
Modules, Abstraction, and Parametric Polymorphism

Karl Crary

Carnegie Mellon University

Abstract

Reynolds’s Abstraction theorem forms the mathematical
foundation for data abstraction. His setting was the poly-
morphic lambda calculus. Today, many modern languages,
such as the ML family, employ rich module systems designed
to give more expressive support for data abstraction than
the polymorphic lambda calculus, but analogues of the Ab-
straction theorem for such module systems have lagged far
behind.

We give an account of the Abstraction theorem for a
modern module calculus supporting generative and applica-
tive functors, higher-order functors, sealing, and translucent
signatures. The main issues to be overcome are: (1) the fact
that modules combine both types and terms, so they must
be treated as both simultaneously, (2) the effect discipline
that models the distinction between transparent and opaque
modules, and (3) a very rich language of type constructors
supporting singleton kinds. We define logical equivalence for
modules and show that it coincides with contextual equiva-
lence. This substantiates the folk theorem that modules are
good for data abstraction. All our proofs are formalized in
Coq.

1 Introduction

In his seminal 1983 paper Types, Abstraction and Paramet-
ric Polymorphism [25], John Reynolds first stated his Ab-
straction theorem. The theorem (which also came to be
known as the Parametricity theorem) has been put to vari-
ous purposes—including free theorems [30], and full abstrac-
tion for program transformations [1]—but its principal ap-
plication remains Reynolds’s original one: the theoretical
foundation for type abstraction. The theorem states that
no well-typed program can distinguish between two different
implementations of an abstraction, provided the two imple-
mentations operate the same way when viewed through the
abstraction’s interface. The theorem gives programmers li-
cense to reimplement components of a larger system without
worrying about compromising the system.

Reynolds stated his theorem for the polymorphic lambda
calculus, in which the only mechanism for type abstraction
arises from parametric polymorphism, that is, functions that
take types as arguments. The theorem then says that two
different applications of a function are equivalent provided
that the arguments are (to use modern terminology) logi-
cally related.

This gives an account of client-side abstraction: A client

of a component, when he or she desires to hold that com-
ponent abstract, can do so by passing it into a polymor-
phic function. But note that the burden of abstraction
falls on the client of a component. A more robust form
of type abstraction is provider-side, in which the provider
of a component may “seal” it, rendering it abstract to all
clients, without requiring any action on the clients’ part.
It is only provider-side abstraction that gives the provider
carte blanche to reimplement a component at will.

Later type systems did provide support for provider-side
abstraction. First, existential types [20] provided rudimen-
tary support for packages that are made abstract by the
provider. They also support a theoretical account of data
abstraction [19] similar to that of Reynolds. However, they
are clumsy for the client to use. Distinct unpackings of the
same package provide incompatible types, so the client must
be sure to open a package with a large enough scope to en-
compass all its uses.

Modular programming languages provide a more elegant
account of provider-side abstraction [15, 31, 2]. In them, a
module groups together abstract type definitions and oper-
ations on those types—that is, an entire abstract data type
implementation—as a single component, on which an ab-
stract interface is imposed.

A particularly successful form of modular programming
is provided by the module language [8] of Standard ML and
its cousins, based on the strong sum mechanism of Martin-
Löf type theory [17]. In the ML-style module calculi, a mod-
ule’s abstract types can be referenced without opening the
module. This facility makes it possible to give a closed type
to a module’s operations, in contrast to existential types.

The family of ML-style module calculi has enjoyed sus-
tained development at the hands of many researchers and
in many different dimensions, mostly directed at providing
better facilities for abstraction for various programming-in-
the-large settings. Of particular interest here is work on
functors [8, 9, 7, 12, 16, 13, 28, 5, 4]. Functors allow the pro-
grammer to give an implementation of an abstract datatype
that depends parametrically on an unknown implementa-
tion of another abstract data type. The parameter is filled
in later, and possibly more than once. In ML and its cousins,
a functor is seen as a form of function, mapping modules to
modules. The most advanced functor calculi even support
higher-order functors, in which a functor can take another
functor as its argument.

Throughout the three-decade history of ML-style mod-
ule calculi, it has been assumed that sophisticated module
calculi are good for providing data abstraction. Informally,

this assumption has been well substantiated, both by illus-
trative examples, and by large, multi-programmer software
projects.

Formally, however, the situation is quite different. In
fact, there has never been a published proof of a Reynolds-
style abstraction theorem for any ML-style module calculus.
The closest is Leroy [13], which posits, but does not carefully
prove, an abstraction principle for the applicative-functors
module calculus now underlying the OCaml language [14],
and discusses some corollaries.

In this paper, we show that a Reynolds-style abstraction
theorem does indeed hold for a sophisticated module cal-
culus. All the proofs are formalized in Coq. The calculus
we consider supports both applicative and generative func-
tors, higher-order functors, and controlled abstraction (also
known as translucency). It also respects the phase distinc-
tion [9] between compile- and run-time expressions, meaning
that types can be compared for equivalence without execut-
ing the modules those types come from.

Of course, this result is ultimately unsurprising. At a
high-level, we confirm the folk theorem that ML modules
are good for data abstraction. Nevertheless, the details are
instructive: it is not obvious even how to state the abstrac-
tion theorem for our module calculus of interest, and the
proof is non-trivial.

To see why, we outline the standard story of an abstrac-
tion theorem, and then look at how modules complicate the
story.

The abstraction story, in abstract First one defines con-
textual equivalence, which we write e ≈ e′ : τ . It says that
whenever e and e′ are embedded into a hole in a larger pro-
gram, the resulting programs produce the same observable
result. Equivalently, we can define contextual equivalence as
the coarsest congruence such that equivalent terms produce
the same observable result. Contextual equivalence is the
gold standard in operational equivalence because it relates
all terms that cannot be effectively distinguished, but it is
difficult to work with because showing a contextual equiva-
lence requires quantifying over all possible closing contexts.

Next, one defines logical equivalence, which we write e⇔
e′ : τ . Logical equivalence is the central technical definition.
It defines equivalence not in terms of closing contexts, but
in terms of the operational behavior of e and e′ themselves.
It says that e and e′ are equivalent when the operations that
can be performed on them (according to their common type
τ) produce results that are logically equivalent.

With these two definitions in hand, we prove that con-
textual and logical equivalence coincide. Thus we may show
that two terms are contextually equivalent (i.e., indistin-
guishable) by showing that they are logically equivalent.

The application to data abstraction comes from logi-
cal equivalence’s treatment of quantifiers. In one of those
serendipities that make type theory a joy, it almost falls out
from the technical device (Girard’s method [6]) needed to
define logical equivalence over impredicative polymorphism.
Consider the type ∃α.τ of an abstract data type. In order
to show that two implementations pack [ρ, e] and pack [ρ′, e′]
are logically equivalent (and hence indistinguishable), it is
not necessary to have ρ = ρ′. Rather, we exhibit a relation
R between values of ρ and ρ′, such that e and e′ are logically
equivalent, where all appearances of α in τ are interpreted
using R. A similar story, with a bit more convolution, can
be told for the universal quantifier.

For example, we may show that pack [bool, 〈true, λx.x〉]
and pack [int, 〈0, isEven?〉] are logically equivalent at ∃α.α×
(α→bool) by choosing R to be the relation that relates true
to even numbers. Then true and 0 are R-related, and λx.x
and isEven? take R-related arguments to the same boolean.

With modules In the presence of modules, the definition
of logical equivalence becomes more complicated, for several
reasons:

• Mixed-phase objects: The standard definition treats or-
dinary functions (which take terms as arguments) one
way, while treating polymorphic functions (which take
types as arguments) another way. But modules con-
tain both terms and types, so they must be treated
both ways at once.

• Purity: Our module calculus distinguishes between
pure and impure modules. Roughly speaking, these
correspond to unsealed and sealed modules, so pure
modules are the ones whose type components may be
considered well-determined by their clients. This gives
rise to two different notions of logical equivalence, a
coarser notion for impure modules, and a finer one for
pure ones.

• Expressive type constructors: To allow programmers to
express precise sharing constraints between modules,
our module calculus is built on top of the singleton
kind calculus [29]. It contains not only higher-order
type constructors, but dependent kinds and singleton
kinds (that is, kinds containing exactly one type), and
it employs a subkinding judgement. Consequently, we
need a full story of logical equivalence for type con-
structors as well as for terms and modules, and the
two must cohere with each other.

We develop our theory in four steps: First, we summa-
rize our module calculus and state some preliminary results
regarding it (Section 2). Second, we define contextual equiv-
alence (Section 3). Third, we adapt biorthogonality [22] to
our module calculus (Section 4), as a technical device to
deal with admissibility arising from recursion. Fourth, we
define logical equivalence and prove that it coincides with
contextual equivalence (Section 5).

All our proofs are formalized in Coq, and are available
at:

www.cs.cmu.edu/~crary/papers/2016/mapp.tgz

2 The Module Calculus

Our module calculus is adapted from that of Dreyer [4],
and is very nearly a fragment of the internal language used
by Lee, et al. [11]. The module calculus is not a research
contribution of this paper; our purpose here is just to lay the
foundation for our development of the Abstraction theorem.

The module calculus, by itself, is not intended to ac-
count for all the functionality of ML modules, such as named
fields, sealed functor arguments, or open declarations. We
assume that the full language is defined by elaboration into
the module calculus, as suggested by recent work on formal-
izing SML [10, 5, 4, 11] (but in contrast to earlier work [18]).

The module calculus can be broken into the static expres-
sions: kinds (k), type constructors (c), and signatures (σ)—
and the dynamic expressions: terms (e) and modules (M).

2

k ::= 1 unit kind
| T types
| S(c) singleton kind
| Πα:k.k dependent functions
| Σα:k.k dependent pairs

c, ::= α
τ | ? unit constructor

| λα:k.c | c c lambda, application
| 〈c, c〉 pair
| π1c | π2c projection
| unit unit type
| τ1→ τ2 functions
| τ1 × τ2 products
| ∀α:k.τ universals
| ∃α:k.τ existentials

e ::= x
| ? unit term
| λx:τ.e | e e lambda, application
| 〈e, e〉 pair
| π1e | π2e projection
| Λα:k.e polymorphic fun.
| e[c] polymorphic app.
| pack [c, e] as ∃α:k.τ existential package
| unpack [α, x] = e in e unpack
| fixτ e recursion
| letx = e in e term binding
| letα/m = M in e module binding
| ExtM extraction

M ::= m
| ? unit module
| L c M atomic module
| 〈| e |〉 atomic module
| λgnα/m:σ.M generative functor
| MM generative app.
| λapα/m:σ.M applicative functor
| M ·M applicative app.
| 〈M,M〉 pair
| π1M | π2M projection
| unpack [α, x] = e in (M : σ) unpack
| letx = e inM term binding
| letα/m = M in (M : σ) module binding
| M :> σ sealing

σ ::= 1 unit signature
| L k M atomic signature
| 〈| τ |〉 atomic signature
| Πgnα:σ.σ generative functors
| Πapα:σ.σ applicative functors
| Σα:σ.σ pairs

Γ ::= ε empty context
| Γ, α:k constr. hypothesis
| Γ, x:τ term hypothesis
| Γ, α/m:σ module hypothesis

Figure 1: Syntax

Signatures serve as the types for modules. The calculus is
designed to respect the phase distinction [9], meaning that
the meaning and equivalence of static expressions can be de-
termined without executing any dynamic expressions. The
full syntax is given in Figure 1.

