ ` L : ρ ρ⇒ Γ′.σ Γ,Γ′, α/m:σ ` e⇒ τ
Γ,Γ′, α: Fst(σ) ` τ ⇔ IΓ′([IFst(σ)/α]τ) : Type

Γ ` letα/m = L in e⇒ IΓ′([IFst(σ)/α]τ)

where:

Iε
def
= ∅

IΓ,α:k
def
= IΓ, α 7→ IIΓ(k)

6.2 Modules

Alas, the arbitrary-substitution device works only in the ab-
sence of subtyping, so it does not apply to modules. (It also
would not work in a core language with subtyping [13].) If
σ is a signature that depends on α, there can easily be su-
persignatures that avoid α and yet are not equivalent to σ.
This means that not all alternatives are equivalent, and we
must find the best one.

As we saw in Section 1, a best alternative might not ex-
ist without existential signatures. Now that we have ap-
propriate notation, we can reprise the example in more
compact form. Suppose α:Type and consider the kind
(Type → S(α)) × S(α). A supersignature avoiding α is
(Type→ Type) × Type. But that is not minimal. For any
choice of τ , a better alternative is Σβ:(Type→Type).S(β τ).
Unfortunately, for different τ these choices are incompara-
ble, so none of them is best.

It follows that, in general, there is no best superkind
avoiding a variable. Since the static-atom signature (L− M)
is covariant, it further follows that there is also no best su-
persignature avoiding a variable.

However, there is a best positive supersignature avoid-
ing a variable, because we have created one by fiat. If
we take the example and wrap it up as a positive signa-
ture, we obtain ↓L (Type→ S(α))× S(α) M. A best super-
signature avoiding α is just ∃α:k.↓L (Type→ S(α))× S(α) M.
There are other best alternatives as well (e.g., ∃α:k.∃β:1.
↓L (Type→ S(α))× S(α) M) but each one is a subsignature of
the other.

Returning to type-checking, the declarative typing rule
for module-level unpack is:

Γ ` e : ∃α:k.τ Γ, α:k, x:τ ` L : ρ α 6∈ FV (ρ)

Γ ` unpack [α, x] = e inL : ρ

The corresponding signature synthesis rule is:

Γ ` e⇒ τ Γ ` τ ⇓ ∃α:k.τ ′ Γ, α:k, x:τ ′ ` L⇒ ρ

Γ ` unpack [α, x] = e inL⇒ ∃α:k.ρ

For bind, the situation is more complicated, but funda-
mentally no different. The declarative rule is:

Γ `M :©ρ1 ρ1 ⇒ Γ′.σ Γ,Γ′, α/m:σ ` L : ρ2

Dom(Γ′, α/m:σ) ∩ FV (ρ2) = ∅
Γ ` bindα/m←M in L : ρ2

The corresponding signature synthesis rule is:

Γ `M ⇒©ρ1 ρ1 ⇒ Γ′.σ Γ,Γ′, α/m:σ ` L⇒ ρ2

Γ ` bindα/m←M in L⇒ ∃Γ′.∃α: Fst(σ).ρ2

where ∃Γ.ρ is shorthand for ∃α1:k1 . . .∃αn:kn.ρ when Γ =
α1:k1 . . . αn:kn.

6.3 Subsignatures

Existential signatures cleanly solve the avoidance problem,
but they create a problem of their own, beyond the metathe-
oretic difficulties that focusing resolved. The monadic oper-
ator is covariant (if it were not, suspensions would not have
principal signatures), so we need a subsignature algorithm
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for positive signatures, and that algorithm must wrestle with
existential signatures.

Unfortunately, it is not hard to show that the positive
subsignature problem is undecidable. Consider the judge-
ment:

` ↓Πα:L k M.〈| τ1 |〉 ≤ ∃β:k. ↓Πα:L S(β:k) M.〈| τ2 |〉 : sig+

This is derivable if and only if there exists some c : k such
that [c/α]τ1 ≡ [c/α]τ2 : Type.9 Thus deciding subsignatures
is at least as hard as higher-order unification, which is un-
decidable [15].

One way to deal with this problem is simply to live with
it. Higher-order unification is undecidable, but there do ex-
ist complete semi-decision procedures [23, 11]. (Singleton
kinds would further complicate unification, but they can be
eliminated [3].) So one could simply accept that the type
checker might sometimes search endlessly instead of return-
ing a type error. But we would prefer to avoid this behavior.

Fortunately, existential signatures pose a problem only
when they appear on the right-hand-side of a subsignature
query. (Existentials on the left-hand-side use a paramet-
ric inhabitant, rather than a specific inhabitant that must
be guessed.) A similar issue arose in Biswas [2], in which
a substitution for type variables was uniquely determined
only when the unknown variables all came from the left-
hand-side. In Biswas, the condition was naturally provided
by the syntax. In our setting we need to add an extra syn-
tactic restriction, one that fortunately appears to be no se-
rious limitation in practice: We forbid the text of the pro-
gram from mentioning existential signatures. To see why
that helps, let us say that a signature (either negative or
positive) is synthesis if existential signatures appear only in
positive positions, and analysis if they appear only in neg-
ative positions. (We will also say a context is synthesis if
it gives every module variable a synthesis signature.) If a
subsignature query is between a synthesis and analysis sig-
nature, in that order, it will never encounter an existential
signature on the right.

(Note that the classification of signatures as synthesis
and/or analysis is different from the syntactic distinction
between negative and positive signatures. Any signature—
positive or negative—can be synthesis, analysis, both, or
neither.)

Let us say that an expression is user if it contains no
existential signatures. Clearly a user signature is both syn-
thesis and analysis. Inspection of the algorithm shows that
subsignatures are checked only in functor application and
sealing, and in each case the prospective supersignature is
taken from the text of the program. Therefore the right-
hand-side of every subsignature query will be analysis.

We can also show that principal signature synthesis al-
ways produces synthesis signatures, provided that the mod-
ule is user and the context is synthesis:

Lemma 6.1 (Synthesis signatures) Suppose Γ is syn-
thesis, M is user, and Γ `M ⇒ σ. Then σ is synthesis.

Proof Sketch

The domain of every functor is taken from the text of the
program, and is therefore user. The invariant that the
context is synthesis is maintained because user signatures
are synthesis. Conversely, whenever a functor signature

9Assuming k, τ1, and τ2 are appropriately well-formed.

is synthesized, its domain will be user, and hence anal-
ysis. Thus, if the signature of the body is synthesis, the
signature of the functor as a whole will be synthesis.

