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Abstract. We instrument a higher-order logic programming search pro-
cedure to generate and check small proof witnesses for the Twelf system,
an implementation of the logical framework LF. In particular, we ex-
tend and generalize ideas from Necula and Rahul [16] in two main ways:
1) We consider the full fragment of LF including dependent types and
higher-order terms and 2) We study the use of caching of sub-proofs to
further compact proof representations. Our experimental results demon-
strate that many of the restrictions in previous work can be overcome and
generating and checking small witnesses within Twelf provides valuable
addition to its general safety infrastructure.

1 Introduction

Proof-carrying code applications establish trust by verifying compliance of the
code with safety and security policies. A code producer verifies that the program
is safe to run according to some predetermined safety policy, and supplies a
binary executable together with its safety proof. Before executing the program,
the code consumer then quickly checks the code’s safety proof against the binary.

The Twelf system [22], an implementation of the logical framework LF [12],
provides a general safety infrastructure to represent and execute safety policies
via a higher-order logic program interpretation and has been employed in several
proof-carrying code projects [4, 8, 3, 9]. Higher-order logic programming extends
first order logic programming along two orthogonal dimensions: First, dynamic
assumptions may be generated and used during proof search. Second, first-order
terms are replaced with dependently typed λ-terms, thereby directly supporting
encodings via higher-order abstract syntax.

One of the benefits of using Twelf is that the execution of a query will not only
produce a yes or no answer, but produce a proof term as a certificate that can be
checked independently. This increases the confidence in the overall correctness
of the higher-order logic programming engine, and the certificate can be sent to
the code consumer where compliance with the code is checked.

Unfortunately, the proof terms produced by Twelf are quite big in size. This
creates problems in a proof carrying code setting where proof terms are sent
across the network. We would like to produce small proof witnesses and check
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them. Our approach to this problem is to instrument the higher-order logic pro-
gramming interpreter by extending and generalizing ideas by Rahul and Nec-
ula [16]. To obtain small proof witnesses, they propose to only record the non-
deterministic choices during logic programming execution as a bit-string. We
can check such a proof witness by guiding a deterministic logic programming
interpreter using the bit-string and re-running the proof. This simple idea has
been proven to be effective in many practical examples. We observe a minimum
compression of a factor of 70 in proof size in our experiments, increasing up to
a factor of almost 700 for larger proofs. This idea has also been used by Wu et.

al [30] for creating a foundational proof checker with small witnesses.

Previous approaches restricted themselves to a fragment of LF excluding
higher-order terms and dependent types thereby trading the expressive power
of the logical framework LF against simplicity of implementation to generate
and check proof witnesses. As a consequence, these systems do not support
higher-order abstract syntax in practice, but each particular system now has to
use encoding tricks to encode their variable binding constructs together with
substitution operations. For example, Wu et al. [30] encode the explicit substi-
tution calculus [1] together with the necessary proofs about substitutions for
their foundational certified code implementation. As the technology of certified
code evolves, we will move to more powerful and expressive safety policies and
type systems and the use of higher-order abstract syntax will become crucial for
achieving a simple, compact encoding of these systems.

In this paper, we describe the design of generating and checking of small
proof witnesses for the full logical framework LF. This work continues where
Necula and Rahul [16] left off saying “more experimental results are needed
especially in the higher-order setting”. Our work has been implemented and
evaluated within the Twelf system [22] making it unnecessary to build separate
proof checking engines. To obtain a practical scalable implementation, we use
higher-order substitution tree indexing [24]. Furthermore, we improve on the size
of proof witnesses by caching common sub-proofs3 .

This paper is structured as follows. We give background on higher-order
logic programming in Twelf in Section 2. In Section 3, we present our approach
to generating and checking small proof witnesses. In Section 4.1 we explain
higher-order term indexing and in Section 4.2, we discuss caching techniques
for factoring out common subproofs. We conclude with a discussion of some
experimental results within Twelf and related work.