Constructors and kinds The constructor and kind portion
is the singleton kind calculus of Stone and Harper [29], sup-
plemented with type operators. The type constructors are
all standard. The kind T contains constructors that hap-
pen to be types. We use the metavariable τ for constructors
that are intended to be types. The kind 1 contains the unit
constructor ?.

The singleton kind [29], S(c), classifies the constructors
that are definitionally equivalent to the constructor c. It is
used to model type definitions and type sharing specifica-
tions. Singletons create dependencies of kinds on construc-
tors, so function and product kinds take dependent form,
Πα:k1.k2 and Σα:k1.k2, respectively. As usual, when α does
not appear free in k2, we write Πα:k1.k2 as k1 → k2, and
Σα:k1.k2 as k1 × k2.

Constructor equivalence is induced by beta and exten-
sionality rules, together with rules pertaining to singleton
kinds: Singleton introduction says c belongs to S(c), pro-
vided c : T. (Singletons for higher kinds are definable us-
ing primitive singletons and dependent kinds [29].) The
singleton elimination rule conversely says c : S(c′) implies
c ≡ c′ : T. Consequently, constructor equivalence is context-
sensitive. For example, we have α:S(int) ` α ≡ int : T. Con-
structor equivalence also depends on the kind at which con-
structors are compared. For example, λα:T.α and λα:T.int
are non-equivalent at T→ T, but are equivalent at the su-
perkind S(int)→ T.

Terms and modules The syntax for terms is mostly stan-
dard. The recursion form fixτ e has the type τ , provided e
has the type (unit→ τ)→ τ .1

The module language contains static atomic modules
(L c M), which contain a single constructor, dynamic atomic
modules (〈| e |〉), which contain a single term, generative and
applicative functors, and pairs. Application of generative
and applicative functors are syntactically distinguished. For
example, the ML module:

struct
type t = int
val x = 12

end

could be elaborated 〈L int M, 〈| 12 |〉〉.
Abstraction is introduced by sealing: In the module

M :> σ, access to the components of M is limited to the
interface σ. In particular, none of the type components are
exposed outside M unless σ reveals them. To make this
work, the calculus must prevent type components from be-
ing extracted from any sealed module, and to do so the cal-
culus views sealing as a computational effect [5]. Generative
functor application also induces a sealing effect, but applica-
tive functor application does not. Sealing effects can always
be mitigated by binding the sealed module to a variable;
variables are always pure.

1This unusual typing is more convenient for call-by-value execu-
tion, as it allows us to expand fixτ e to e(λ :unit.fixτ e).

3

Fst(1)
def
= 1

Fst(L k M) def
= k

Fst(〈| τ |〉) def
= 1

Fst(Πgnα:σ1.σ2)
def
= 1

Fst(Πapα:σ1.σ2)
def
= Πα: Fst(σ1).Fst(σ2)

Fst(Σα:σ1.σ2)
def
= Σα: Fst(σ1).Fst(σ2)

α/m ∈ Dom(Γ)

Γ ` Fst(m)� α Γ ` Fst(?)� ? Γ ` Fst(L c M)� c

Γ ` Fst(〈| e |〉)� ? Γ ` Fst(λgnα/m:σ.M)� ?

Γ, α/m:σ ` Fst(M)� c

Γ ` Fst(λapα/m:σ.M)� λα: Fst(σ).c

Γ ` Fst(M1)� c1 Γ ` Fst(M2)� c2

Γ ` Fst(M1 ·M2)� c1c2
Γ ` Fst(〈M1,M2〉)� 〈c1, c2〉

Γ ` Fst(M)� c

Γ ` Fst(πiM)� πic

Γ ` Fst(M)� c

Γ ` Fst(letx = e inM)� c

Figure 2: Static portions

For technical reasons related to the avoidance problem [4,
section 4.2.6], a module that let-binds another module or
unpacks an existential must provide a signature annotation,
and that annotation induces an implicit seal.

Extraction and twinned variables A term is extracted from
a dynamic atomic module using the ExtM form. However,
we do not include a syntactic form for extracting a construc-
tor from a static atomic module. Instead, we adopt Dreyer’s
device wherein constructor extraction is a meta-operation,
not a syntactic form. This has the virtue that it disentan-
gles the kind/constructor language from the term/module
language, and consequently the metatheoretic results of the
singleton kind calculus [29] can be taken off-the-shelf.

This meta-operation is the judgement Fst(M) � c,
meaning that c is the the static portion of M .2 For ex-
ample, Fst L int M � int. The rules appear in Figure 2. As
discussed above, a constructor can be extracted only from
pure modules, so there is no case for forms, such as sealing,
that are never pure. When the context is empty, we will
sometimes write Fst(M) for that c such that Fst(M)� c.

Notable is the treatment of variables. Every module vari-
able is associated with a constructor variable that represents
its static portion. Harper, et al. [9] and Dreyer [4] maintain
this correspondence using a naming convention. However,
this complicates the key principle of alpha-convertibility. In-
stead, we follow Lee, et al. [11] and maintain the correspon-
dence explicitly. Module variable in binding positions and
in the context appear in twinned form α/m : σ, meaning
that m has signature σ and its static portion is α.

2The name Fst is motivated by the construction in Harper, et
al. [9], which explicitly renders modules as a pair of static and dy-
namic components.

` Γ ok context formation
Γ ` k : kind kind formation
Γ ` k ≡ k′ : kind kind equivalence
Γ ` k ≤ k′ : kind subkind
Γ ` c : k constructor formation
Γ ` c ≡ c′ : k constructor equivalence
Γ ` σ : sig signature formation
Γ ` σ ≡ σ′ : sig signature equivalence
Γ ` σ ≤ σ′ : sig subsignature
Γ ` e : τ term formation
Γ `κ M : σ module formation
Γ ` Fst(M)� c static portion

Figure 3: Static semantic judgements

Signatures Signatures include signatures for atomic mod-
ules, generative and application functor signatures, and sig-
natures for pairs. The signatures for functors and for pairs
are dependent, so one might expect to write them with a
twinned left-hand-side, like Πgnα/m:σ1.σ2. However, a mod-
ule can never appear within any static syntax, including sig-
natures, so the m variable will never be used.

In a twinned binding α/m:σ, or in the binding α:σ within
a dependent signature, α stands for the static portion of
some module belonging to σ. Thus, α will have kind Fst(σ),
which stands for the static portion of σ. The definition of
Fst appears in Figure 2. Whenever m : σ and Fst(m) � c,
we have c : Fst(σ).

Semantics The static semantics is given by several judge-
ments: formation and equivalence for kinds, constructors,
and signatures; subkind and subsignature relations; typing
judgements for terms and modules; the static portion judge-
ment discussed above; and a well-formedness judgement for
contexts. The notation is summarized in Figure 3. The full
rules are given in Figure 2 and Appendix A.

Of particular note is the typing judgement for modules,
written Γ `κ M : σ. Here κ is a purity class: either P,
indicating that the module is pure (unsealed), or I, indicat-
ing that it is impure (sealed). A “forget” rule allows pure
modules to be viewed as impure.

The dynamic semantics is given by a standard, call-by-
value, structured operational semantics, denoted by Γ ` e 7→
e′ and Γ ` M 7→ M ′. (This allows us to evaluate open
terms; in the typical case in which Γ is empty, we will omit
the turnstile.) The value forms are:

v ::= x | ? | λx:τ.e | 〈v, v〉 | Λα:k.e
| pack [c, v] as∃α:k.τ

V ::= m | ? | L c M | 〈| v |〉 | 〈V, V 〉
| λgnα/m:σ.M | λapα/m:σ.M

We write e↓ or M↓ to mean that e or M evaluates to a
value. We say that e diverges when there exists an infinite
evaluation Γ ` e 7→ e1 7→ e2 7→ · · ·.

Two rules illustrate issues that arise in the dynamic se-
mantics of modules. The evaluation rule for sealed modules
immediately removes the seal:

Γ ` (M :> σ) 7→M

4

In essence, this step is the computational effect that the type
system tracks. Rules that substitute for module variables,
such as the beta rules for functors, also must substitute for
the twinned constructor variable, which is obtained using
the Fst judgement:

Γ ` Fst(V2)� c2

Γ ` (λgnα/m:σ.M1)V2 7→ [c2, V2/α,m]M1

This rule works because well-formed module values are al-
ways pure, so their static portion can always be obtained.

We can now state some preliminary results:

Lemma 2.1

• If Γ `P M : σ then Γ ` Fst(M)� c and Γ ` c : Fst(σ).

• If Γ `I V : σ then Γ `P V : σ.

Theorem 2.2 (Type preservation) If ` Γ ok then:

• If Γ ` e : τ and Γ ` e 7→ e′ then Γ ` e′ : τ .

• If Γ `κ M : σ and Γ `M 7→M ′ then Γ `κ M ′ : σ.

• If Γ `P M : σ and Γ ` Fst(M) � c and Γ ` M 7→ M ′

then Γ ` Fst(M ′)� c′ and Γ ` c ≡ c′ : Fst(σ).

Theorem 2.3 (Progress) If ` e : τ then either e is a
value or takes a step. If `κ M : σ then either M is a value
or takes a step.

Theorem 2.4 (Determinism)

• If Γ ` e 7→ e1 and Γ ` e 7→ e2 then e1 = e2.

• If Γ `M 7→M1 and Γ `M 7→M2 then M1 = M2.

• If Γ ` Fst(M)� c1 and Γ ` Fst(M)� c2 then c1 = c2.

3 Contextual Approximation and Equivalence

The most common way to define contextual equivalence is
first to define syntactic contexts (C), which are terms with
a hole. (To avoid confusion, we will reserve the unadorned
word “context” for typing contexts Γ.) For example:

C ::= [] | λx:τ.C | e C | C e | . . . etc . . .

One writes C[e] to refer to filling the hole in C with e. Then
one defines a typing judgement for contexts, C : (Γ . τ)→
(Γ′ . τ ′), meaning that when the hole is filled with a term
having type τ in context Γ, the resulting term has type τ ′

in context Γ′.
Finally, one says e and e′ are contextually equivalent at

τ in Γ (written Γ ` e ≈ e′ : τ), if for any context C :
(Γ . τ)→ (ε . unit), C[e] halts if and only if C[e′] halts.

However, this definition is impractical for the module
calculus. To begin with, one would need four different sorts
of syntactic context (term with hole for a term, term with a
hole for a module, etc.). The quadratic explosion worsens for
the typing judgement, where pure and impure modules must
be treated differently, resulting in nine different judgements.
Furthermore, when typing a syntactic context with a hole
for a pure module, one must know the static portion of the
term that will fill the hole, further complicating the three
judgements that deal with pure-module holes.

Thus, we employ an alternative definition that avoids
syntactic contexts entirely. It is not hard to show that con-
textual equivalence is uniquely the coarsest congruence that
is consistent with execution (in a sense that we will make
precise shortly). We use this property as our definition.