Practicum This syntactic restriction is no burden in prac-
tice, because in any circumstance the programmer might be
inclined to use an existential signature (e.g., ∃α:k.↓σ), he or
she could use a strong sum instead (e.g., Σα:L k M.σ). The
power existential signatures bring to the table is useful for
automatically synthesizing signatures, but it offers nothing
new for explicitly specified signatures.

Moreover, our signatures admit full
separate compilation—a property closely related to Shao’s
“fully syntactic” signatures [42]. The term “fully syntactic”
might suggest that all signatures must be expressible in syn-
tax available to the programmer, which is certainly not the
case here. But Shao actually defines the term in terms of
practical considerations: “If we split a program at an arbi-
trary point, the corresponding interface must be expressible
using the underlying signature calculus.”

In other words, however a software project might be bro-
ken into compilation units, there exist syntactic representa-
tions of the signatures needed to mediate the boundaries
between units. To clarify this, we must distinguish between
two forms of separate compilation [48]:

In separate compilation per se, the programmer explic-
itly specifies an interface for unit A, and unit B depends on
A via that interface. The code for A might not be available,
or even written yet. In incremental recompilation, the code
for unit A is compiled, automatically generating an interface,
which unit B then depends on. When the code for B changes,
it can be recompiled without recompiling A.

In separate compilation per se, the programmer(s) de-
termine A’s interface and they can use strong sums in the
interface instead of existential signatures. In incremental
recompilation, on the other hand, the programmers wish to
take A’s code as is and compile against it, perhaps for build
efficiency or perhaps because A is upstream code provided
only in binary. Either way, A itself determines the interface.
This is the situation in which “fully syntactic” signatures
are relevant.

But existential signatures are syntactic enough for in-
cremental recompilation. When the compiler compiles A, it
writes out an interface containing the signatures inferred for
A, which may include existential signatures. Since the inter-
face is generated, nothing is ever checked against it. The
contents of A are made available to B according to that in-
terface, and that is fine: Recall that the context is required
to be synthesis, not user, so it is permitted to contain A’s
interface, which is synthesis by Lemma 6.1.

In summary, code that cannot be altered need not
be checked against a signature, one just compiles against
it, thus fitting into an incremental recompilation scenario.
And, even though existential signatures cannot appear
within user code, they can appear within automatically gen-
erated interfaces, which makes them syntactic enough for
incremental compilation purposes.

6.4 The Algorithm

The type-checking algorithm for terms and modules is given
in Figure 8. For signatures the algorithm is straightforward
and appears in Appendix C, and for kinds and constructors
it is in Stone and Harper [46]. We touched on most of the
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Γ ` e⇒ τ

Γ(x) = τ

Γ ` x⇒ τ Γ ` ?⇒ unit

Γ ` τ1 ⇐ Type Γ, x:τ1 ` e⇒ τ2

Γ ` λx:τ1.e⇒ τ1→ τ2

Γ ` e1 ⇒ τ1 Γ ` τ1 ⇓ τ → τ ′ Γ ` e2 ⇐ τ

Γ ` e1e2 ⇒ τ ′

Γ ` e1 ⇒ τ1 Γ ` e2 ⇒ τ2
Γ ` 〈e1, e2〉 ⇒ τ1 × τ2

Γ ` e⇒ τ Γ ` τ ⇓ τ1 × τ2
Γ ` π1e⇒ τ1

Γ ` e⇒ τ Γ ` τ ⇓ τ1 × τ2
Γ ` π2e⇒ τ2

Γ ` k ⇐ kind Γ, α:k ` sv ⇒ τ

Γ ` Λα:k.sv ⇒ ∀α:k.τ

Γ ` e⇒ τ Γ ` τ ⇓ ∀α:k.τ ′ Γ ` c⇐ k

Γ ` e[c]⇒ [c/α]τ ′

Γ ` k ⇐ kind Γ ` c⇐ k Γ ` e⇐ [c/α]τ Γ, α:k ` τ ⇐ Type

Γ ` pack [c, e] as ∃α:k.τ ⇒ ∃α:k.τ

Γ ` e1 ⇒ τ1 Γ ` τ1 ⇓ ∃α:k.τ Γ, α:k, x:τ ` e2 ⇒ τ2 Γ, α:k ` τ2 ⇔ [Ik/α]τ2 : Type

Γ ` unpack [α, x] = e1 in e2 ⇒ [Ik/α]τ2

Γ ` τ ⇐ Type Γ ` e⇐ (unit→ τ)→ τ

Γ ` fixτ e⇒ τ

Γ ` e1 ⇒ τ1 Γ, x:τ1 ` e2 ⇒ τ2

Γ ` letx = e1 in e2 : τ2

Γ ` L : ρ ρ⇒ Γ′.σ Γ,Γ′, α/m:σ ` e⇒ τ Γ,Γ′, α: Fst(σ) ` τ ⇔ IΓ′([IFst(σ)/α]τ) : Type

Γ ` letα/m = L in e⇒ IΓ′([IFst(σ)/α]τ)