2 Higher-order logic programming

The theoretical foundation underlying higher-order logic programming within
Twelf is the LF type theory, a dependently typed lambda calculus [20]. In this
setting types are interpreted as clauses and goals and typing context represents

3 Eliminating common sub-proofs is an orthogonal problem to eliminating redundant
implicit type information, as is proposed in [17].
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the store of program clauses available. We will use types and formulas inter-
changeably. Types and programs are defined as follows:

Types A ::= P | A1 → A2 | Πx : A1.A2

Terms M ::= c · S | x · S | λx.M
Programs Γ ::= · | Γ, x : A
Spines S ::= nil | M ; S

We present terms and types using the spine notation [6]. We use meta-
variables x to range over term level variables. There are constants at both the
term level, denoted by c, and at type level, denoted by a. P ranges over atomic
formulas such as a · S, i.e. type constants applied to spines. We interpret the
function arrow A1 → A2 as implication and the Π-quantifier, denoting depen-
dent function type, corresponds to the universal ∀-quantifier. Types, which are
goals and clauses, are inhabited by corresponding proof terms M , and we assume
that all proof terms are in normal form.

Other higher-order logic programming languages of a similar flavor are λ-
Prolog [15] or Isabelle [19]. To illustrate the notation and explain the problem
of small proof witnesses, we will first give an example of encoding the natural
deduction calculus in the logical framework LF using higher-order logic program-
ming following the methodology in Harper et al. [12]. For more information on
how to encode formal systems in LF, see for example Pfenning [21]. Using this
example, we will explain generating and checking of small proof witnesses.

2.1 Representing Logics

As a running example, we will consider a fragment of intuitionistic natural de-
duction calculus consisting of implications and universal quantifiers. Propositions
can be then described as follows:

Propositions A, B, C := . . . | A ⊃ B | ∀x.A
Context Γ := . | Γ, A

Inference rules describing natural deduction are presented next.

Γ ` [a/x]A a is new

Γ ` ∀x.A
allI

Γ ` ∀x.A
Γ ` [T/x]A

allE
Γ, A ` A

hyp

Γ, A ` B

Γ ` A ⊃ B
impI

Γ ` A ⊃ B Γ ` A
Γ ` B

impE

To represent this system in LF, we first need formation rules to construct
terms for propositions. We intend that terms belonging to prop represent well-
formed propositions and i represents individuals.

The connective for implication has a type that takes in two propositions and
returns a proposition, hence the constructor imp has type prop -> prop ->

prop. To represent the forall-quantifier, we will use higher-order abstract syntax.
The crucial idea is to represent bound variables in the object language (logic)
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with bound variables in the meta-language (higher-order logic programming).
Hence the type of forall is (i -> prop) -> prop.

Next we turn our attention to the inference rules. The judgment for prov-
ability within this logic is denoted by the type family prov. Each clause will
correspond to an inference rule in the object logic. For convenience, we give the
constructors descriptive names.

alli: prov (forall λx. A x)

<- Πx. prov (A x)

alle: prov (A T)

<- prov (forall λx. A x).

impi: prov (imp A B)

<- (prov A -> prov B).

impe: prov B

<- prov (imp A B)

<- prov A.

A, B, C denote existential or logic variables which are instantiated during
proof search. Throughout the example we reverse the arrow A -> B writing in-
stead B <- A. This way, goals appear in the order in which they are processed
during proof search. From a logic programming view, it might be more intuitive
to think of the clause H <- A1 <- A2 <- . . . <- An as H <- A1, A2, . . ., An.
There are two key ideas which make the encoding of the logic calculus elegant
and direct. First, we use and manipulate dynamic assumptions which higher-
order logic programming provides, to eliminate the need to manage assumptions
in a list explicitly. To illustrate, we consider the clause impI. To prove prov

(imp A B), we prove prov B assuming prov A In other words, the proof for
prov B may use the dynamic assumption prov A. Second, we use higher-order
abstract syntax to encode the bound variables in the universal quantifier. As a
consequence substitution in the object language can be reduced to application
and β-reduction in the meta-language (higher-order logic programming). Con-
sider the rule for all-elimination. If we have a proof of ∀x.A , then we know that
[T/x]A is true for any term T . The substitution [T/x]A in the object language
is achieved via application in the meta-language (A T).