Definition 3.1 An indexed dynamic relation R is a pair of
relations: a relation on terms indexed by a context and type;
and a relation on modules indexed by a context, signature,
and purity class; such that if ` Γ ok then:

• if Γ ` e R e′ : τ then Γ ` e, e′ : τ , and

• if Γ `κ M R M ′ : σ then Γ `κ M,M ′ : σ, and

• if Γ `P M R M ′ : σ then Γ ` c ≡ c′ : Fst(σ), where
Γ ` Fst(M)� c and Γ ` Fst(M ′)� c′.

Definition 3.2 Suppose R is an indexed dynamic relation.

• R is compatible if it respects the rules in Figure 4. (In-
formally, R is compatible if R-related expressions can
be built from R-related subexpressions.)

• R is substitutive if it respects substitution and weaking
for constructor, term, and module hypotheses. (For
example, if Γ, α/m:σ,Γ′ ` e R e′ : τ and Γ `P M : σ
and Γ ` Fst(M) � c then Γ, [c/α]Γ′ ` [c,M/α,m]e R
[c,M/α,m]e′ : [c/α]τ .)

• R is a quasicongruence if it is compatible, substitutive,
and reflexive.

• R is a semicongruence if it is compatible, substitutive,
reflexive, and transitive.

• R is a congruence if it is compatible, substitutive, re-
flexive, transitive, and symmetric.

• R is consistent if it preserves module termination.
(That is, if `I M R M ′ : σ and M halts then M ′

halts.)

We are interested in congruences for equivalences and
in semicongruences for orders. Quasicongruences are useful
for a technical device (Lemma 3.7). Although we define
consistency in terms of module termination, it is easy to
show that a consistent, compatible relation also preserves
term termination.

Definition 3.3 Contextual approximation (written Γ ` e �
e′ : τ and Γ `κ M � M ′ : σ) is defined as the union of all
consistent semicongruences.

Theorem 3.4 Contextual approximation is the coarsest
consistent semicongruence.

Proof Sketch
By definition, contextual approximation includes all con-
sistent semicongruences. It remains to show it is itself
a consistent semicongruence. Let �+ be the transitive
closure of contextual approximation. Then �+ is clearly
substitutive, reflexive, transitive, and consistent, and we
may show that it is compatible as well. Therefore �+ is
a consistent semicongruence, so �+ ⊆ �. Also � ⊆ �+,
so �=�+.

We could define contextual equivalence as the union of
consistent congruences, but it is convenient to define it as
the symmetrization of contextual approximation:

Definition 3.5 Two expressions are contextually equivalent
(written Γ ` e ≈ e′ : τ and Γ `κ M ≈ M ′ : σ) when each
expression contextually approximates the other.

Theorem 3.6 Contextual equivalence is the coarsest con-
sistent congruence.

5

Γ ` τ1 : T Γ, x:τ1 ` e R e′ : τ2

Γ ` λx:τ1.e R λx:τ1.e
′ : τ1→ τ2

Γ ` e1 R e′1 : τ → τ ′ Γ ` e2 R e′2 : τ

Γ ` e1e2 R e′1e
′
2 : τ ′

Γ ` e1 R e′1 : τ1 Γ ` e2 R e′2 : τ2

Γ ` 〈e1, e2〉 R 〈e′1, e′2〉 : τ1 × τ2

Γ ` e R e′ : τ1 × τ2
Γ ` π1e R π1e

′ : τ1

Γ ` e R e′ : τ1 × τ2
Γ ` π2e R π2e

′ : τ2

Γ ` k : kind Γ, α:k; Γ ` e R e′ : τ

Γ ` Λα:k.e R Λα:k.e′ : ∀α:k.τ

Γ ` e R e′ : ∀α:k.τ Γ ` c : k

Γ ` e[c] R e′[c] : [c/α]τ

Γ ` c : k Γ ` e R e′ : [c/α]τ Γ, α:k ` τ : T

Γ ` pack [c, e] as ∃α:k.τ R pack [c, e′] as∃α:k.τ : ∃α:k.τ

Γ ` e1 R e′1 : ∃α:k.τ Γ, α:k, x:τ ` e2 R e′2 : τ ′ Γ ` τ ′ : T

Γ ` unpack [α, x] = e1 in e2 R unpack [α, x] = e′1 in e′2 : τ ′

Γ ` τ : T Γ ` e R e′ : (unit→ τ)→ τ

Γ ` fixτ e R fixτ e
′ : τ

Γ ` e1 R e′1 : τ1 Γ, x:τ1 ` e2 R e′2 : τ2

Γ ` letx = e1 in e2 R letx = e′1 in e′2 : τ2

Γ `M R M ′ : σ Γ, α/m:σ ` e R e′ : τ Γ ` τ : T

Γ ` letα/m = M in e R letα/m = M ′ in e′ : τ

Γ `M R M ′ : 〈| τ |〉
Γ ` ExtM R ExtM ′ : τ

Γ ` e R e′ : τ Γ ` τ ≡ τ ′ : T

Γ ` e R e′ : τ ′

Γ ` c : k
ΓP ` L c M R L c M : L k M

Γ ` e R e′ : τ

Γ `P 〈| e |〉 R 〈| e′ |〉 : 〈| τ |〉
Γ ` σ1 : sig Γ, α/m:σ1 `I M R M ′ : σ2

Γ `P λ
gnα/m:σ1.M R λgnα/m:σ1.M

′ : Πgnα:σ1.σ2

Γ `I M1 R M ′1 : Πgnα:σ.σ′ Γ `P M2 R M ′2 : σ Γ ` Fst(M2)� c2

Γ `I M1M2 R M ′1M
′
2 : [c2/α]σ′

Γ ` σ1 : sig Γ, α/m:σ1 `P M R M ′ : σ2

Γ `P λ
apα/m:σ1.M R λapα/m:σ1.M

′ : Πapα:σ1.σ2

Γ `κ M1 R M ′1 : Πapα:σ.σ′ Γ `P M2 R M ′2 : σ Γ ` Fst(M2)� c2

Γ `κ M1 ·M2 R M ′1 ·M ′2 : [c2/α]σ′
Γ `κ M1 R M ′1 : σ1 Γ `κ M2 R M ′2 : σ2

Γ `κ 〈M1,M2〉 R 〈M ′1,M ′2〉 : σ1 × σ2

Γ `P M R M ′ : Σα:σ1.σ2

Γ `P π1M R π1M
′ : σ1

Γ `P M R M ′ : Σα:σ1.σ2 Γ ` Fst(M)� c

Γ `P π2M R π2M
′ : [π1c/α]σ2

Γ ` e R e′ : ∃α:k.τ Γ, α:k, x:τ `I M R M ′ : σ Γ ` σ : sig

Γ `I unpack [α, x] = e in (M : σ) R unpack [α, x] = e′ in (M ′ : σ) : σ

Γ ` e R e′ : τ Γ, x:τ `κ M R M ′ : σ

Γ `κ letx = e inM R letx = e′ inM ′ : σ

Γ `I M1 R M ′1 : σ Γ, α/m:σ `I M2 R M ′2 : σ′ Γ ` σ′ : sig

Γ `I letα/m = M1 in (M2 : σ′) R letα/m = M ′1 in (M ′2 : σ′) : σ′
Γ `I M R M ′ : σ

Γ `I (M :> σ) R (M ′ :> σ) : σ

Γ `P M R M ′ : σ

Γ `I M R M ′ : σ

Γ `κ M R M ′ : σ Γ ` σ ≤ σ′

Γ `κ M R M ′ : σ′

Figure 4: Compatibility

Proof Sketch

Suppose R is a consistent congruence. Then R and its
transpose are consistent semicongruences, so they are
both contained in �. Hence R ⊆ ≈. It remains to show
that contextual equivalence is itself a consistent congru-
ence. Clearly it is consistent and symmetric. We may
show that semicongruences are closed under transpose
and intersection, so contextual equivalence is a semicon-
gruence as well.

We can use the transitive-closure and transpose devices
from Theorems 3.4 and 3.6 to prove a very useful lemma:

Lemma 3.7 If R is a consistent quasicongruence, then R is
contained in contextual approximation. If, in addition, R’s
transpose is consistent, then R is contained in contextual
equivalence.

Proof Sketch

Suppose R is a consistent quasicongruence. Let R+ be
the transitive closure of R. Clearly R+ is substitutive,
reflexive, transitive, and consistent, and we may show
that it is compatible as well. Therefore R+ is a consistent
semicongruence. Thus R ⊆ R+ ⊆ �.

Suppose R’s transpose is also consistent. Then the trans-
pose is a consistent semicongruence, so also Rop ⊆ �.
Hence R ⊆ ≈.

In the sequel, we will use two key properties of contextual
equivalence and approximation without explicit reference:

Lemma 3.8 If Γ ` e : τ and Γ ` e 7→ e′ then Γ ` e ≈ e′ : τ ,
and similarly for modules.

Proof Sketch
Let βv be the compatible, reflexive, and transitive clo-
sure of evaluation (restricted to well-formed expressions).
Clearly βv is a quasicongruence. We may show using
the Standardization Theorem [23, 21, 3] that βv and its
transpose are consistent. By Lemma 3.7, βv ⊆ ≈.

Lemma 3.9 If Γ ` e, e′ : τ and e diverges then Γ ` e � e′ :
τ .

Proof Sketch
Let R be the smallest quasicongruence containing the
rule:

Γ ` e, e′ : τ e diverges

Γ ` e R e′ : τ

6

By Lemma 3.7, it is sufficient to show that R is consis-
tent. It is easy to show that if Γ ` v R e then e is a value.
We may show by induction that if Γ ` e1 R e2 : τ and
Γ ` e1 7→ e′1 then there exists e′2 such that Γ ` e′1 R e′2 : τ
and Γ ` e2 7→∗ e′2. It follows that if Γ ` e1 R e2 : τ and
Γ ` e1 7→∗ v1 then Γ ` e2 7→∗ v2.

3.1 Compactness

In support of recursion, we will need a compactness lemma.
As usual, we define ⊥τ to be any divergent term of type τ ,
and define:

fix0
τ f

def
= ⊥τ

fixi+1
τ f

def
= f(λ . fixiτ f)

fixωτ f
def
= fixτ f

Observe that fixiτ f � fixτ f , and if i ≤ j then fixiτ f �
fixjτ f : τ . We write ef [o] to mean [λ :unit. fixoτ f/x]e (when
the type τ is clear from context). Note that this notation
designates a particular free variable (namely x) to receive
an approximation.

Lemma 3.10 (Compactness) Suppose ` f : (unit→ρ)→
ρ and x:(unit→ ρ) ` e : τ . If ef [ω] halts then there exists i

such that for all j ≥ i, ef [j] halts.

Proof Sketch

The result is a corollary of a stronger simulation result.
For terms, the simulation result says: Suppose ` f :
(unit→ ρ)→ ρ and x:(unit→ ρ) ` e : τ . If ef [ω] 7→∗ v,

then v can be written in the form v′f [ω], such that there
exists i such that for all j ≥ i, ef [j] � v′f [j−i] : τ . Since
v′f [j−i] certainly halts, it follows that ef [j] halts.