Γ `M ⇒ 〈| τ |〉
Γ ` Ext(M)⇒ τ

static value sv ::= ? | λx:τ.e | 〈sv , sv〉 | Λα:k.sv | pack [c, sv ] as∃α:k.τ

Γ `M ⇒ σ
α/m:σ ∈ Γ

Γ ` m⇒ S(α : σ) Γ ` ?⇒ 1
Γ ` c⇒ k

Γ ` L c M⇒ L k M
Γ ` e⇒ τ

Γ ` 〈| e |〉 ⇒ 〈| τ |〉

Γ ` σ1 ⇐ sig Γ, α/m:σ1 `M ⇒ σ2

Γ ` λα/m:σ1.M ⇒ Πα:σ1.σ2

Γ `M1 ⇒ Πα:σ.σ′ Γ `M2 ⇐ σ Γ ` Fst(M2)� c2

Γ `M1M2 ⇒ [c2/α]σ′

Γ `M1 ⇒ σ1 Γ `M2 ⇒ σ2

Γ ` 〈M1,M2〉 ⇒ σ1 × σ2

Γ `M ⇒ Σα:σ1.σ2

Γ ` π1M ⇒ σ1

Γ `M ⇒ Σα:σ1.σ2 Γ ` Fst(M)� c

Γ ` π2M ⇒ [π1c/α]σ2

Γ ` e⇒ τ Γ, x:τ `M ⇒ σ

Γ ` letx = e inM ⇒ σ

Γ ` L⇒ ρ

Γ ` circ L⇒©ρ

Γ ` L⇒ ρ

Γ `M ⇒ σ
Γ ` retM ⇒ ↓σ

Γ ` σ ⇐ sig Γ `M ⇐ σ

Γ ` (M :> σ)⇒ ↓σ

Γ `M ⇒©ρ1 ρ1 ⇒ Γ′.σ Γ,Γ′, α/m:σ ` L⇒ ρ2

Γ ` bindα/m←M in L⇒ ∃Γ′.∃α: Fst(σ).ρ2

Γ ` e⇒ τ Γ ` τ ⇓ ∃α:k.τ ′ Γ, α:k, x:τ ′ ` L⇒ ρ

Γ ` unpack [α, x] = e inL⇒ ∃α:k.ρ

Γ ` e⇐ τ Γ `M ⇐ σ

Γ ` e⇒ τ ′ Γ ` τ ′ ⇔ τ : Type

Γ ` e⇐ τ

Γ `M ⇒ σ′ Γ ` σ′
� σ

Γ `M ⇐ σ

Γ ` σ � σ′

Γ ` 1 � 1

Γ ` k � k′

Γ ` L k M � L k′ M
Γ ` τ ⇔ τ ′ : Type

Γ ` 〈| τ |〉 � 〈| τ ′ |〉
Γ ` ρ � ρ′

Γ ` ©ρ �©ρ′

Γ ` σ′
1 � σ1 Γ, α: Fst(σ′

1) ` σ2 � σ′
2

Γ ` Πα:σ1.σ2 � Πα:σ′
1.σ

′
2

Γ ` σ1 � σ′
1 Γ, α: Fst(σ1) ` σ2 � σ′

2

Γ ` Σα:σ1.σ2 � Σα:σ′
1.σ

′
2

Γ ` ρ � ρ′

Γ ` σ � σ′

Γ ` ↓σ � ↓σ′
Γ, α:k ` ρ � ρ′

Γ ` ∃α:k.ρ � ρ′

Figure 8: Type-checking algorithm
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key rules above. However, we should discuss one more rule,
which is standard in module type theory, but nevertheless
may be surprising. When type-checking a variable bound
with signature σ, the principal signature is not σ. Instead,
we must selfify it:

α/m:σ ∈ Γ

Γ ` m⇒ S(α : σ)

For example, suppose σ is just L Type M. Then the best sig-
nature for m is not L Type M, but the subsignature L S(α) M.
In general, selfification (recall Figure 3) fills in all the signa-
ture’s type components other than those beneath a monad.

We can now state the main results of the paper. The re-
sults involving constructors and kinds are taken from Stone
and Harper [46] and are repeated here for the sake of com-
pleteness. The other results are new.

Theorem 6.2 (Soundness) Suppose ` Γ ok. Then:

1. If Γ ` k ⇐ kind then Γ ` k : kind.

2. If Γ ` k, k′ : kind and Γ ` k � k′ then Γ ` k ≤ k′ : kind.

3. If Γ ` c⇒ k then Γ ` c : k.

4. If Γ ` c : k and Γ ` c ⇓ c′ then Γ ` c ≡ c′ : k.

5. If Γ ` c1, c2 : k and Γ ` c1 ⇔ c2 : k then Γ ` c1 ≡ c2 :
k.

6. If Γ ` σ ⇐ sig then Γ ` σ : sig.

7. If Γ ` ρ⇐ sig+ then Γ ` ρ : sig+.

8. If Γ ` σ, σ′ : sig and Γ ` σ � σ′ then Γ ` σ ≤ σ′ : sig.

9. If Γ ` ρ, ρ′ : sig+ and Γ ` ρ � ρ′ then Γ ` ρ ≤ ρ′ : sig+.

10. If Γ ` e⇒ τ then Γ ` e : τ .

11. If Γ `M ⇒ σ then Γ `M : σ.

12. If Γ ` L⇒ ρ then Γ ` L : ρ.

Theorem 6.3 (Completeness) Suppose ` Γ ok. Then:

1. If Γ ` k : kind then Γ ` k ⇐ kind.

2. If Γ ` k ≤ k′ : kind then Γ ` k � k′.

3. If Γ ` c : k then Γ ` c⇒ k′ and Γ ` k′ ≤ k : kind.

4. If Γ ` c : k then Γ ` c ⇓ c′.

5. If Γ ` c1 ≡ c2 : k then Γ ` c1 ⇔ c2 : k.

6. If Γ ` σ : sig then Γ ` σ ⇐ sig.

7. If Γ ` ρ : sig+ then Γ ` ρ⇐ sig+.

8. If Γ ` σ ≤ σ′ : sig and σ is synthesis and σ′ is analysis,
then Γ ` σ � σ′.

9. If Γ ` ρ ≤ ρ′ : sig+ and ρ is synthesis and ρ′ is analysis,
then Γ ` ρ � ρ′.

10. If Γ ` e : τ and Γ is synthesis and e is user, then
Γ ` e⇒ τ ′ and Γ ` τ ′ ≡ τ : Type.

11. If Γ ` M : σ and Γ is synthesis and M is user, then
Γ `M ⇒ σ′ and Γ ` σ′ ≤ σ : sig.

12. If Γ ` L : ρ and Γ is synthesis and L is user, then
Γ ` L⇒ ρ′ and Γ ` ρ′ ≤ ρ : sig+.

Corollary 6.4 (Decidability) If ` Γ ok and Γ is synthe-
sis, then:

1. If e is user, then it is decidable whether there exists τ
such that Γ ` e : τ .

2. If M is user, then it is decidable whether there exists σ
such that Γ `M : σ.

3. If L is user, then it is decidable whether there exists ρ
such that Γ ` L : ρ.

7 Generative Stamps Revisited

We now revisit Russo’s static semantics [39]. Russo gives
two static semantics for modules: First he gives a seman-
tics based on generative stamps that is more-or-less equiva-
lent to the one used by the Definition of Standard ML [31].
Then he gives a type-oriented semantics and proves it equiv-
alent to the stamp-based semantics. Russo’s approach was
largely adopted by later work such as Rossberg, et al. [38]
and Rossberg [37]. We will observe here that Russo’s non-
stamp static semantics is also more-or-less the same as our
principal signature algorithm.

The most important and complicated case is generative
functor application. Russo’s rule is:

C ` s : ∃P.S ′

C(F ) = ∀Q.S ′′→X
Dom(ϕ) = Q
S ′ � ϕ(S ′′)
ϕ(X ) = ∃P ′.S
P ∩ FV (∀Q.S ′′→X ) = ∅
P ∩ P ′ = ∅
C ` F s : ∃(P ∪ P ′).S

Russo’s notation is very different from ours, so let’s un-
pack this. The first premise says the argument has signa-
ture ∃P.S ′. Here P is a set of type variables and S ′ is a
transparent signature (i.e., every type field is given a defi-
nition). The second premise says the functor has signature
∀Q.S ′′ → X . Here, Q is a set of type variables, S ′′ is the
functor’s transparent domain, and X is its possibly non-
transparent codomain.