2.2 Proof search in higher-order logic programming

Higher-order logic programming is similar to a Prolog interpreter in that it
performs essentially a depth-first search over all the program clauses. The key
challenges in moving to a higher order setting are twofold: First, we may have
dynamic assumptions which may be used within a certain scope. Second, since
we allow higher-order terms (i.e. terms may contain λ-abstraction), higher-order
unification is used to unify clause heads with current goal.

In this section, we briefly describe the depth-first proof search procedure of
the higher-order logic programming interpreter. Computation in logic program-
ming is achieved through proof search. Given a goal (or query) G and a program
Γ , we derive G by successive application of clauses of the program Γ . To solve
a goal G from a set of clauses Γ , we decompose the compound goal G until it is
atomic and then resolved it with a program clause. We have the following three
possible actions (for a more detailed description see Miller et al. [14]):
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Select Γ ` G ⇒ ci · S
Given an atomic goal G and clauses Γ :
Focus on a clause ci : Ai from Γ by unifying the head of Ai with the current
goal G. Solve the subgoals of the clause, yielding a proof spine S. The proof term
established for G is ci · S.

Augment Γ ` G1 → G2 ⇒ λu.M if Γ, u:G1 ` G2 ⇒ M
Augment the clauses in Γ with the dynamic assumption u:G1 and establish a proof
M for the goal G2 from the extended program Γ, u:G1.

Universal Γ ` Πx.G ⇒ λx.M if Γ ` [a/x]G ⇒ [a/x]M where a is a new parameter
Given a universally quantified goal Πx.G, we generate a new parameter a, and
establish a proof [a/x]M for the goal [a/x]G in the program context Γ .

Once the goal is atomic, we need to select a clause from the program context
Γ to establish a proof for G. In a logic programming interpreter, we consider all
the clauses in Γ in order. First, we will consider the dynamic assumptions, and
then we will try the static program clauses one after the other. Let us assume,
we picked a clause A from the program context Γ . We now need to establish a
proof for G, by unifying the head of the clause A with G and solving the subgoals
of A. We will illustrate proof search by considering the following example:

prov (forall λy. (imp (forall λ x. p x) (p y)))

which corresponds to (∀y.(∀x.p(x)) ⊃ p(y)). where p is a defined predicate.
To prove the query, we will start by unifying the head of the clause (allI) with
the query, which results in subgoal:

Πa.prov(imp (forall λy.p y) (pa))

In the Universal step, we introduce a new parameter a yielding the subgoal:

prov(imp (forall λy.p y) (pa)).

To prove this subgoal we will again inspect our clauses. Three of them will be
applicable, namely allE, impI, and impE. This time we will pick the second clause
impI. Hence we will introduce the dynamic assumption u:prov(forall λ y.p y)
and show prov (p a) using the dynamic assumption u. In the third step, again
two clauses are applicable, allE, and impE. Using the first one, allE, we need
to show that we can prove prov(forall λy.P y). There are four possible clauses
whose clause head will unify: the dynamic clause u and the three program clauses
alli, alle, and impe. Using the dynamic assumption u, we can finish the proof.
Twelf’s higher-order logic programming engine will generate the following proof
term in explicit form:

(alli (λ x. ((forall λ y. p y) imp p x))

λ a. (impi (forall λ y.p y) (p a)

λ u. (alle (λ y.p y) a u))).

The final proof term not only tracks the rules which have been used in every
step of the proof, but also tracks the instantiations for the logic variables in each
steps. In the proof term above we show the instantiations in gray.
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As shown in Necula [17], the instantiations of existential variables need not
be recorded in the explicit proof terms but can be reconstructed as long as we
only concentrate on a fragment of LF, called LFi. This can lead to substantial
savings in proof checking and proof size. Proofs are roughly O(

√
n), where n is the

size of the query. However, extending this idea to full LF has been difficult [29].
Maybe more importantly, proofs in LFi are still several times as big as the overall
program they certify.