The proof is by complete induction on the number of
evaluation steps, with an inner induction on the typing
derivation of e. The number i is how many times the
evaluation unrolls any instance of the fixed point. The
proof builds a sequence of contextual approximations
that simulates the evaluation sequence, but ensures that
all instances of the fixed point are uniformly unrolled
exactly i times, whether they need to be or not.

4 Biorthogonality

One tricky issue dealing with recursion is the problem of ad-
missibility. Informally, a relation is admissible if a recursive
term belongs to the relation whenever its finite approxima-
tions belong to the relation. We can prove membership in
an admissible relation using fixed point induction.

Most type operators can be shown to preserve admissibil-
ity, but some cannot. In fact, the ones that fail are the ones
that interest us most: those that provide type abstraction
such as existential types and dependent-sum signatures.

To deal with this issue, we employ Pitts’ biorthogonality
technique [22]. The technique provides a closure condition
that is stronger than admissibility but easier to work with.
Furthermore, it provides a closure operator that can be ap-
plied in the cases that are not already closed. In passing,
biorthogonality also provides closure with respect to contex-
tual equivalence.

Let us write Relτ,τ ′ for the set of binary relations between
closed values of type τ and τ ′. Given such a relation R, Rs

is its dual space, containing the continuations that agree

on everything related by R. Conversely, given a relation S
on continuations, St is its dual space, containing the terms
everything related by S agree on.

Definition 4.1 Suppose R ∈ Relτ,τ ′ . Then:

Rs def
= {(v : τ → unit, v′ : τ ′→ unit) |

∀(w,w′) ∈ R, v w↓⇔ v′ w′↓ }

Definition 4.2 Suppose S is a binary relation between
closed values of type τ → unit and τ ′→ unit. Then:

St def
= {(w : τ, w′ : τ ′) | ∀(v, v′) ∈ S, v w↓⇔ v′ w′↓ }

Observe that Rst belongs to Relτ,τ ′ whenever R does. We
can show that −st is indeed a closure operator:

Lemma 4.3 Suppose R,R′ ∈ Relτ,τ ′ . Then:

• R ⊆ Rst

• If R ⊆ R′ then Rst ⊆ R′st.

• Rstst = Rst

We make similar definitions for modules, using σ
gn→ 1 (that

is, Πgn :σ.1) as the signature of continuations for σ, and −st

for modules is likewise a closure operator.
Finally, we say that R is Pitts closed if R = Rst. Note

that, by idempotence, Rst is always Pitts closed. Pitts-closed
relations are closed under contextual equivalence, and are
admissible:

Lemma 4.4 Suppose R ∈ Relτ1,τ2 is Pitts closed. Then R
is closed under contextual equivalence. (And similarly for
modules.)

Proof Sketch

Suppose (v1, v2) ∈ R and v1 ≈ v′1 : τ1 and v2 ≈ v′2 : τ2.
Since R is Pitts closed, it suffices to show that (v′1, v

′
2) ∈

Rst. Let (f1, f2) ∈ Rs. Then f1v1↓⇔ f2v2↓, but the
former is contextually equivalent to f1v

′
1 and the latter

to f2v
′
2, so f1v

′
1↓⇔ f2v

′
2↓ as required. The proof for

modules is similar.

Lemma 4.5 (Admissibility) Suppose R ∈ Relτ1,τ2 is
Pitts closed. Suppose further that (for i = 1, 2) ` fi : (unit→
ρi)→ ρi and x:(unit→ ρi) ` vi : τi. If (v

f1[j]
1 , v

f2[j]
2) ∈ R for

all j, then (v
f1[ω]
1 , v

f2[ω]
2) ∈ R.

Proof Sketch

Let (g1, g2) ∈ Rs. Since R is Pitts closed, it suffices to

show that g1(v
f1[ω]
1)↓⇔ g2(v

f2[ω]
2)↓. Suppose g1(v

f1[ω]
1)

halts. By compactness, there exists j such that g1(v
f1[j]
1)

halts. Recall that (v
f1[j]
1 , v

f2[j]
2) ∈ R. Since (g1, g2) ∈ Rs,

g2(v
f2[j]
2) halts. Finally, g2(v

f2[j]
2) � g2(v

f2[ω]
2) : unit, so

g2(v
f2[ω]
2) halts. The reverse is similar.

7

4.1 Evaluation Closure

We lift value relations to terms using evaluation closure:

Definition 4.6 Suppose R ∈ Relτ,τ ′ . Then:

Rev def
= {(e : τ, e′ : τ ′) |

e↓⇔ e′↓ and
∀v, v′.(e 7→∗ v)⇒ (e′ 7→∗ v′)⇒ (v, v′) ∈ R}

Again, we make a similar definition for modules. Observe
that if R is closed under contextual equivalence, then so is
Rev.

The beauty of stev closure is it behaves something like a
monad. If we wish to show that a pair of terms are related
by Rstev and they depend on a pair of terms related by Qstev,
we may assume without loss of generality that the latter pair
are simply related by Q.

Definition 4.7 Suppose x:ρ ` e : τ . We say that x is active
in e if, for all closed e′ : ρ, [e′/x]e↓ implies e′↓.

Lemma 4.8 (Monadic stev) Suppose Q ∈ Relρ1,ρ2 and
R ∈ Relτ1,τ2 and (for i = 1, 2), x:ρi ` ei : τi. Suppose
further that x is active in e1 and e2. If:

∀(v1, v2) ∈ Q. ([v1/x]e1, [v2/x]e2) ∈ Rstev

then:

∀(e′1, e′2) ∈ Qstev. ([e′1/x]e1, [e
′
2/x]e2) ∈ Rstev

Proof Sketch

Suppose (e′1, e
′
2) ∈ Qstev. For the first conditition, sup-

pose [e′1/x]e1↓. Then e′1↓ so e′2↓. Let e′i 7→∗ vi. Then
(v1, v2) ∈ Qst. Let fi = λx:ρi.let = ei in ?. It is easy to
show that (f1, f2) ∈ Qs. It follows that f1v1↓⇔ f2v2↓,
but fivi↓⇔ [vi/x]ei↓ and [vi/x]ei ≈ [e′i/x]ei. Thus
[e′2/x]e2↓. The reverse is similar.

For the second condition, suppose [e′1/x]e1 7→∗ w1 and
[e′2/x]e2 7→∗ w2. Then e′1↓ so e′2↓. Again, let e′i 7→∗ vi.
Again (v1, v2) ∈ Qst. Suppose (g1, g2) ∈ Rs. Let hi =
λx:ρi.giei. We claim that (h1, h2) ∈ Qs. It follows that
h1v1↓⇔ h2v2, but hivi ≈ gi([vi/x]ei) ≈ gi([e

′
i/x]ei) ≈

giwi. Hence (w1, w2) ∈ Rst.

To prove the claim, suppose that (u1, u2) ∈ Q. Then
([u1/x]e1, [u2/x]e2) ∈ Rstev. Suppose h1u1↓. Then
[u1/x]e1↓ so [u2/x]e2↓. Let [ui/x]ei 7→∗ u′i. Then
(u′1, u

′
2) ∈ Rst. It follows that g1u

′
1↓⇔ g2u

′
2↓. But

giu
′
i ≈ gi([ui/x]ei) ≈ hiui. Thus h2u2↓. The reverse

is similar. Hence (h1, h2) ∈ Qs.

We may also establish similar lemmas for modules that
depend on modules, for modules that depend on terms, and
for terms that depend on modules.

5 Logical Equivalence

Unlike contextual equivalence, logical equivalence defines
the equivalence of expressions based on the operational be-
havior of those expressions themselves. Two expressions are
equivalent when the operations that can be performed on
them (according to their type) produce equivalent results.

As usual, we define logical equivalence using a variation
of Girard’s methods of candidates [6]. To show that two

polymorphic functions e1 and e2 of type ∀α:T.τ are equiva-
lent, we quantify over all type arguments τ1 and τ2 and all
candidates R, and show that e1[τ1] and e2[τ2] are equiva-
lent at τ , wherein the free occurrences of α are interpreted
using R.

The candidate R is a relation between closed values of
type τ1 and τ2. If τ1 = τ2, R might happen to be the logical
interpretation of τ1, but in general it can be any relation
satisfying some closure properties. The license to pick a
relation other than the logical interpretation of a type is
what gives the Abstraction theorem its power.

In the presence of higher-order type constructors, the
notion of a candidate must be generalized. Suppose c1 and
c2 belong to T→T. A candidate relating c1 and c2 is (more
or less) a function that, for any τ1 and τ2, maps relations
between τ1 and τ2 to relations between c1τ1 and c2τ2.

We say a simple kind is a kind containing no singletons.
Observe that every kind can be erased (written k◦) to a
simple kind by replacing singletons with T. We define pre-
candidates indexed by simple kinds:

Val
def
= {v | ` v : τ}

Con
def
= {c | ` c : k}

PreCandT
def
= P(Val×Val)

PreCandk1→k2
def
= Con× Con× PreCandk1 → PreCandk2

PreCandk1×k2
def
= PreCandk1 × PreCandk2

PreCand1
def
= {?}

Here → refers to the set-theoretic partial function space.
We will use Q to range over pre-candidates in general, Φ for
pre-candidates over function kinds, and R for pre-candidates
over T (i.e., relations). A candidate will be a pre-candidate
that belongs to the interpretation of a kind.

An environment is a mapping from constructor variables
to triples (c, c′, Q) (where Q is intended to relate c and c′),
from term variables to pairs (v, v′), and from module vari-
ables to pairs (V, V ′). We write ηL and ηR for the substitu-
tions that maps every variable to the first and second con-
stituent of the triple or pair that η maps that variable to.

5.1 The Logical Interpretation

Kinds, constructors, and signatures are given a logical in-
terpretation relative to a environment, which we denote by
JkKη, JcKη, and JσKη. The full definition is given in Figures 5
and 6. Note that η’s mappings for term and modules vari-
ables are irrelevant in the logical interpretation; they will be
used in logical equivalence itself.

The logical interpretation of a constructor is a candi-
date. In the case of a type, that candidate (belonging to
PreCandT) will be a relation over closed values, which we
will use for logical equivalence of terms.

The logical interpretation of a kind is a set of quadruples
(c, c′, Q,Q′), in which c and c′ are constructors belonging to
the kind, and Q and Q′ are two candidates that relate c to
c′. This induces a partial equivalence relation on candidates:
when (c, c′, Q,Q′) ∈ JkKη, we say that Q and Q′ are seman-
tically equivalent candidates relating c to c′. As usual with
PERs, we use self-equivalence for membership, so Q relates
c to c′ (written (c, c′, Q) ∈ JkKset

η) when (c, c′, Q,Q) ∈ JkKη.

Lemma 5.1 Suppose (c, c′, Q,Q′) ∈ JkKη. Then ` c : ηL(k)
and ` c′ : ηR(k) and Q,Q′ ∈ PreCandk◦ .