For the application to type-check, there must be a substi-
tution ϕ that instantiates the variables in Q (third premise),
such that the argument’s signature “enriches” the functor’s
instantiated domain (fourth premise). “Enriches” is a syn-
onym (borrowed from the Definition) for “is a supertype
of.” (Note that the inequality is turned around from how it
is used in subtyping.)

The substitution is applied to the codomain, resulting in
the signature ∃P ′.S (fifth premise). The resulting signature
adds P to the existential prefix, resulting in ∃(P ∪ P ′).S.
The remaining two premises deal with variable hygiene.

The most important part of the rule is how the existential
prefix P for the argument floats up to become part of the
existential prefix for the result. In a more general setting,
the existential prefix of the functor floats up as well, but in
Standard ML the functor is required to be a bare identifier,
so it has no such prefix.

We can rewrite this rule in our notation as:
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Γ ` L : ∃Γ′.↓σ
Γ ` F : Πα:σ1.©ρ
Γ,Γ′ ` c : Fst(σ1)
Γ,Γ′ ` σ ≤ S(c : σ1) : sig

Γ ` FL : ∃Γ′. [c/α]ρ

Here, s is renamed to L, P to Γ′, S ′ to σ, and X to ρ.
The signature σ1 plays the role of both Q and S ′′. (In
our system we do not separate a functor’s domain into two
pieces as Russo does.) The constructor c plays the role of
the substitution ϕ, which is to indicate how to specialize
the functor’s type components. On the domain side, ϕ(S ′′)
becomes S(c : σ1), and on the codomain side ϕ(X ) becomes
[c/α]ρ. Finally, we have no need to separate P ′ and S, so
they disappear, and we write [c/α]ρ for ϕ(X ) = ∃P ′.S in
the conclusion.

In our system, one is not permitted to apply a functor
to a lax argument, but we can take that as syntactic sugar:

FL
def
= bindα/m← circ L in bindn← F m in ret n

With this definition, it is not hard to show that the above
rule is sound. The functor has signature:

Πα:σ1.©ρ
≤ Πα:S(c:σ1).©ρ
≡ Πα:S(c:σ1).©[c/α]ρ
= S(c : σ1)→©[c/α]ρ

In the body of the outer bind (wherein the context is
Γ,Γ′, α/m:σ), m has signature σ ≤ S(c : σ1). Thus F m
has signature ©[c/α]ρ. The inner bind serves to discharge
the©, producing [c/α]ρ. Finally, [c/α]ρ is a subsignature of
∃Γ′.[c/α]ρ, which is closed with respect to everything but Γ.

But the relationship between Russo’s system and ours is
actually closer than that. If we apply our principal signature
algorithm to FL, we obtain the derived rule:10

Γ ` L⇒ ∃Γ′.↓σ
Γ ` F ⇒ Πα:σ1.©ρ
Γ,Γ′, α: Fst(σ) ` S(α : σ) � σ1

ρ⇒ Γ′′.σ2

Γ ` FL⇒ ∃Γ′.∃α: Fst(σ).∃Γ′′.∃β: Fst(σ2).S(β : σ2)

This derived rule and (our version of) Russo’s rule are
nearly equivalent. Let us call Russo’s rule R, and the derived
signature-synthesis rule D, and let us neglect the distinction
between the declarative and algorithmic systems.

R is an instance of D: The first two premises are identical.
From R’s third and fourth premises we can show S(α : σ) ≤
σ ≤ S(c : σ1) ≤ σ1, establishing D’s third premise. Every
positive signature can be inverted, so D’s fourth premise
holds as well. Thus D applies, and its resulting signature is
a subsignature of R’s:

∃Γ′.∃α: Fst(σ).∃Γ′′.∃β: Fst(σ2).S(β : σ2)
≤ ∃Γ′.∃α: Fst(σ).∃Γ′′.∃β: Fst(σ2).σ2

≤ ∃Γ′.∃α: Fst(σ).∃Γ′′.σ2

= ∃Γ′.∃α: Fst(σ).ρ
≤ ∃Γ′.∃α: Fst(S(c:σ1)).ρ
= ∃Γ′.∃α:S(c: Fst(σ1)).ρ
≡ ∃Γ′.∃α:S(c: Fst(σ1)).[c/α]ρ
≤ ∃Γ′.[c/α]ρ

10To give the rule this form, we write the left inversion associated
with the outer bind into the second premise.

k transp

1 transp S(c) transp (No rule for Type.)

k2 transp

Πα:k1.k2 transp

k1 transp k2 transp

Σα:k1.k2 transp

σ transp

1 transp

k transp

L k M transp L τ M transp ©ρ transp

σ2 transp

Πα:σ1.σ2 transp

σ1 transp σ2 transp

Σα:σ1.σ2 transp

ρ transp
σ transp

↓σ transp

ρ transp

∃α:k.ρ transp

Figure 9: Transparency

Conversely, D is an instance of R, provided we assume
that σ and ρ are transparent, as Russo’s system arranges
always to be the case: We define transparency using a syn-
tactic condition in Figure 9. The important property of
transparent signatures is σ ≡ S(c : σ) for every c in Fst(σ):

Lemma 7.1 If σ is transparent, and if ` Γ ok and Γ ` σ :
sig and Γ ` c : Fst(σ), then Γ ` σ ≡ S(c : σ) : sig.

Every kind is inhabited, so let c belong to Fst(σ). Using
substitution on D’s third premise, we obtain Γ,Γ′ ` S(c :
σ) ≤ σ1. But σ is transparent, so S(c : σ) ≡ σ. Thus σ ≤ σ1.
This establishes R’s third premise, since Fst is monotone.
Furthermore, higher-order singletons are monotone, so σ ≡
S(c : σ) ≤ S(c : σ1), establishing R’s fourth premise. Thus
R applies, and its resulting signature is a subsignature of
D’s:

∃Γ′.[c/α]ρ
≤ ∃Γ′.∃α: Fst(σ).ρ
= ∃Γ′.∃α: Fst(σ).∃Γ′′.↓σ2

≤ ∃Γ′.∃α: Fst(σ).∃Γ′′.∃β: Fst(σ2).↓σ2

≡ ∃Γ′.∃α: Fst(σ).∃Γ′′.∃β: Fst(σ2).↓S(β : σ2)

The last step applies because σ2 is transparent, because ρ is
transparent.

There are a lot of moving parts in functor application,
and the main point is easily lost in the details. The main
point is how the signature-synthesis rule for bind causes the
argument’s existential prefix to float upward by pulling it
off the argument and then putting it back on after the ap-
plication. A similar, but usually much simpler, story occurs
when other forms (e.g., projection) are generalized to lax
modules.