Our goal is to produce smaller proof witnesses by reducing the proof evidence
to the choices we make while constructing the proof. In the previous example, it
suffices to know that in the first step, three possible rules apply, namely alli,
alle, and impe and we want to follow the first possibility. In the second step,
again three possible rules apply, namely alle, impi, and impe, and we want to
follow the second possibility. In the final step, we have four potential candidates,
the dynamic assumption u:forall (λy.p y), and the rules allI, allE, and impE.
Hence it would suffice to store only a list of the choices made in the proof. In
this example, the choices can be characterized by the following sequence: 1/3,
2/3, 1/2, 1/4, keeping in mind that dynamic assumptions are tried first by proof
search procedures. This sequence will constitute our compact proof witness and
is all that needs to be generated and sent to the verifier. In the remainder of the
paper, we show how to incorporate this technique into Twelf.

3 Generating and checking small proof witnesses

3.1 Proof compression

In this section, we describe the modifications to the proof search procedure
needed to generate a compact proof witness in the form of a bit-string. We
assume that we already have the full proof term, which in certifying code systems
is typically generated by a compiler. The bit-string encodes the non-deterministic
choices within the proof, namely picking the right clause ci:A from the program
context Γ to establish a proof P for G, once the goal G is atomic, by unifying
the head of A with the atomic goal G. Potentially, there is more than one clause
whose head unifies with G, and hence a proof search procedure would need to
try all the possible choices in order. The proof witness just needs to keep track
of which possibility was successful.

In our approach, generating and checking witnesses essentially perform the
same overall proof search. The only difference is that in proof search we would
likely explore multiple fruitless paths and backtrack until we find the right path.
When generating and checking witnesses, we will consult the proof term or wit-
ness respectively to know which choice to consider, and thus eliminate back-
tracking. We modify the proof search steps presented earlier as follows:

Select Γ ` ci · S : G ⇒ 0 . . . 0
| {z }

1...(i−1)

1W

Given an atomic goal G and clauses Γ :
Let ci : Ai be the i−th clause from Γ whose head unifies with goal G.
Focus on clause ci : Ai from Γ . Use the proof spine S to guide the solving of
subgoals, yielding witness W .
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Augment Γ ` λu.M : G1 → G2 ⇒ W if Γ, u:G1 ` M : G2 ⇒ W
Augment the clauses in Γ with the dynamic assumption u:G1 and compress a proof
M for G2 within the extended program Γ, u:G1 to obtain the witness W .

Universal Γ ` λx.M : Πx.G ⇒ W if Γ ` [a/x]M : [a/x]G ⇒ W
Given a universally quantified goal Πx.G, we generate a new parameter a, and
compress a proof [a/x]M for [a/x]G in the program context Γ to W .

Note that the Select step is deterministic as the proof term determines which
choice will be successful. It should be intuitively clear that we do not necessarily
have to pass in the full proof term, but could directly produce a proof witness in
form of a bit-string if our proof search is powerful enough that it will eventually
find a proof.

3.2 Checking small proof witnesses

In this section, we modify the previous search procedure, in such a way that
it is not parameterized by the proof term M , but rather by the compact proof
witness W encoded as a bit-string. We are given goal G in a program context Γ ,
together with a proof witness W . The procedure is the dual of the compression
case, and we show the important Select case.

Select Γ ` 0 . . . 0
| {z }

1...(i−1)

1W : G

Given an atomic goal G and clauses Γ :
Let k be the number of clauses whose head unifies with the current goal G, then
inspect up to k bits, and find the i-th bit which is one.
Focus on clauses ci : Ai from Γ to establish a proof for the atomic goal G from Γ
using remaining proof witness W .

In Select step, we first generate the k possible candidates whose head will
unify with the current goal G. If k is greater than 1, we will examine up to k bits
from the witness to see which choice to take. If a bit 1 occurs at position i of these
k bits, we will pick the i-th candidate. For this idea to work, it is crucial that the
order of choices during witness checking is same as during witness generation.