8

JTKη
def
= {(τ, τ ′, R,R) |

` τ, τ ′ : T
and R ∈ Relτ,τ ′ is Pitts closed}

JS(c)Kη
def
= {(τ, τ ′, JcKη, JcKη) |

` τ ≡ ηL(c) : T and ` τ ′ ≡ ηR(c) : T
JcKη ∈ Relτ,τ ′ is Pitts closed}

JΠα:k1.k2Kη
def
= {(c, c′,Φ,Φ′) |

` c, c′ : ηL,R(Πα:k1.k2) and
Φ,Φ′ ∈ PreCandΠα:k1.k2 and
∀(d, d′, Q,Q′) ∈ Jk1Kη. ∀d′′, d′′′.
` d ≡ d′′ : ηL(k1)
⇒ ` d′ ≡ d′′′ ∈ ηR(k1)
⇒ (c d, c′ d′,Φ(d, d′, Q),Φ′(d′′, d′′′, Q′))

∈ Jk2Kη,α7→(d,d′,Q)}
JΣα:k1.k2Kη

def
= {(c, c′, P, P ′) |

` c, c′ : ηL,R(Σα:k1.k2) and
P, P ′ ∈ PreCandΣα:k1.k2 and
(π1c, π1c

′, π1P, π1P
′) ∈ Jk1Kη and

(π2c, π2c
′, π2P, π2P

′)
∈ Jk2Kη,α7→(π1c,π1c′,π1P)}

J1Kη
def
= {(c, c′, 〈〉, 〈〉) | ` c, c′ : 1}

JkKset
η

def
= {(c, c′, Q) | (c, c′, Q,Q) ∈ JkKη}

JαKη
def
= Q where η(α) = (c, c′, Q)

Jλα:k.cKη
def
= λ(d, d′, Q) ∈ JkKset

η . JcKη,α 7→(d,d′,Q)

Jc1c2Kη
def
= Jc1Kη(ηL(c2), ηR(c2), Jc2Kη)

J〈c1, c2〉Kη
def
= 〈Jc1Kη, Jc2Kη〉

JπicKη
def
= πiJcKη

J?K def
= 〈〉

JunitKη
def
= {(?, ?)}

Jτ1→ τ2Kη
def
= {(v, v′) | ` v, v′ : ηL,R(τ1→ τ2) and
∀(w,w′) ∈ Jτ1Kη. (v w, v′ w′) ∈ Jτ2Kev

η }
Jτ1 × τ2Kη

def
= {(v, v′) |

` v, v′ : ηL,R(τ1 × τ2) and
∃v1, v

′
1, v2, v

′
2.

v = 〈v1, v2〉 and v′ = 〈v′1, v′2〉 and
(v1, v

′
1) ∈ Jτ1Kη and (v2, v

′
2) ∈ Jτ2Kη}

J∀α:k.τKη
def
= {(v, v′) |

` v, v′ : ηL,R(∀α:k.τ) and
∀(c, c′, Q) ∈ JkKset

η .
(v[c], v′[c′]) ∈ JτKev

η,α7→(c,c′,Q)}
J∃α:k.τKη

def
= {(v, v′) |

` v, v′ : ηL,R(∃α:k.τ) and
∃(c, c′, Q) ∈ JkKset

η . ∃v0, v
′
0, k
′, k′′, τ ′, τ ′′.

v = pack [c, v0] as∃α:k′.τ ′ and
v′ = pack [c′, v′0] as ∃α:k′′.τ ′′ and
(v0, v

′
0) ∈ JτKη,α7→(c,c′,Q)}st

Figure 5: Logical Interpretation (Kinds and Constructors)

J1Kη
def
= {(?, ?, 〈〉)}

JL k MKη
def
= {(L c M, L c′ M, Q) | (c, c′Q) ∈ JkKset

η }
J〈| τ |〉Kη

def
= {(〈| v |〉, 〈| v′ |〉, 〈〉) |

` v, v′ : ηL,R(τ) and (v, v′) ∈ JτKη}
JΠgnα:σ1.σ2Kη

def
= {(V, V ′, 〈〉) |

` V, V ′ : ηL,R(Πgnα:σ1.σ2) and
∀(W,W ′, Q) ∈ Jσ1Kη.

(VW, V ′W ′) ∈ Jσ2Kiev
η,α7→(Fst(W),Fst(W ′),Q)}

JΠapα:σ1.σ2Kη
def
= {(V, V ′,Φ) |

` V, V ′ : ηL,R(Πapα:σ1.σ2) and
(Fst(V),Fst(V ′),Φ) ∈ JFst(Πapα:σ1.σ2)Kset

η

and ∀(W,W ′, Q) ∈ Jσ1Kη.
(V ·W,V ′ ·W ′,Φ(c, c′, Q))
∈ Jσ2Kpev

η,α7→(Fst(W),Fst(W ′),Q)}
JΣα:σ1.σ2Kη

def
= {(V, V ′, P) |

` V, V ′ : ηL,R(Σα:σ1.σ2) and
∃V1, V

′
1 , V2, V

′
2 .

V = 〈V1, V2〉 and V ′ = 〈V ′1 , V ′2 〉 and
(V1, V

′
1 , π1P) ∈ Jσ1Kη and

(V2, V
′
2 , π2P)

∈ Jσ2Kη,α7→(Fst(V1),Fst(V ′1),π1P)}
JσKpev

η
def
= {(M,M ′, Q) |

`P M,M ′ : ηL,R(σ) and M↓⇔M ′↓ and
∀V, V ′. (M 7→∗ V)⇒ (M ′ 7→∗ V ′)

⇒ (V, V ′, Q) ∈ JσKη}
JσKi

η
def
= {(V, V ′) | ∃Q. (V, V ′, Q) ∈ JσKη}st

Figure 6: Logical Interpretation (Signatures)

Kinds A candidate for kind T can be any Pitts-closed re-
lation. However, as one might expect, at a singleton kind
S(c) the only candidate is the interpretation of c. For tech-
nical reasons, it is convenient to require explicitly that that
interpretation is Pitts closed, even though that requirement
will be redundant in the end.

A candidate of Π kind must be functional in all three
of its arguments. In particular, it must map definitionally
equal constructors to semantically equivalent candidates.
This is the reason that we require a notion of semantic equiv-
alence at all. We cannot simply use set-theoretic identity for
semantic equivalence, because candidates can be equivalent
at one kind but not another, just as constructors can.

A candidate of Σ kind is a pair of candidates, and a
candidate of 1 is trivial.

Type constructors As usual, the interpretation of a con-
structor variable is obtained by looking the variable up in
the environment. The interpretations of the intro and elim
forms for Π and Σ are straightforward computations, but
note that the interpretation Jλα:k.cKη is a partial function
defined only for arguments that belong to JkKη.

The interpretations of unit, arrow, and product types
are standard. The interpretation of universal and existen-
tial types are also conventional, given all the foregoing in-
frastructure for higher kinds. However, note that the in-
terpretation of existentials—unlike other types—explicitly
invokes st closure. Without st closure, it would not respect

9

contextual equivalence (see Section 6).
It is interesting to note that applying st closure in ex-

istentials produces an interpretation similar to the well-
known encoding of existentials using universals (i.e., ∃α.τ '
∀β.(∀α.τ → β)→ β). In each case, two packages are equiv-
alent exactly when they cannot be distinguished by certain
continuations. In the former case, it is the continuations in
Rs (where R is the interpretation of existentials prior to st
closure); in the latter it is continuations in J∀α.τ→ βK. But
the latter is very similar to a curried version of the former.

Signatures The main novelty of this work is the logical
equivalence of modules, which arises from the interpretation
of signatures. There are two main issues arising in modules
that do not arise from terms: the fact that modules are
mixed-phase objects, and the purity/impurity distinction.

To address the mixed-phase issue, the form of the logi-
cal interpretation of signatures is a set of triples (V, V ′, Q).
This is a hybrid between the interpretations of kinds and
terms: The static portions of V and V ′ are related by the
candidate Q, while the dynamic portions are related in a
manner similar to terms.

The interpretation uses triples as opposed to quadruples,
because, unlike for kinds, we do not need the interpretation
to serve as a PER. Although we do need to check in the Πap

case that function candidates are functional (as discussed
above), the kind interpretation can serve for that purpose.

For pure (transparent) modules, the signature inter-
pretation is employed more or less directly, but for im-
pure (sealed) modules we hide the candidate—reflecting the
abstraction—and also apply st closure.

The definition is given in Figure 6. It employs two aux-
iliary definitions: pev performs evaluation closure while pre-
serving the candidate; i hides the candidate and applies st
closure.

Contexts We give two logical interpretation of contexts.
The first (JΓK) is the static interpretation; it ignores terms
and modules and defines a PER on substitutions. The sec-
ond (JΓKfull) is the full interpretation; it considers both static
and dynamic expressions and defines a set of substitutions.
Note that if η ∈ JΓKfull then (η, η) ∈ JΓK.

Definition 5.2

• We say that (η, η′) belongs to JΓK if whenever Γ(α) = k
there exists η(α) = (c1, c2, Q) and η′(α) = (c′1, c

′
2, Q

′)
such that ` c1 ≡ c′1 : ηL(k) and ` c2 ≡ c′2 : ηR(k) and
(c1, c2, Q,Q

′) ∈ JkKη.

• We say that η belongs to JΓKfull if (η, η) ∈ JΓK, and
additionally:

– For all x:τ ∈ Γ there exists η(x) = (v1, v2) such
that (v1, v2) ∈ JτKη.

– For all α/m:σ ∈ Γ there exists η(m) =
(V1, V2) and η(α) = (Fst(V1),Fst(V2), Q) such
that (V1, V2, Q) ∈ JσKη.

The static interpretation is used in several lemmas about
the semantic model. The full interpretation is used in the
definition of logical equivalence, which we can now give:

Definition 5.3 (Logical equivalence)

• Terms e and e′ are logically equivalent at τ in Γ (written
Γ ` e⇔ e′ : τ) if ` Γ ok implies:

– Γ ` e, e′ : τ , and

– for all η ∈ JΓKfull, (ηL(e), ηR(e′)) ∈ JτKev
η .

• Modules M and M ′ are impurely logically equivalent at
σ in Γ (written Γ `I M ⇔M ′ : σ) if ` Γ ok implies:

– Γ `I M,M ′ : σ, and

– for all η ∈ JΓKfull, (ηL(M), ηR(M ′)) ∈ JσKiev
η .

• Modules M and M ′ are purely logically equivalent at σ
in Γ (written Γ `P M ⇔M ′ : σ) if ` Γ ok implies:

– Γ `P M,M ′ : σ, and

– Γ ` Fst(M) � c and Γ ` Fst(M ′) � c′ and
Γ ` c ≡ c′ : Fst(σ), and

– for all η ∈ JΓKfull, (ηL(M), ηR(M ′), JcKη) ∈ JσKpev
η .

Observe that logical equivalence is an indexed dynamic
relation, like contextual equivalence. We will show that they
coincide.

5.2 Model Regularity

Our proof begins with the usual substitution lemma:

Lemma 5.4 (Substitution) Suppose E is a kind, con-
structor, or signature. Then JEKη,α7→(ηL(c),ηR(c),JcKη) =
J[c/α]EKη.

Next we wish to show that the kind interpretation works
properly. For this, we prove a technical property we call
model regularity. It says that, for all kinds up to a given
kind, the kind interpretation is functional with respect to
the environment, symmetric, and transitive.