We have seen that R is an instance of D, and D is an
instance of R provided σ and ρ are transparent. Thus the
main difference between Russo’s system and our algorithm is
Russo’s insistence that every module be given a transparent
signature. Our algorithm does not do that.

However, it can be induced to do so. The only place
our algorithm synthesizes a non-transparent signature is
sealing. If we replace every sealed module M :> σ with
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bindα/m ← circ (M :> σ) in M :> S(α : σ), then the algo-
rithm will synthesize ∃α: Fst(σ).↓S(α : σ) (which is transpar-
ent), instead of ↓σ (which might not be). The expanded seal
is just as abstract as the original (observe that M still ap-
pears under the same seal), and ∃α: Fst(σ).↓S(α : σ) ≤ ↓σ,
so there seems to be no detriment to the expansion other
than complexity.

The upshot of all this is that the type theory developed
here is consistent with Russo’s type discipline, at least at
a coarse level. The floating machinery simulates the effect
of the left inversion rule, and vice versa. (Myriad technical
differences in presentation between Russo’s system and this
one—including but not limited to the fact that Russo gives
a full source language, not just a core calculus—make this
observation hard to formalize, so let us keep it as an infor-
mal observation.) Since Russo’s discipline is equivalent to a
generative-stamp discipline, the type theory developed here
is also consistent with that.

A similar story prevails in later work that builds on
Russo, such as Rossberg, et al. [38]. Again, the effects of left
inversion and the floating machinery are broadly consistent.
(However, in the specific case discussed here, functor appli-
cation, they limit both functor and argument to names, so
nothing interesting can happen from an avoidance perspec-
tive.)

Finally, since Russo’s generative-stamps discipline is
more-or-less the same as the one in Harper, et al. [19] and
the Definition [31], we can take this work as a type-theoretic
vindication (in the sense of Section 2) of the approach used
since the earliest days of the Standard ML module system.

8 Formalization

All the results in this paper are formalized in Coq (version
8.4), and are available at:

www.cs.cmu.edu/~crary/papers/2018/exsig-formal.tgz

I implemented binding using deBruijn indices and ex-
plicit substitutions. Much of the development is adapted
from Crary [5], but replacing effects inference with a monad
required pervasive changes. The full development is 41 thou-
sand lines of Coq (including comments and whitespace).

When formalizing the metatheory of singleton kinds, it
proved much more convenient to use Stone and Harper’s
original six-place algorithm for constructor equivalence (Γ `
c : k ⇔ Γ′ ` c′ : k′) [46] than their later set-based algo-
rithm [47], due to the difficulty working with sets in Coq. I
also did not use the four-place algorithm that they proved
equivalent to both other algorithms, since it would have re-
quired additional work and was not necessary for the results
here, but I foresee no problem doing so.

9 Concluding Remarks

The avoidance problem is one of the main outstanding prob-
lems in ML-style module type theory. We can see now that
the approach Harper, Dreyer, and I had in 2001 was very
close. The missing elements were the focusing-inspired po-
larization of signatures and left-inversion judgement. But at
the time, the idea that focusing could have an application
to module calculi was not known, or at least, was not known
to me. I first made the connection in the other direction,
using the notion of selfification to permit assigning types to
spines in focused logic in the presence of strong sums [6].

My main purpose in that work was to extend LF [17] to
support strong sums.

Of course, those missing elements serve to define a lan-
guage with similar expressive power (as pertains to the
avoidance problem) to several that have come before. What
we have now is a type theory with a clear connection to logic,
and which can serve as a platform for classic type-theoretic
constructions such as Reynolds’s abstraction theorem [36].

With the avoidance problem resolved, I feel that we have
a type theory for ML-style modules that is close to canonical.
Ideally the type theory would also support named fields with
permutation and width subtyping. That would certainly
complicate the formalization, but it seems unlikely that it
would add any fundamental difficulties. A thornier ques-
tion is what becomes of weak sealing [10], which is needed
to have opaque datatypes within applicative functors. With
effects inference replaced by a monad, there is no longer
any obvious place to put the notion of a “static effect.” An
even thornier desideratum is a treatment of recursive mod-
ules. It seems possible that existential signatures could give
a clean way to implement the forward declarations neces-
sary to resolve the “double-vision problem” [9], but I have
not explored this.

Another question before we can say the theory is canon-
ical is whether existential signatures should have a dual.
Our failed type theory of 2001 had a universal signature,
not because one was needed, but because symmetry seemed
to suggest that there ought to be one. But the focused
analysis tells a different story. The existential signature is
positive, so its dual is a negative function space. The nega-
tive function space, of course, is the ordinary one, so there
is nothing to add there. (Indeed, the focused analysis sug-
gests that what is missing is other positive connectives such
as disjoint sums and falsehood, but these have never been
part of second-class module calculi.) The actual asymmetry
arises from the strong sum, which is the normal one in mod-
ule type theory but (as above) is unusual in focused logic.
Its dual would be a positive function space, which is very
unusual. Licata, Zeilberger, and Harper [29] have looked at
the problem a little but many issues remain. Since I have
no application for such a connective in the modules setting,
I have not explored it.

A OCaml

OCaml could also usefully employ the strategy proposed
here. OCaml’s current approach to the avoidance problem
is different from Standard ML’s. Unlike SML, OCaml does
not retain access to types that have departed scope. In-
stead, when a functor is applied to an impure argument,
OCaml tries to find a signature that does not mention the
argument’s type components. If it is unable to find one, it
signals a type error.

A signature that OCaml finds is not necessarily principal,
even when a principal signature exists. It can also fail to find
a signature entirely, even when a principal signature exists.
For example:
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module type S =
sig

type t
val x : t

end

module Id (X : S) =
struct

type t = X.t
let x (* : t *) = X.x

end

(* generative functor *)
module F () : S =

struct
type t = int
let x = 12

end

module M = Id (F ())

This code produces the error:

This functor has type

functor (X : S) ->
sig type t = X.t val x : X.t end

The parameter cannot be eliminated in the
result type. Please bind the argument to
a module identifier.

This need not be an error; M could be given the prin-
cipal signature sig type t val x : t end. On the other
hand, if the commented-out type annotation in the x field of
Id is present, then OCaml does find the principal solution.
Thus, the type system proposed here would allow more pro-
grams to type-check, and would produce more predictable
behavior.