In order to check the proof witnesses, we re-run the prover guided with the
advice encoded in the bit-string. The witness checker is then a deterministic
search procedure. No backtracking is necessary, since all the non-deterministic
choices are resolved. Note that the proof term does not need to be reconstructed.

3.3 Bit-string encodings for proof witnesses

The choices as described above are choice sequences of the form i1/k1, i2/k2, . . .,
where at the jth stage we have kj choices, and we want to pick ij (1 ≤ ij ≤ kj).
With the tight coupling of the witness generation and checking phases, both
phases agree on the number of choices (kj) as well as the ordering of those
choices,i.e. both producer and checker agree on which choice is to be considered
the ij-th one.
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We can now see that the separator between choices is unnecessary. We can
decide on a encoding scheme, and pull only the required number of bits from the
oracle. The witness checker will always know how many bits to extract.

We have experimented with two simple encoding schemes, though more com-
plex coding schemes can be imagined. The original proposal by Necula and Rahul
proposed what we call the binary scheme, in that the number would be encoded
in binary. If k choices apply, this will require dlog ke bits. We discover that a
scheme we call unary encoding works better in practice. In this scheme, the
choice number i is encoded as 000 . . . (i-1 zeros)1. This takes i bits.

The binary scheme will work better when we habitually have a large number
of choices, and we take one of the later choices in the ordering considered by
the producer/checker. The unary scheme will work better precisely in the other
cases. In all our examples, we have observed that only a few choices typically
apply. Further, logic programmers usually write their programs so that the more
common choices are tried first. With these observations, unary encodings should
outperform binary encodings, as indeed they do in experimental studies. This is
a configurable option in our engine, and can be set depending on the particular
proof or logic.

4 Optimizations

4.1 Higher-order term indexing

In the Select step of our algorithms, we need to retrieve clauses which may
unify with the goal. To avoid redundant computations most first-order logic
programming interpreter use efficient term indexing strategies such as automata
driven indexing [28]. Indexing strategies for higher-order terms are more difficult,
since in general retrieval and insertion operations rely on computing the most
general unifier or the most specific generalization. However, in the higher-order
case, unification is in general undecidable and the most general unifier does not
necessarily exist. The same holds for computing the most specific generalization
of two terms.

We will adopt higher-order substitution trees [24, 26] as our indexing mech-
anism. Substitution tree indexing has been successfully used in a first-order
setting [11] and allows the sharing of common sub-expressions via substitutions.
This is unlike other non-adaptive term indexing methods which only allow shar-
ing of common term prefixes. To extend substitution tree indexing to the higher-
order setting, we use linear higher-order patterns [27]. Higher-order patterns [13]
are terms where all existential variables must be applied to distinct bound vari-
ables. Linear higher-order patterns further restrict existential variables to occur
only once and to be applied to all distinct bound variables.

The construction of a substitution tree in the higher-order setting follows
the overall algorithm described in Ramakrishnan et al [28]. We will illustrate
higher-order substitution trees by an example. Assume we have the following
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clauses which allow quantifier manipulation for first-order logic:

e1 : eq (imp (exists λx.A x) B) (forall λx.(imp (A x) B)).
e2 : eq (imp A (forall λx.B x)) (forall λx.(imp A (B x))).
e3 : eq (and A (forall λx.B x)) (forall λx.(and A (B x))).

Although all the terms in these clauses fall into the pattern fragment, not
all of them are linear patterns. We linearize them by eliminating any duplicate
occurrences of existential variables, and replacing any existential variable which
is not fully applied with one which is. The linearized program is given next:

e1 : eq (imp (exists λx.A x) B) (forall λx.(imp (A′ x) (B′ x))).
∀x.(A′ x)

.
= (A x) and B′ x

.
= B

e2 : eq (imp A (forall λx.B x)) (forall λx.(imp (A′ x) (B′ x))).
∀x.(A′ x)

.
= A and B′ x

.
= (B x)

e3 : eq (and A (forall λx.B x)) (forall λx.and (A′ x) (B′x)).
∀x.(A′ x)