Definition 5.5 We say the model is regular up to k in con-
text Γ (written Γ |= k) if, for all (η, η′) ∈ JΓK:

• Γ ` k : kind

• JkKη = JkKη′

• For all (c, c′, Q1, Q2) ∈ JkKη, we have (c, c′, Q2, Q1) ∈
JkKη.

• For all (c, c′, Q1, Q2) ∈ JkKη and (c, c′, Q2, Q3) ∈ JkKη,
we have (c, c′, Q1, Q3) ∈ JkKη.

• If k has the form Πα:k1.k2 or Σα:k1.k2 then Γ |= k1

and Γ, α:k1 |= k2.

Definition 5.6 We say the model is regular up to Γ, (writ-
ten |= Γ) if for every α ∈ Dom(Γ), Γ |= Γ(α).

Model regularity is sufficient condition for the context
interpretation to function as a PER:

Lemma 5.7 If |= Γ then JΓK is symmetric and transitive.

10

Model regularity respects the kind formation rules:

Lemma 5.8 Suppose |= Γ. Then:

• Γ |= T and Γ |= 1.

• If Γ ` c : T and for all (η, η′) ∈ JΓK, JcKη = JcKη′ , then
Γ |= S(c).

• If Γ |= k1 and Γ, α:k1 |= k2 then Γ |= Πα:k1.k2 and
Γ |= Σα:k1.k2.

The main induction for kinds and constructors shows
simultaneously that the model is regular up to the relevant
kind, and that it respects the judgements in an appropriate
way:

Lemma 5.9 Suppose |= Γ and (η, η′) ∈ JΓK. Then:

1. If Γ ` k : kind then Γ |= k.

2. If Γ ` k1 ≡ k2 : kind then Γ |= k1, k2 and Jk1Kη = Jk2Kη.

3. If Γ ` k1 ≤ k2 : kind then Γ |= k1, k2 and Jk1Kη ⊆ Jk2Kη.

4. If Γ ` c : k then Γ |= k and (ηL(c), ηR(c), JcKη, JcKη′) ∈
JkKη.

5. If Γ ` c ≡ c′ : k then Γ |= k and
(ηL(c), ηR(c), JcKη, Jc′Kη′) ∈ JkKη.

Proof Sketch

By induction on the derivation.

At this point, model regularity is proved for all well-
formed contexts and kinds. Next we prove that the model
respects the signature judgements:

Lemma 5.10 Suppose ` Γ ok and (η, η′) ∈ JΓK. Then:

1. If Γ ` σ : sig then JσKη = JσKη′ . If, in addi-
tion, (V, V ′, Q) ∈ JσKη, then (Fst(V),Fst(V ′), Q,Q) ∈
JFst(σ)Kη.

2. If Γ ` σ ≡ σ′ : sig then JσKη = Jσ′Kη.

3. If Γ ` σ ≤ σ′ : sig then JσKη ⊆ Jσ′Kη.

Proof Sketch

By induction on the derivation.

5.3 The Fundamental Theorem

The logical interpretation is designed to respect contextual
equivalence. For terms we have this already: the interpreta-
tion of any type belongs to JTK, and is therefore Pitts closed,
and therefore respects contextual equivalence. However, the
interpretation of a signature is not necessarily closed, so we
need an additional lemma:

Lemma 5.11 If ` Γ ok and Γ ` σ : sig and (η, η) ∈ JΓK and
(V1, V2, Q) ∈ JσKη and `P V1 ≈ V ′1 : ηL(σ) and `P V2 ≈ V ′2 :
ηR(σ) then (V ′1 , V

′
2 , Q) ∈ JσKη.

From this it follows that the logical equivalence respects
contextual equivalence:

Corollary 5.12

• If Γ ` e1 ⇔ e2 : τ and Γ ` e1 ≈ e′1 : τ and Γ ` e2 ≈
e′2 : τ then Γ ` e′1 ⇔ e′2 : τ .

• If Γ `κ M1 ⇔ M2 : σ and Γ `κ M1 ≈ M ′1 : σ and
Γ `κ M2 ≈M ′2 : σ then Γ `M ′1 ⇔M ′2 : σ.

Proof Sketch

Observe that JτKev
η , JσKiev

η and JσKpev
η all respect contex-

tual equivalence; the first because JτKη is Pitts closed,
the second because iev explicitly applies st closure, and
the third because of Lemma 5.11. The result is then im-
mediate, using substitutivity of contextual equivalence.

Now we can prove our main result. We wish to estab-
lish (for Lemma 3.7) that logical equivalence is a consistent
quasicongruence, and its transpose is also consistent. Con-
sistency is obvious because logical equivalence is defined us-
ing evaluation closure. It is also not hard to show it is
substitutive. Thus, the fundamental theorem states:

Theorem 5.13 Logical equivalence is compatible and re-
flexive.

Proof Sketch

We prove compatibility by analysis of the cases that
define it. (This looks almost exactly like an inductive
proof.) Then we prove reflexivity by induction over the
typing derivation Γ ` e : τ or Γ `κ M : σ. Most of the
cases follow immediate from compatibility. The few re-
maining cases are those typing rules without correspond-
ing compatibility rules: variables, unit, and extensional-
ity.

Corollary 5.14 Logical and contextual equivalence coin-
cide.

Proof

As above, logical equivalence is a consistent quasicongru-
ence, and its transpose is also consistent. Thus logical
equivalence is contained in contextual equivalence. For
the converse, suppose Γ ` e ≈ e′ : τ . Then Γ ` e : τ .
By reflexivity, Γ ` e ⇔ e : τ . By Corollary 5.12,
Γ ` e⇔ e′ : τ . The case for modules is similar.

6 Discussion

To simplify our examples, let us suppose we have a few
base types. Consider the signature σ = Σα:L T M. 〈|α |〉 ×
〈|α→ bool |〉 and three modules belonging to it:

M1 = 〈L bool M, 〈〈| true |〉, 〈|λx.x |〉〉〉
M2 = 〈L int M, 〈〈| 0 |〉, 〈| isEven? |〉〉〉
M3 = 〈L int M, 〈〈| 0 |〉, 〈| isZero? |〉〉〉

In what follows, it is useful to keep in mind that `
Fst(M1) � 〈bool, 〈?, ?〉〉 and ` Fst(M2),Fst(M3) �
〈int, 〈?, ?〉〉.

All three terms are contextually equivalent when consid-
ered as impure modules. We can prove this by showing that
they are logically equivalent. To show M1 and M2 are equiv-
alent, we use the relation R12 that relates true to even num-
bers. It is then easy to show that (bool, int, R12) ∈ JTKset

11

and (true, 0) ∈ JαKα 7→(bool,int,R12) and (λx.x, isEven?) ∈
Jα→ boolKα 7→(bool,int,R12). Consequently:

(M1,M2, 〈R12, 〈?, ?〉〉) ∈ JσK

(Note that the trailing 〈?, ?〉 is the vestigial candidate for
the dynamic fields.) It then follows that (M1,M2) ∈ JσKiev,
so `I M1 ⇔M2 : σ.

To show M2 and M3 are equivalent, we use the relation
R23 that relates even numbers to zero. We can then similarly
show that:

(M2,M3, 〈R23, 〈?, ?〉〉) ∈ JσK

Thus `I M2 ⇔M3 : σ.
However, none of the three modules are contextually

equivalent as pure modules. For example, they can all be
distinguished by the syntactic context C = Ext(π2π2[]) 10,
which projects out the third field and applies it to 10. Note
that this relies on the hole being instantiated with a pure
module. Observe that C[M2] returns true, C[M3] returns
false, and C[M1] isn’t even well-typed.

In logical terms, we see that M1 and M2 do not have
equivalent static portions (〈bool, 〈?, ?〉〉 versus 〈int, 〈?, ?〉〉)
so they cannot be purely logically equivalent.

The other case is more interesting: M2 and M3 do have
equivalent (indeed, identical) static portions. They fail pure
logical equivalence because the candidate that relates them
is 〈R23, 〈?, ?〉〉, which is not the logical interpretation of their
static portion, namely J〈int, 〈?, ?〉〉K = 〈JintK, 〈?, ?〉〉. The
equivalence relies on a different relation than the full equiv-
alence of ints.

This precisely captures our intuition: M1, M2, and M3

are indistinguishable only when they are sealed (i.e., im-
pure). Unsealed, their type fields are exposed, making them
easy to distinguish.

Another instructive example is suggested by Pitts [22,
example 7.7.4]. Suppose we augment our language with an
empty void type. Let:

τ = (α→ bool)→ unit
f1 = λg:(void→ bool).⊥
f2 = λg:(bool→ bool). if g false then⊥

else if g true then ? else⊥
N1 = 〈L void M, 〈| f1 |〉〉
N2 = 〈L bool M, 〈| f2 |〉〉

With some difficulty, we can show that N1 and
N2 are contextually equivalent (as impure modules) at
Σα:L T M.〈| τ |〉. Informally, this is because any client of these
modules must produce an argument α→ bool without any
knowledge of α, so the only possible arguments are the two
constant functions and the everywhere divergent function.
Both f1 and f2 agree on those arguments.

However, there exists no relation R such that (f1, f2) ∈
JτKα 7→(void,bool,R). Indeed, since void is empty, the only R
to consider is the empty relation. We may observe that
(λx.⊥, λx.x) ∈ Jα → boolKα 7→(void,bool,∅). But f1(λx.⊥) di-
verges while f2(λx.x) halts.

This shows that the logical interpretation of signatures,
by itself, is not complete for contextual equivalence. We re-
quire biorthogonality—or some other mechanism—to close
it. For impure modules, we do exactly that. But for pure
modules we need not do so. Lemma 5.11 shows that the logi-
cal interpretation of signatures does respect pure contextual
equivalences. Here, N1 and N2 are contextually equivalent
only as impure modules.

7 Formalization

All the results in this paper are formalized using Coq (ver-
sion 8.4). We implemented binding using deBruijn indices
and explicit substitutions. To make reasoning about rela-
tions cleaner, we used the axioms of functional and propo-
sitional extensionality.

The full development is about 63k lines, much of which is
definitions and preliminaries. Of our main results, Section 3
takes about 6.5k lines, Section 4 takes about 4k lines, and
Section 5 takes about 12k lines. (All these counts include
comments and whitespace.)

8 Related Work

The most similar work to this is Leroy [13]. His main pur-
pose is the development of a module calculus with transpar-
ent applicative functors, the calculus that now underlies the
OCaml module language [14]. The main technical advance
is to allow functor applications to be part of paths. (Paths
are a syntactic class that play the role that pure modules
play in our calculus.)

He also wishes to show that allowing functor application
in paths does not weaken data abstraction. To do so, he
posits an abstraction principle for his module calculus. The
principle is plausible, but the details of the proof are not
published. He then examines some corollaries showing that
the language provides representation independence.

Our results differ in two important ways. First, our lan-
guage, being more recent, is much more expressive: It sup-
ports both generative and applicative functors, while Leroy
supports only the latter. We use a semantic notion of pu-
rity based on effects [5], which subsumes Leroy’s syntactic
condition. We provide the full singleton calculus [29], while
Leroy supports no higher-order type constructors. Finally,
we support recursion, which Leroy’s system (but certainly
not OCaml) omits.