B Syntax and Static Semantics

kinds
k ::= 1 unit kind

| Type types
| S(c) singleton kind
| Πα:k.k dependent functions
| Σα:k.k dependent pairs

constructors
c, τ ::= α

| ? unit constructor
| λα:k.c | c c lambda, application
| 〈c, c〉 pair
| π1c | π2c projection
| unit unit type
| τ1→ τ2 functions
| τ1 × τ2 products
| ∀α:k.τ universals
| ∃α:k.τ existentials

(negative) signatures
σ ::= 1 unit signature

| L k M atomic signature
| 〈| τ |〉 atomic signature
| Πα:σ.σ functors
| Σα:σ.σ pairs
| ©ρ monad

positive signatures
ρ ::= ↓σ downshift

| ∃α:k.ρ existential signature
terms
e ::= x

| ? unit term
| λx:τ.e | e e lambda, application
| 〈e, e〉 pair
| π1e | π2e projection
| Λα:k.e polymorphic fun.
| e[c] polymorphic app.
| pack [c, e] as∃α:k.τ existential package
| unpack [α, x] = e in e unpack
| fixτ e recursion
| letx = e in e term binding
| ExtM extraction
| letα/m = L in e lax module binding

static values
sv ::= ?

| λx:τ.e
| 〈sv , sv〉
| Λα:k.sv
| pack [c, sv ] as∃α:k.τ

modules
M ::= m

| ? unit module
| L c M atomic module
| 〈| e |〉 atomic module
| λα/m:σ.M functor
| MM functor application
| 〈M,M〉 pair
| π1M | π2M projection
| letx = e inM term binding
| circ L suspension
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lax modules
L ::= retM monadic unit

| M :> σ sealing
| bindα/m←M in L monadic bind
| unpack [α, x] = e inL unpack

contexts
Γ ::= ε empty context

| Γ, α:k constr. hypothesis
| Γ, x:τ term hypothesis
| Γ, α/m:σ module hypothesis

` Γ ok

` ε ok
` Γ ok Γ ` k : kind

` Γ, α:k ok

` Γ ok Γ ` τ : Type

` Γ, x:τ ok

` Γ ok Γ ` σ : sig

` Γ, α/m:σ ok

Γ ` k : kind

Γ ` Type : kind

Γ ` c : Type

Γ ` S(c) : kind Γ ` 1 : kind

Γ ` k1 : kind Γ, α:k1 ` k2 : kind

Γ ` Πα:k1.k2 : kind

Γ ` k1 : kind Γ, α:k1 ` k2 : kind

Γ ` Σα:k1.k2 : kind

Γ ` k ≡ k′ : kind

Γ ` k : kind
Γ ` k ≡ k : kind

Γ ` k′ ≡ k : kind

Γ ` k ≡ k′ : kind

Γ ` k1 ≡ k2 : kind Γ ` k2 ≡ k3 : kind

Γ ` k1 ≡ k3 : kind

Γ ` c ≡ c′ : Type

Γ ` S(c) ≡ S(c′) : kind

Γ ` k1 ≡ k′1 : kind Γ, α:k1 ` k2 ≡ k′2 : kind

Γ ` Πα:k1.k2 ≡ Πα:k′1.k
′
2 : kind

Γ ` k1 ≡ k′1 : kind Γ, α:k1 ` k2 ≡ k′2 : kind

Γ ` Σα:k1.k2 ≡ Σα:k′1.k
′
2 : kind

Γ ` k ≤ k′ : kind

Γ ` k ≡ k′ : kind

Γ ` k ≤ k′ : kind

Γ ` k ≤ k′ : kind Γ ` k′ ≤ k′′ : kind

Γ ` k ≤ k′′ : kind

Γ ` c : Type

Γ ` S(c) ≤ Type : kind

Γ ` k′1 ≤ k1 : kind Γ, α:k′1 ` k2 ≤ k′2 : kind
Γ, α:k1 ` k2 : kind

Γ ` Πα:k1.k2 : kind ≤ Πα:k′1.k
′
2 : kind

Γ ` k1 ≤ k′1 : kind Γ, α:k1 ` k2 ≤ k′2 : kind
Γ, α:k′1 ` k′2 : kind

Γ ` Σα:k1.k2 ≤ Σα:k′1.k
′
2 : kind

Γ ` c : k
Γ(α) = k

Γ ` α : k

Γ ` k1 : kind Γ, α:k1 ` c : k2

Γ ` λα:k1.c : Πα:k1.k2

Γ ` c1 : Πα:k1.k2 Γ ` c2 : k1

Γ ` c1c2 : [c2/α]k2

Γ ` c1 : k1 Γ ` c2 : [c1/α]k2 Γ, α:k1 ` k2 : kind

Γ ` 〈c1, c2〉 : Σα:k1.k2

Γ ` c : Σα:k1.k2

Γ ` π1c : k1

Γ ` c : Σα:k1.k2

Γ ` π2c : [π1c/α]k2

Γ ` ? : 1 Γ ` unit : Type

Γ ` τ1 : Type Γ ` τ2 : Type

Γ ` τ1→ τ2 : Type

Γ ` τ1 : Type Γ ` τ2 : Type

Γ ` τ1 × τ2 : Type

Γ ` k : kind Γ, α:k ` τ : Type

Γ ` ∀α:k.τ : Type

Γ ` k : kind Γ, α:k ` τ : Type

Γ ` ∃α:k.τ : Type

Γ ` c : Type

Γ ` c : S(c)

Γ ` c : Πα:k1.k
′
2 Γ, α:k1 ` cα : k2

Γ ` c : Πα:k1.k2

Γ ` π1c : k1 Γ ` π2c : [π1c/α]k2 Γ, α:k1 ` k2 : kind

Γ ` c : Σα:k1.k2

Γ ` c : k Γ ` k ≤ k′ : kind

Γ ` c : k′

Γ ` c ≡ c′ : k

Γ ` c : k
Γ ` c ≡ c : k

Γ ` c′ ≡ c : k

Γ ` c ≡ c′ : k

Γ ` c ≡ c′ : k Γ ` c′ ≡ c′′ : k

Γ ` c ≡ c′′ : k

Γ ` k1 ≡ k′1 : kind Γ, α:k1 ` c ≡ c′ : k2

Γ ` λα:k1.c ≡ λα:k′1.c
′ : Πα:k1.k2

Γ ` c1 ≡ c′1 : Πα:k1.k2 Γ ` c2 ≡ c′2 : k1

Γ ` c1c2 ≡ c′1c′2 : [c2/α]k2

Γ ` c1 ≡ c′1 : k1 Γ ` c2 ≡ c′2 : [c1/α]k2 Γ, α:k1 ` k2 : kind

Γ ` 〈c1, c2〉 ≡ 〈c′1, c′2〉 : Σα:k1.k2

Γ ` c ≡ c′ : Σα:k1.k2

Γ ` π1c ≡ π1c
′ : k1

Γ ` c ≡ c′ : Σα:k1.k2

Γ ` π2c ≡ π2c
′ : [π1c/α]k2

Γ ` τ1 ≡ τ ′1 : Type Γ ` τ2 ≡ τ ′2 : Type

Γ ` τ1→ τ2 ≡ τ ′1→ τ ′2 : Type

Γ ` τ1 ≡ τ ′1 : Type Γ ` τ2 ≡ τ ′2 : Type

Γ ` τ1 × τ2 ≡ τ ′1 × τ ′2 : Type

Γ ` k ≡ k′ : kind Γ, α:k ` τ ≡ τ ′ : Type

Γ ` ∀α:k.τ ≡ ∀α:k′.τ ′ : Type
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Γ ` k ≡ k′ : kind Γ, α:k ` τ ≡ τ ′ : Type