.
= A and B′ x

.
= (B x)

We now compute the most specific generalization between these clauses, and
can build up a substitution tree. The algorithm for computing the most specific
generalization is given in [26, 24].

eq i2 (forall λx.i1 x)

λx.(and (A′ x) (B′ x))/i1
(and A (forall λx.(B x)))/i2

∀x.A′ x
.
= A

∀x.B′ x
.
= B x

e3

λx.(imp (A′ x) (B′ x))/i1
(imp (i3 x) (i4 x))/i2

λy.exists λx.A x/i3,
λy.B/i4

∀x.A′ x
.
= A x

∀x.B′ x
.
= B

e1

λy.A/i3,
λy.(forall λx.B x)/i4

∀x.A′ x
.
= A

∀x.B′ x
.
= B x

e2

Fig. 1. Substitution tree

By composing the substitutions along a path, we will obtain a clause head.
By composing the substitutions in the right-most branch, we obtain the clause
head e2. In contrast to other indexing techniques such as discrimination tries,
substitution trees allows the sharing of common sub-expressions instead of com-
mon term prefixes. This is often very useful, as we can see in this example, since
the most sharing is done in the second argument.

We have chosen to index only the static set of program clauses. In theory,
substitution tree indexing can be used for dynamic clauses generated during
proof search also. However, it is not clear how useful this will be, since creating
the tree itself is time-consuming. It is also noted by Necula and Rahul [16] that
indexing dynamic assumptions imposes a performance penalty.
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4.2 Caching results

Since large proofs often have identical subproofs, there is often potential for
sharing subproofs, particularly in machine-generated proofs which tend to have
repeated proofs of simple facts. This was also pointed out by Necula and Lee [18]:
“... it is very common for the proofs to have repeated sub-proofs that should be
hoisted out and proved only once ...”.

When generating and checking small proof witnesses, this leads to two prob-
lems. First, the proof witnesses become larger, thus increasing transmission costs.
Second, the performance of the witness checker may degrade, since it spends its
time uselessly verifying the same fact over and over again. Ideally we would like
to cache intermediate results and re-use them later.

We use ideas from and also infrastructure developed for tabled higher order
logic programming [26, 23]. Since caching everything may be too costly in prac-
tice, we support selective caching. The user can declare certain predicates to be
cached. We modify the Select step in our previous search procedure to allow for
caching. Assume our subgoal is Γ ` G. We check whether the current subgoal
is an instance of a previous table entry. If there exists a table entry Γ ′ ` G′ s.t.
Γ ` G is a variant (or instance) of the already existing entry, then a pointer to
the corresponding answer list is returned. If no such entry exists, Γ ` G is added
to the table and a pointer to an empty answer list is returned. In this case, we
will continue to focus on a clause ci as usual to solve the goal Γ ` G. When
we are done, we will add the answer substitution for the existential variables in
Γ ` G together with its proof term ci · S to its answer list.

If a table entry for the goal already exists, there are two possible situations:

1. If the answer list contains an answer substitution θk that leads to the proof
ci · S we are compressing, then we will just re-use the answer substitution
θk.

2. If the answer list does not contain an answer that would lead to the proof
ci ·S, then we need to use a program clause cj to focus on and solve the goal
Γ ` G.

The generation and checking of witnesses will follow similar algorithms, so
both have identical caches and consider the same number of choices.

5 Experimental Results

In this section, we give an experimental evaluation of generating and checking
compact proof witnesses. In particular, the results discuss the trade off between
witness size and the time it takes to construct or check witnesses. Thus, we will
consider three cases: asking the checker to perform proof search, proof checking of
explicit proofs, and our approach of small proof witnesses. The first two represent
two extreme cases, the first one with zero witness size but large proof search time,
and the second one with large witness size but fast checking times. We will also
discuss the trade-offs of caching subproofs. Finally, we will compare different
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encoding schemes for describing the non-deterministic choices and see how this
affects the size of the proof witness.