Second, our dynamic semantics is based on structured
operational semantics [24], while Leroy’s is denotational.
This allows Leroy to sidestep myriad syntactic details. As
a very basic example, we consider (λx.e)v and [v/x]e to be
two different terms, but in a denotational setting they de-
note the same semantic object.

An alternative approach to module formalisms is pro-
posed by Rossberg, et al. [27, 26], who suggest that
the meaning of ML modules—both static and operational
semantics—can be defined by elaboration into Fω. They
thus argue that the ML module system is as elementary as
Fω. In so doing, one could argue they inherit a theory of
abstraction from the underlying Fω.

However, for our purposes we find such an inherited ac-
count unsatisfying, as it relies on Rossberg, et al.’s implicit
claim that their elaboration is a faithful interpretation of ML
modules, which is not proven. It certainly seems to be true,
in much the same way as ML modules have always seemed
to be good for data abstraction. But to prove it rigorously,
one would need an independent account of abstraction for
the source language—such as the one we provide here—and
then one could prove that their elaboration preserves ab-
straction.

12

9 Conclusion

This work represents a first step toward substantiating the
data abstraction claims that researchers into module calculi
have been making for years. An important next step is to ex-
tend the core language with support for state. Unlike other
real-world features that could be added to the core language,
there is an important nexus of interaction between modules
and state: An important use for generative functors is to
ensure that multiple instances of a abstract data type, each
with distinct local state, do not share types (for example,
symbol tables [5]).

Another direction is to develop an account of abstraction
for weak sealing [5], which seems necessary for abstraction
within applicative functors, and gives rise to an intermediate
state between purity and impurity.

A Static Semantics

` Γ ok

` ε ok
` Γ ok Γ ` k : kind

` Γ, α:k ok

` Γ ok Γ ` τ : T
` Γ, x:τ ok

` Γ ok Γ ` σ : sig

` Γ, α/m:σ ok

Γ ` k : kind

Γ ` T : kind
Γ ` c : T

Γ ` S(c) : kind Γ ` 1 : kind

Γ ` k1 : kind Γ, α:k1 ` k2 : kind

Γ ` Πα:k1.k2 : kind

Γ ` k1 : kind Γ, α:k1 ` k2 : kind

Γ ` Σα:k1.k2 : kind

Γ ` k ≡ k′ : kind

Γ ` k : kind
Γ ` k ≡ k : kind

Γ ` k′ ≡ k : kind

Γ ` k ≡ k′ : kind

Γ ` k ≡ k′ : kind Γ ` k′ ≡ k′′ : kind

Γ ` k ≡ k′′ : kind

Γ ` c ≡ c′ : T

Γ ` S(c) ≡ S(c′) : kind

Γ ` k1 ≡ k′1 : kind Γ, α:k1 ` k2 ≡ k′2 : kind

Γ ` Πα:k1.k2 ≡ Πα:k′1.k
′
2 : kind

Γ ` k1 ≡ k′1 : kind Γ, α:k1 ` k2 ≡ k′2 : kind

Γ ` Σα:k1.k2 ≡ Σα:k′1.k
′
2 : kind

Γ ` k ≤ k′ : kind

Γ ` k ≡ k′ : kind

Γ ` k ≤ k′ : kind

Γ ` k ≤ k′ : kind Γ ` k′ ≤ k′′ : kind

Γ ` k ≤ k′′ : kind

Γ ` c : T
Γ ` S(c) ≤ T : kind

Γ ` k′1 ≤ k1 : kind Γ, α:k′1 ` k2 ≤ k′2 : kind Γ, α:k1 ` k2 : kind

Γ ` Πα:k1.k2 : kind ≤ Πα:k′1.k
′
2 : kind

Γ ` k1 ≤ k′1 : kind Γ, α:k1 ` k2 ≤ k′2 : kind Γ, α:k′1 ` k′2 : kind

Γ ` Σα:k1.k2 ≤ Σα:k′1.k
′
2 : kind

Γ ` c : k

Γ(α) = k

Γ ` α : k

Γ ` k1 : kind Γ, α:k1 ` c : k2

Γ ` λα:k1.c : Πα:k1.k2

Γ ` c1 : Πα:k1.k2 Γ ` c2 : k1

Γ ` c1c2 : [c2/α]k2

Γ ` c1 : k1 Γ ` c2 : [c1/α]k2 Γ, α:k1 ` k2 : kind

Γ ` 〈c1, c2〉 : Σα:k1.k2

Γ ` c : Σα:k1.k2

Γ ` π1c : k1

Γ ` c : Σα:k1.k2

Γ ` π2c : [π1c/α]k2

Γ ` ? : 1 Γ ` unit : T

Γ ` τ1 : T Γ ` τ2 : T

Γ ` τ1→ τ2 : T

Γ ` τ1 : T Γ ` τ2 : T

Γ ` τ1 × τ2 : T

Γ ` k : kind Γ, α:k ` τ : T

Γ ` ∀α:k.τ : T

Γ ` k : kind Γ, α:k ` τ : T

Γ ` ∃α:k.τ : T

Γ ` c : T
Γ ` c : S(c)

Γ ` c : Πα:k1.k
′
2 Γ, α:k1 ` cα : k2

Γ ` c : Πα:k1.k2

Γ ` π1c : k1 Γ ` π2c : [π1c/α]k2 Γ, α:k1 ` k2 : kind

Γ ` c : Σα:k1.k2

Γ ` c : k Γ ` k ≤ k′ : kind

Γ ` c : k′

Γ ` c ≡ c′ : k

Γ ` c : k
Γ ` c ≡ c : k

Γ ` c′ ≡ c : k

Γ ` c ≡ c′ : k

Γ ` c ≡ c′ : k Γ ` c′ ≡ c′′ : k

Γ ` c ≡ c′′ : k

Γ ` k1 ≡ k′1 : kind Γ, α:k1 ` c ≡ c′ : k2

Γ ` λα:k1.c ≡ λα:k′1.c
′ : Πα:k1.k2

Γ ` c1 ≡ c′1 : Πα:k1.k2 Γ ` c2 ≡ c′2 : k1

Γ ` c1c2 ≡ c′1c′2 : [c2/α]k2

Γ ` c1 ≡ c′1 : k1 Γ ` c2 ≡ c′2 : [c1/α]k2 Γ, α:k1 ` k2 : kind

Γ ` 〈c1, c2〉 ≡ 〈c′1, c′2〉 : Σα:k1.k2

Γ ` c ≡ c′ : Σα:k1.k2

Γ ` π1c ≡ π1c
′ : k1

Γ ` c ≡ c′ : Σα:k1.k2

Γ ` π2c ≡ π2c
′ : [π1c/α]k2

Γ ` τ1 ≡ τ ′1 : T Γ ` τ2 ≡ τ ′2 : T

Γ ` τ1→ τ2 ≡ τ ′1→ τ ′2 : T

Γ ` τ1 ≡ τ ′1 : T Γ ` τ2 ≡ τ ′2 : T

Γ ` τ1 × τ2 ≡ τ ′1 × τ ′2 : T

13

Γ ` k ≡ k′ : kind Γ, α:k ` τ ≡ τ ′ : T

Γ ` ∀α:k.τ ≡ ∀α:k′.τ ′ : T

Γ ` k ≡ k′ : kind Γ, α:k ` τ ≡ τ ′ : T

Γ ` ∃α:k.τ ≡ ∃α:k′.τ ′ : T

Γ ` c ≡ c′ : T

Γ ` c ≡ c′ : S(c)

Γ ` c : S(c′)