Γ ` ∃α:k.τ ≡ ∃α:k′.τ ′ : Type

Γ ` c ≡ c′ : Type

Γ ` c ≡ c′ : S(c)

Γ ` c : S(c′)

Γ ` c ≡ c′ : Type

Γ ` c : Πα:k1.k
′
2 Γ ` c′ : Πα:k1.k

′′
2 Γ, α:k1 ` cα ≡ c′α : k2

Γ ` c ≡ c′ : Πα:k1.k2

Γ ` c ≡ c′ : Πα:k1.k
′
2 Γ, α:k1 ` cα ≡ c′α : k2

Γ ` c ≡ c′ : Πα:k1.k2

Γ ` π1c ≡ π1c
′ : k1 Γ ` π2c ≡ π2c

′ : [π1c/α]k2

Γ, α:k1 ` k2 : kind

Γ ` c ≡ c′ : Σα:k1.k2

Γ ` c : 1 Γ ` c′ : 1

Γ ` c ≡ c′ : 1

Γ ` c ≡ c′ : k Γ ` k ≤ k′ : kind

Γ ` c ≡ c′ : k′

Γ, α:k1 ` c2 : k2 Γ ` c1 : k1

Γ ` (λα:k1.c2)c1 ≡ [c1/α]c2 : [c1/α]k2

Γ ` c1 : k1 Γ ` c2 : k2

Γ ` π1〈c1, c2〉 ≡ c1 : k1

Γ ` c1 : k1 Γ ` c2 : k2

Γ ` π2〈c1, c2〉 ≡ c2 : k2

Γ ` σ : sig

Γ ` 1 : sig
Γ ` k : kind
Γ ` L k M : sig

Γ ` τ : Type

Γ ` 〈| τ |〉 : sig

Γ ` σ1 : sig Γ, α: Fst(σ1) ` σ2 : sig

Γ ` Πα:σ1.σ2 : sig

Γ ` σ1 : sig Γ, α: Fst(σ1) ` σ2 : sig

Γ ` Σα:σ1.σ2 : sig

Γ ` ρ : sig+

Γ ` ©ρ : sig

Γ ` ρ : sig+

Γ ` σ : sig

Γ ` ↓σ : sig+

Γ ` k : kind Γ, α:k ` ρ : sig+

Γ ` ∃α:k.ρ : sig+

Γ ` σ ≡ σ′ : sig

Γ ` σ : sig

Γ ` σ ≡ σ : sig

Γ ` σ′ ≡ σ : sig

Γ ` σ ≡ σ′ : sig

Γ ` σ1 ≡ σ2 : sig Γ ` σ2 ≡ σ3 : sig

Γ ` σ1 ≡ σ3 : sig

Γ ` k ≡ k′ : kind

Γ ` L k M ≡ L k′ M : sig

Γ ` τ ≡ τ ′ : Type

Γ ` 〈| τ |〉 ≡ 〈| τ ′ |〉 : sig

Γ ` σ1 ≡ σ′
1 : sig Γ, α: Fst(σ1) ` σ2 ≡ σ′

2 : sig

Γ ` Πα:σ1.σ2 ≡ Πα:σ′
1.σ

′
2 : sig

Γ ` σ1 ≡ σ′
1 : sig Γ, α: Fst(σ1) ` σ2 ≡ σ′

2 : sig

Γ ` Σα:σ1.σ2 ≡ Σα:σ′
1.σ

′
2 : sig

Γ ` ρ ≡ ρ′ : sig+

Γ ` ©ρ ≡ ©ρ′ : sig

Γ ` ρ ≡ ρ′ : sig+

Γ ` σ ≡ σ′ : sig

Γ ` ↓σ ≡ ↓σ′ : sig+

Γ ` k ≡ k′ : kind Γ, α:k ` ρ ≡ ρ′ : sig+

Γ ` ∃α:k.ρ ≡ ∃α:k′.ρ′ : sig+

Γ ` σ ≤ σ′ : sig

Γ ` σ ≡ σ′ : sig

Γ ` σ ≤ σ′ : sig

Γ ` σ1 ≤ σ2 : sig Γ ` σ2 ≤ σ3 : sig

Γ ` σ1 ≤ σ3 : sig

Γ ` k ≤ k′ : kind

Γ ` L k M ≤ L k M : sig

Γ ` σ′
1 ≤ σ1 : sig Γ, α: Fst(σ′

1) ` σ2 ≤ σ′
2 : sig

Γ, α: Fst(σ1) ` σ2 : sig

Γ ` Πα:σ1.σ2 ≤ Πα:σ′
1.σ

′
2 : sig

Γ ` σ1 ≤ σ′
1 : sig Γ, α: Fst(σ1) ` σ2 ≤ σ′

2 : sig
Γ, α: Fst(σ′

1) ` σ′
2 : sig

Γ ` Σα:σ1.σ2 ≤ Σα:σ′
1.σ

′
2 : sig

Γ ` ρ ≤ ρ′ : sig+

Γ ` ©ρ ≤ ©ρ′ : sig

Γ ` ρ ≤ ρ′ : sig+

Γ ` ρ ≡ ρ′ : sig+

Γ ` ρ ≤ ρ′ : sig+

Γ ` ρ1 ≤ ρ2 : sig+ Γ ` ρ2 ≤ ρ3 : sig+

Γ ` ρ1 ≤ ρ3 : sig+

Γ ` σ ≤ σ′ : sig

Γ ` ↓σ ≤ ↓σ′ : sig+

Γ ` k : kind Γ, α:k ` ρ ≤ ρ′ : sig+ Γ ` ρ′ : sig+

Γ ` ∃α:k.ρ ≤ ρ′ : sig+

Γ ` c : k Γ ` ρ ≤ [c/α]ρ′ : sig+ Γ, α:k ` ρ′ : sig+

Γ ` ρ ≤ ∃α:k.ρ′ : sig+

ρ⇒ Γ.σ

↓σ ⇒ ε.σ

ρ⇒ Γ.σ

∃α:k.ρ⇒ α:k,Γ.σ

Γ ` e : τ
Γ(x) = τ

Γ ` x : τ Γ ` ? : unit

Γ ` τ1 : Type Γ, x:τ1 ` e : τ2

Γ ` λx:τ1.e : τ1→ τ2

Γ ` e1 : τ → τ ′ Γ ` e2 : τ

Γ ` e1e2 : τ ′

Γ ` e1 : τ1 Γ ` e2 : τ2