Our experiments are run on a Pentium 4 machine running at 2GHz with 1
GB of memory size. The machine runs Twelf compiled by SML of New Jersey
version 110.0.7, and runs it on the Redhat Linux 7.1 operating system, with no
programs running on the background. We present a representative selection of
results from an extensive suite of experiments we have run.

5.1 Time and size trade-offs

Our first example suite is an implementation of a sequent calculus for intu-
itionistic propositional logic where invertible rules are chained together thereby
eliminating some non-determinism in the overall proof search.

Sequent Calculus: Times with Caching of User-Selected Predicates
Example PST PCT WV (PST/WV) PS PST WS (PS/WS)

(A ⊃ B) ∧ (A ⊃ C) ⇒ A ⊃ B ∧ C 0.47 < 0.01 < 0.01 ∞ 361 43 5 72.2
A ∨ C ∧ (B ⊃ C) ⇒ (A ⊃ B) ⊃ C 1.70 < 0.01 0.01 170 570 50 6 95.0
(A ⊃ C) ∧ (B ⊃ C) ⇒ A ∨ B ⊃ C 2.18 < 0.01 < 0.01 ∞ 561 56 6 93.5
⇒ (A ⊃ C) ∧ (B ⊃ C) ⊃ A ∨ B ⊃ C 2.43 < 0.01 0.01 243 792 57 6 132.0

Key: PST =Proof Search time (s)
PCT=Proof Checking time (s)
WV =Witness Verification time (s)

PS =Proof Size in bytes
PST=Proof Size in Number of tokens
WS =Witness Size in bytes

We study the time to find a proof and contrast it against the proof checking
times. We use the tabled higher-order logic programming engine [25, 26] to find
proofs for the propositional logic. The proof compression and the verification
procedures provide significant time speedups, since in these procedures, we al-
ready know the proof. Next, we turn our attention to questions of proof size.
The original proof is measured both by number of bytes as well as the number
of tokens, and the compact proof witness is produced using the unary encoding
described earlier.

Our second example is an advanced type system for a high-level call-by-value
functional language using refinement types [10]. The language has functions, a
fix-point construct, booleans and bit-strings. In particular, the type of bit-strings
is refined by zero and strictly positive number representations.

Refinement Type System : Proof Compression Times with Caching
Example PST PCT WV ( PST / WV ) PS PSN WS (PS / WS)

mult-pos-nat 5.81 0.05 1.10 5.3 15,654 1,159 169 92.6
mult 0.39 0.02 0.13 3.0 6,074 509 47 129.2
square-pos-nat 12.55 0.06 1.85 6.8 25,303 1,587 242 104.6

The experimental results demonstrates that proof checking yields a speedup
between three and six times. This figure is achieved if we are caching subgoals
to get maximum compressions. As we see later, even more time gains can be
achieved by turning off caching, since we do not explore unproductive branches
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in the proof tree. Finally, we notice that the compact oracle is about 1% of the
size of the proof term.

Our last example suite is an implementation from the Foundational Proof
Carrying Code project at Princeton [2]. This is a large program that type checks
SPARC object code with the help of annotations produced by a compiler. The
type system used is a low-level type system known as LTAL [7].

FPCC: Times without Caching
Example PST PCT WV (PST / WV) PS PSN WS (PS / WS)

clos 12.26 2.505 0.47 26.1 201,910 16,502 638 316.5
mid 10.29 2.246 0.45 22.9 398,589 34,250 528 754.9
inc 11.55 2.310 0.47 24.6 410,600 35,724 579 709.2
lint 12.84 2.591 0.70 18.3 441,965 38,416 703 628.7

In the proof carrying code scenario, asking the consumer to verify our com-
pact proof witness as opposed to doing proof search gives a speedup of about
20 times. Also important is the size of the proof that must be sent to the con-
sumer. Our proof witnesses are between 300 and 700 times smaller than the
corresponding proof terms. Finally, we notice that as proof sizes become big-
ger, our mechanisms perform better at compressing proofs. The space savings
go from a factor of about 70 in the smallest examples all the way to about 700
times for our largest examples. The gains in time are from a factor of about 5
to a factor of about 25 for the larger examples.