Γ ` c ≡ c′ : T

Γ ` c : Πα:k1.k
′
2 Γ ` c′ : Πα:k1.k

′′
2 Γ, α:k1 ` cα ≡ c′α : k2

Γ ` c ≡ c′ : Πα:k1.k2

Γ ` c ≡ c′ : Πα:k1.k
′
2 Γ, α:k1 ` cα ≡ c′α : k2

Γ ` c ≡ c′ : Πα:k1.k2

Γ ` π1c ≡ π1c
′ : k1 Γ ` π2c ≡ π2c

′ : [π1c/α]k2

Γ, α:k1 ` k2 : kind

Γ ` c ≡ c′ : Σα:k1.k2

Γ ` c : 1 Γ ` c′ : 1

Γ ` c ≡ c′ : 1

Γ ` c ≡ c′ : k Γ ` k ≤ k′ : kind

Γ ` c ≡ c′ : k′

Γ, α:k1 ` c2 : k2 Γ ` c1 : k1

Γ ` (λα:k1.c2)c1 ≡ [c1/α]c2 : [c1/α]k2

Γ ` c1 : k1 Γ ` c2 : k2

Γ ` π1〈c1, c2〉 ≡ c1 : k1

Γ ` c1 : k1 Γ ` c2 : k2

Γ ` π2〈c1, c2〉 ≡ c2 : k2

Γ ` e : τ
Γ(x) = τ

Γ ` x : τ Γ ` ? : unit

Γ ` τ1 : T Γ, x:τ1 ` e : τ2

Γ ` λx:τ1.e : τ1→ τ2

Γ ` e1 : τ → τ ′ Γ ` e2 : τ

Γ ` e1e2 : τ ′

Γ ` e1 : τ1 Γ ` e2 : τ2
Γ ` 〈e1, e2〉 : τ1 × τ2

Γ ` e : τ1 × τ2
Γ ` π1e : τ1

Γ ` e : τ1 × τ2
Γ ` π2e : τ2

Γ ` k : kind Γ, α:k ` e : τ

Γ ` Λα:k.e : ∀α:k.τ

Γ ` e : ∀α:k.τ Γ ` c : k
Γ ` e[c] : [c/α]τ

Γ ` c : k Γ ` e : [c/α]τ Γ, α:k ` τ : T

Γ ` pack [c, e] as ∃α:k.τ : ∃α:k.τ

Γ ` e1 : ∃α:k.τ Γ, α:k, x:τ ` e2 : τ ′ Γ ` τ ′ : T

Γ ` unpack [α, x] = e1 in e2 : τ ′

Γ ` e : (unit→ τ)→ τ

Γ ` fixτ e : τ

Γ ` e1 : τ1 Γ, x:τ1 ` e2 : τ2

Γ ` letx = e1 in e2 : τ2

Γ `I M : σ Γ, α/m:σ ` e : τ Γ ` τ : T

Γ ` letα/m = M in e : τ

Γ `I M : 〈| τ |〉
Γ ` ExtM : τ

Γ ` e : τ Γ ` τ ≡ τ ′ : T

Γ ` e : τ ′

Γ ` σ : sig

Γ ` 1 : sig
Γ ` k : kind
Γ ` L k M : sig

Γ ` τ : T
Γ ` 〈| τ |〉 : sig

Γ ` σ1 : sig Γ, α: Fst(σ1) ` σ2 : sig

Γ ` Πgnα:σ1.σ2 : sig

Γ ` σ1 : sig Γ, α: Fst(σ1) ` σ2 : sig

Γ ` Πapα:σ1.σ2 : sig

Γ ` σ1 : sig Γ, α: Fst(σ1) ` σ2 : sig

Γ ` Σα:σ1.σ2 : sig

Γ ` σ ≡ σ′ : sig

Γ ` σ : sig

Γ ` σ ≡ σ : sig

Γ ` σ′ ≡ σ : sig

Γ ` σ ≡ σ′ : sig

Γ ` σ ≡ σ′ : sig Γ ` σ′ ≡ σ′′ : sig

Γ ` σ ≡ σ′′ : sig

Γ ` k ≡ k′ : kind

Γ ` L k M ≡ L k′ M : sig

Γ ` τ ≡ τ ′ : T

Γ ` 〈| τ |〉 ≡ 〈| τ ′ |〉 : sig

Γ ` σ1 ≡ σ′1 : sig Γ, α: Fst(σ1) ` σ2 ≡ σ′2 : sig

Γ ` Πgnα:σ1.σ2 ≡ Πgnα:σ′1.σ
′
2 : sig

Γ ` σ1 ≡ σ′1 : sig Γ, α: Fst(σ1) ` σ2 ≡ σ′2 : sig

Γ ` Πapα:σ1.σ2 ≡ Πapα:σ′1.σ
′
2 : sig

Γ ` σ1 ≡ σ′1 : sig Γ, α: Fst(σ1) ` σ2 ≡ σ′2 : sig

Γ ` Σα:σ1.σ2 ≡ Σα:σ′1.σ
′
2 : sig

Γ ` σ ≤ σ′ : sig

Γ ` σ ≡ σ′ : sig

Γ ` σ ≤ σ′ : sig

Γ ` σ ≤ σ′ : sig Γ ` σ′ ≤ σ′′ : sig

Γ ` σ ≤ σ′′ : sig

Γ ` k ≤ k′ : kind

Γ ` L k M ≤ L k M : sig

Γ ` σ′1 ≤ σ1 : sig Γ, α: Fst(σ′1) ` σ2 ≤ σ′2 : sig
Γ, α: Fst(σ1) ` σ2 : sig

Γ ` Πgnα:σ1.σ2 ≤ Πgnα:σ′1.σ
′
2 : sig

Γ ` σ′1 ≤ σ1 : sig Γ, α: Fst(σ′1) ` σ2 ≤ σ′2 : sig
Γ, α: Fst(σ1) ` σ2 : sig

Γ ` Πapα:σ1.σ2 ≤ Πapα:σ′1.σ
′
2 : sig

Γ ` σ1 ≤ σ′1 : sig Γ, α: Fst(σ1) ` σ2 ≤ σ′2 : sig
Γ, α: Fst(σ′1) ` σ′2 : sig

Γ ` Σα:σ1.σ2 ≤ Σα:σ′1.σ
′
2 : sig

Γ `κ M : σ

Γ(m) = σ

Γ `P m : σ Γ `P ? : 1

Γ ` c : k
Γ `P L c M : L k M

Γ ` e : τ
Γ `P 〈| e |〉 : 〈| τ |〉

14

Γ ` σ : sig Γ, α/m:σ `I M : σ′

Γ `P λ
gnα/m:σ.M : Πgnα:σ.σ′

Γ `I M1 : Πgnα:σ.σ′ Γ `P M2 : σ Γ ` Fst(M2)� c2

Γ `I M1M2 : [c2/α]σ′

Γ ` σ : sig Γ, α/m:σ `P M : σ′

Γ `P λ
apα/m:σ.M : Πapα:σ.σ′

Γ `κ M1 : Πapα:σ.σ′ Γ `P M2 : σ Γ ` Fst(M2)� c2

Γ `κ M1 ·M2 : [c2/α]σ′

Γ `κ M1 : σ1 Γ `κ M2 : σ2 α 6∈ FV (σ2)

Γ `κ 〈M1,M2〉 : Σα:σ1.σ2

Γ `P M : Σα:σ1.σ2

Γ `P π1M : σ1

Γ `P M : Σα:σ1.σ2 Γ ` Fst(M)� c

Γ `P π2M : [π1c/α]σ2

Γ ` e : ∃α:k.τ Γ, α:k, x:τ `I M : σ Γ ` σ : sig

Γ `I unpack [α, x] = e in (M : σ) : σ

Γ ` e : τ Γ, x:τ `κ M : σ

Γ `κ letx = e inM : σ

Γ `I M1 : σ Γ, α/m:σ `I M2 : σ′ Γ ` σ′ : sig

Γ `I letα/m = M1 in (M2 : σ′) : σ′

Γ `I M : σ

Γ `I (M :> σ) : σ

Γ `P M : L k′ M Γ ` Fst(M)� c Γ ` c : k

Γ `P M : L k M

Γ `P M : Πapα:σ1.σ
′
2 Γ, α/m:σ1 `P M ·m : σ2

Γ `P M : Πapα:σ1.σ2

Γ `P π1M : σ1 Γ `P π2M : σ2 α 6∈ FV (σ2)

Γ `P M : Σα:σ1.σ2

Γ `P M : σ

Γ `I M : σ

Γ `κ M : σ Γ ` σ ≤ σ′ : sig

Γ `κ M : σ′

References

[1] Amal Ahmed and Matthias Blume. Typed closure con-
version preserves observational equivalence. In 2008
ACM International Conference on Functional Program-
ming, Victoria, Canada, 2008.

[2] Luca Cardelli, James Donahue, Lucille Glassman, Mick
Jordan, Bill Kalsow, and Greg Nelson. Modula-3 report
(revised). Technical Report 52, Digital Equipment Cor-
poration, Systems Research Center, November 1989.

[3] Karl Crary. A simple proof of call-by-value standard-
ization. Technical Report CMU-CS-09-137, Carnegie
Mellon University, School of Computer Science, 2009.

[4] Derek Dreyer. Understanding and Evolving the ML
Module System. PhD thesis, Carnegie Mellon Univer-
sity, School of Computer Science, Pittsburgh, Pennsyl-
vania, May 2005.

[5] Derek Dreyer, Karl Crary, and Robert Harper. A type
system for higher-order modules. In Thirtieth ACM
Symposium on Principles of Programming Languages,
pages 236–249, New Orleans, Louisiana, January 2003.

[6] Jean-Yves Girard. Interprétation fonctionelle et
élimination des coupures de l’arithmétique d’ordre
supérieur. PhD thesis, Université Paris VII, 1972.

[7] Robert Harper and Mark Lillibridge. A type-theoretic
approach to higher-order modules with sharing. In
Twenty-First ACM Symposium on Principles of Pro-
gramming Languages, pages 123–137, Portland, Ore-
gon, January 1994.

[8] Robert Harper, David MacQueen, and Robin Milner.
Standard ML. Technical Report ECS-LFCS-86-2, De-
partment of Computer Science, University of Edin-
burgh, March 1986.

[9] Robert Harper, John C. Mitchell, and Eugenio Moggi.
Higher-order modules and the phase distinction. In Sev-
enteenth ACM Symposium on Principles of Program-
ming Languages, pages 341–354, San Francisco, Jan-
uary 1990.

[10] Robert Harper and Chris Stone. A type-theoretic in-
terpretation of Standard ML. In Proof, Language and
Interaction: Essays in Honour of Robin Milner. The
MIT Press, 2000. Extended version published as CMU
technical report CMU-CS-97-147.

[11] Daniel K. Lee, Karl Crary, and Robert Harper. Towards
a mechanized metatheory of Standard ML. In Thirty-
Fourth ACM Symposium on Principles of Programming
Languages, Nice, France, January 2007.

[12] Xavier Leroy. Manifest types, modules and separate
compilation. In Twenty-First ACM Symposium on
Principles of Programming Languages, pages 109–122,
Portland, Oregon, January 1994.

[13] Xavier Leroy. Applicative functors and fully trans-
parent higher-order modules. In Twenty-Second ACM
Symposium on Principles of Programming Languages,
San Francisco, January 1995.

[14] Xavier Leroy, Damien Doligez, Jacques Garrigue, Di-
dier Rémy, and Jérôme Vouillon. The OCaml system,
release 4.03, Documentation and user’s manual. Insti-
tut National de Recherche en Informatique et Automa-
tique (INRIA), 2016.

[15] Barbara Liskov and John Guttag. Abstraction and
Specification in Program Development. The MIT Press,
1986.

[16] David B. MacQueen and Mads Tofte. A semantics for
higher-order functors. In Fifth European Symposium
on Programming, volume 788 of Lecture Notes in Com-
puter Science, pages 409–423. Springer, 1994.

[17] Per Martin-Löf. An intuitionistic theory of types: Pred-
icative part. In Proceedings of the Logic Colloquium,
1973, volume 80 of Studies in Logic and the Foun-
dations of Mathematics, pages 73–118. North-Holland,
1975.

15

[18] Robin Milner, Mads Tofte, and Robert Harper. The
Definition of Standard ML. The MIT Press, Cam-
bridge, Massachusetts, 1990.

[19] John C. Mitchell. On the equivalence of data represen-
tations. In V. Lifschitz, editor, Artificial Intelligence
and Mathematical Theory of Computation: Papers in
Honor of John McCarthy, pages 305–330. Academic
Press, 1991.

[20] John C. Mitchell and Gordon D. Plotkin. Abstract
types have existential type. ACM Transactions on Pro-
gramming Languages and Systems, 10(3):470–502, July
1988.

[21] Luca Paolini and Simona Ronchi Della Rocca. Para-
metric parameter passing lambda-calculus. Information
and Computation, 189(1):87–106, 2004.

[22] Andrew Pitts. Typed operational reasoning. In Ben-
jamin C. Pierce, editor, Advanced Topics in Types and
Programming Languages, chapter 7, pages 245–289.
The MIT Press, 2005.

[23] Gordon D. Plotkin. Call-by-name, call-by-value, and
the lambda calculus. Theoretical Computer Science,
1:125–159, 1975.

[24] Gordon D. Plotkin. A structural approach to op-
erational semantics. Technical Report DAIMI FN-
19, Computer Science Department, Aarhus University,
1981.

[25] John C. Reynolds. Types, abstraction and parametric
polymorphism. In Information Processing ’83, pages
513–523. North-Holland, 1983. Proceedings of the IFIP
9th World Computer Congress.

[26] Andreas Rossberg. 1ML — core and modules united.
In 2015 ACM International Conference on Functional
Programming, Vancouver, Canada, 2015.

[27] Andreas Rossberg, Claudio Russo, and Derek Dreyer.
F-ing modules. Journal of Functional Programming,
24(5), September 2014.

[28] Claudio V. Russo. Types for Modules. PhD thesis,
Edinburgh University, March 1998.

[29] Christopher A. Stone and Robert Harper. Extensional
equivalence and singleton types. ACM Transactions on
Computational Logic, 7(4), October 2006. An earlier
version appeared in the 2000 Symposium on Principles
of Programming Languages.

[30] Philip Wadler. Theorems for free! In Fourth Conference
on Functional Programming Languages and Computer
Architecture, London, September 1989.

[31] Niklaus Wirth. Programming in Modula-2. Texts and
Monographs in Computer Science. Springer, 1983.

Revision 1.1.

16