Γ ` 〈e1, e2〉 : τ1 × τ2

19



Γ ` e : τ1 × τ2
Γ ` π1e : τ1

Γ ` e : τ1 × τ2
Γ ` π2e : τ2

Γ ` k : kind Γ, α:k ` sv : τ

Γ ` Λα:k.sv : ∀α:k.τ

Γ ` e : ∀α:k.τ Γ ` c : k
Γ ` e[c] : [c/α]τ

Γ ` c : k Γ ` e : [c/α]τ Γ, α:k ` τ : Type

Γ ` pack [c, e] as ∃α:k.τ : ∃α:k.τ

Γ ` e1 : ∃α:k.τ Γ, α:k, x:τ ` e2 : τ ′ α 6∈ FV (τ ′)

Γ ` unpack [α, x] = e1 in e2 : τ ′

Γ ` e : (unit→ τ)→ τ

Γ ` fixτ e : τ

Γ ` e1 : τ1 Γ, x:τ1 ` e2 : τ2

Γ ` letx = e1 in e2 : τ2

Γ ` L : ρ ρ⇒ Γ′.σ Γ,Γ′, α/m:σ ` e : τ
Dom(Γ′, α/m:σ) ∩ FV (τ) = ∅

Γ ` letα/m = L in e : τ

Γ `M : 〈| τ |〉
Γ ` ExtM : τ

Γ ` e : τ Γ ` τ ≡ τ ′ : Type

Γ ` e : τ ′

Γ `M : σ

Γ(m) = σ

Γ ` m : σ Γ ` ? : 1

Γ ` c : k
Γ ` L c M : L k M

Γ ` e : τ
Γ ` 〈| e |〉 : 〈| τ |〉

Γ ` σ1 : sig Γ, α/m:σ1 `M : σ2

Γ ` λα/m:σ1.M : Πα:σ1.σ2

Γ `M1 : Πα:σ.σ′ Γ `M2 : σ Γ ` Fst(M2)� c2

Γ `M1M2 : [c2/α]σ′

Γ `M1 : σ1 Γ `M2 : σ2 α 6∈ FV (σ2)

Γ ` 〈M1,M2〉 : Σα:σ1.σ2

Γ `M : Σα:σ1.σ2

Γ ` π1M : σ1

Γ `M : Σα:σ1.σ2 Γ ` Fst(M)� c

Γ ` π2M : [π1c/α]σ2

Γ ` e : τ Γ, x:τ `M : σ

Γ ` letx = e inM : σ

Γ ` L : ρ

Γ ` circ L :©ρ
Γ `M : L k′ M Γ ` Fst(M)� c Γ ` c : k

Γ `M : L k M

Γ `M : Πα:σ1.σ
′
2 Γ, α/m:σ1 `Mm : σ2

Γ `M : Πα:σ1.σ2

Γ ` π1M : σ1 Γ ` π2M : σ2 α 6∈ FV (σ2)

Γ `M : Σα:σ1.σ2

Γ `M : σ Γ ` σ ≤ σ′ : sig

Γ `M : σ′

Γ ` L : ρ

Γ `M : σ
Γ ` retM : ↓σ

Γ `M : σ
Γ `M :> σ : ↓σ

Γ `M :©ρ1 ρ1 ⇒ Γ′.σ Γ,Γ′, α/m:σ ` L : ρ2

Dom(Γ′, α/m:σ) ∩ FV (ρ2) = ∅
Γ ` bindα/m←M in L : ρ2

Γ ` e : ∃α:k.τ Γ, α:k, x:τ ` L : ρ α 6∈ FV (ρ)

Γ ` unpack [α, x] = e inL : ρ

Γ ` L : ρ Γ ` ρ ≤ ρ′ : sig+

Γ ` L : ρ′

Fst(σ) Γ ` Fst(M)� c

Fst(1)
def
= 1

Fst(L k M) def
= k

Fst(〈| τ |〉) def
= 1

Fst(Πα:σ1.σ2)
def
= Πα: Fst(σ1).Fst(σ2)

Fst(Σα:σ1.σ2)
def
= Σα: Fst(σ1).Fst(σ2)

Fst(©ρ)
def
= 1

α/m ∈ Dom(Γ)

Γ ` Fst(m)� α Γ ` Fst(?)� ? Γ ` Fst(L c M)� c

Γ ` Fst(〈| e |〉)� ? Γ ` Fst(circ L)� ?

Γ, α/m:σ ` Fst(M)� c

Γ ` Fst(λα/m:σ.M)� λα: Fst(σ).c

Γ ` Fst(M1)� c1 Γ ` Fst(M2)� c2

Γ ` Fst(M1M2)� c1c2

Γ ` Fst(M1)� c1 Γ ` Fst(M2)� c2

Γ ` Fst(〈M1,M2〉)� 〈c1, c2〉

Γ ` Fst(M)� c

Γ ` Fst(πiM)� πic

Γ ` Fst(M)� c

Γ ` Fst(letx = e inM)� c

C Signature Formation Algorithm

Γ ` σ ⇐ sig

Γ ` 1⇐ sig
Γ ` k ⇐ kind
Γ ` L k M⇐ sig

Γ ` τ ⇐ Type

Γ ` 〈| τ |〉 ⇐ sig

Γ ` σ1 ⇐ sig Γ, α: Fst(σ1) ` σ2 ⇐ sig

Γ ` Πα:σ1.σ2 ⇐ sig

Γ ` σ1 ⇐ sig Γ, α: Fst(σ1) ` σ2 ⇐ sig

Γ ` Σα:σ1.σ2 ⇐ sig

Γ ` ρ⇐ sig+

Γ ` ©ρ⇐ sig

Γ ` ρ⇐ sig+

Γ ` σ ⇐ sig

Γ ` ↓σ ⇐ sig+

Γ ` k ⇐ kind Γ, α:k ` ρ⇐ sig+

Γ ` ∃α:k.ρ⇐ sig+
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