5.2 Caching: time vs space

Next we investigate the practicality of caching subgoals. Caching is a fairly ex-
pensive operation, in terms of both time for stores and lookups and the memory
required to maintain the table and we investigate this trade-off next. As our re-
sult show, caching results in a speed penalty of between three and fifteen times.
The gain from this is that the size of the oracle is smaller for the cached version
in every experiment. Disappointingly, the gain is usually small.

Refinement Type System: Caching during proof compression
Example Compression Time Witness Size Table

Cached Uncached Slowdown Cached Uncached Saving Size
(sec) (sec) (bytes) (bytes)
(A) (B) (A / B) (C) (D) (D - C)/D

mult-pos-nat 1.18 0.11 10.7 169 171 1.2 % 579
mult 0.14 0.05 2.8 47 67 29.9 % 164
square-pos-nat 2.31 0.16 14.4 242 247 2.0 % 794

5.3 Encoding Schemes

Finally, we study the issue of unary versus binary encodings of the choices.
A representative study with examples from multiple example suites is given
next. We notice that binary encodings always increase the size of the oracle, by
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between 7% and 115%. As we discussed before, logic programmers usually write
their programs so that the first few clauses are the ones that are used more
commonly, in which case unary encodings are better.

Unary versus Binary Encodings: no Caching

Example WSU WSB (WSB - WSU/ WSU)

clos 638 715 12.0 %
mid 528 652 23.5 %
lint 703 754 7.3 %
mult-pos-nat 171 338 97.7 %
mult 67 144 114.9 %

Key WSU = Witness Size
(Unary Encoded)

WSB = Witness Size
(Binary Encoded)

6 Related Work

The idea of compact proof witnesses that encode the non-deterministic choice in
a logic programming interpreter was first proposed by Necula and Rahul [16] for
a fragment of the logical framework LF, that excludes the use of higher-order
terms and significantly limits the use of dependent types in practice. Their main
goal was to design a practical method for current proof-carrying code applica-
tions to reduce the size of proofs sent to a consumer. To achieve an efficient
implementation, they propose the use of automata-driven indexing, where any
higher-order features are ignored. Their indexing algorithm will generate a set
of potential candidates from which unsound candidates need to be weeded out
by calling higher-order unification based on Huet’s algorithm. This is clearly
wasteful and expensive in the general higher-order case, since we will traverse
higher-order terms at least twice. Moreover, since Huet’s unification algorithm is
non-deterministic itself, their proof witnesses also record the choices made dur-
ing unification. To avoid these problems in practice, their realization and their
experimental evaluation does not consider terms defined via λ-abstraction.

The idea of using oracles was also explored in Wu et al [30]. The main differ-
ence between their and the previous approach is that the proof rules are proven
correct independently thereby minimizing the trusted computing base. Trust is
not our concern here, rather we aim at extending the safety infrastructure al-
ready provided by Twelf with capabilities of generating and checking small proof
witnesses. This step, we believe, will provide the developers of safety policies in
Twelf with new insights about the relationship of safety rules and size of proofs.

As in Necula and Rahul’s work, Wu et al.’s system does not support higher-
order abstract syntax, which drastically limits its usefulness. Wu et al.[30] encode
the explicit substitution calculus [1] together with the necessary proofs about
substitutions for their foundational implementation of LTAL. Although the over-
head in this setting is still manageable, it is not general enough to handle richer
safety polices.

7 Conclusion

In this paper, we extended the logical framework LF with small proof witnesses.
Witness generation and checking within the logical framework LF constitutes
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a valuable addition to the general safety infrastructure already provided. This
can provide insights into the relationship between safety policies and small safety
proofs and allows for experiments with different kinds of encoding schemes. Given
the potential of proof-carrying code methods and their new applications to proof-
carrying authorization [3, 5], this will provide a comprehensive guide for future
implementations of proof checkers which need not be restricted to first-order
Prolog-like systems.
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