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1. INTRODUCTION

The proliferation of low-cost computing hardware and the ubiquity of the Inter-
net has created a situation where a huge amount of computing power is both idle
and—in principle—accessible to developers. The goal of exploiting these idle com-
putational resources has existed for years, and, beginning with SETI@Home [2000]
in 1997, a handful of projects have successfully made profitable use of idle compu-
tation on the Internet. More recently, this paradigm, now called grid computing,
has elicited serious interest among academics [Buyya and Baker 2000; Lee 2001;
Parashar 2002] and in industry as a general means of conducting low-cost super-
computing.

Despite the increasing interest in grid computing, a remaining obstacle to its
growth is the (understandable) reluctance of computer owners to download and
execute software from developers they do not know or trust, and may not have
even heard of. This has limited the practical use of grid computing to the small
number of potential users that have been able to obtain the trust of thousands of
computer owners they do not know.

The ConCert project at CMU [Chang et al. 2002] is seeking to overcome this
obstacle by developing a system for trustless dissemination of software. In the
ConCert framework, a machine owner installs a “steward” program that ensures
the safety of any downloaded software. When a new grid application is obtained
for execution (other parts of the ConCert framework determine when and how this
takes place), that application is expressed in the form of certified code, in which
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the executable code is accompanied by a certificate proving that the code is safe.
The steward then verifies that the certificate is valid before permitting the code
to be executed. The mechanism of certified code moves the burden of determining
whether the code is safe from the code consumer to the code supplier.

An important aspect of a certified code system is the makeup of the system’s
trusted elements, those elements that must be correct for the system to work prop-
erly, such as a verifier (e.g., a type checker) or runtime library. One form of trusted
element common to the early certified code systems [Lindholm and Yellin 1996; Nec-
ula and Lee 1996; Morrisett et al. 1999] was a trusted type system. These systems
relied on a type system (or similar artifact) to ensure safety, and code recipients
were required to trust that the type system sufficed for that purpose. Although in
some cases the type system was backed up by a published proof of safety [Necula
1997; Morrisett et al. 1999; Morrisett et al. 2002; Necula 1998], each such proof was
carried out at an abstract level some distance from any real machine architecture.

More recently, there has been interest in the development of certified code sys-
tems that do not include a type system among the systems’ trusted elements,1

such as the accounts of Appel and Felty [2000], and Hamid et al. [2002]. Such
systems, dubbed “foundational,” constitute an improvement because they remove
a substantial trusted element.

Removing trusted elements is desirable for two reasons: First, a trusted element
could be faulty, so eliminating it improves security. This is particularly compelling
for software elements; for example, Bernard and Lee [2002] eliminate the verification
condition generator from the trusted elements of the SpecialJ PCC system [Colby
et al. 2000], and Appel et al. [2002] seek to minimize the number of lines of code
in an LF proof checker [Harper et al. 1993]. This is valuable, but even complex
elements can become trustworthy if given time to mature. Moreover, there will
always (at least for the foreseeable future) remain substantial artifacts among the
trusted elements. Second, and more important, a trusted element is one that every
participant is stuck with, so eliminating it improves flexibility and extensibility.

The second issue is particularly relevant for trusted type systems. All type sys-
tems in use for certified code impose limitations on the programs they will pass.
Our aim is to enable the establishment of a decentralized grid computing fabric
available for a wide array of participants. For this purpose, it is implausible to
imagine that a single type system could ever suffice for all potential grid applica-
tions. Therefore, it is necessary that the basic steward can be extended with new
type systems from untrusted sources, and this is not possible when a single type
system is hardwired into the steward. Consequently, a foundational certified code
system is essential to our purposes.

This paper presents the foundational certified code system we have developed
as part of ConCert. At a high-level, our system shares the same structures as
other foundational efforts: The trusted elements include a proof checker and a
safety policy that incorporates a formalization of the machine semantics. The
untrusted elements (i.e., the argument that a particular program is safe) include a

1In such systems, the safety policy is not defined as a type system, although a type system may
be used as a device in a proof of adherence to the policy.
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type system that accepts the given program, and a proof that all programs passing
the type system satisfy the safety policy. In each case, the main development is in
the untrusted elements, particularly the safety proof.

A closer analysis reveals important methodological differences between the foun-
dational efforts. Appel and Felty [2000] is essentially denotational, with a semantic
model of types given not in domain or category theory, but rather in terms of con-
crete machine instructions and the safety policy. In contrast, Hamid, et al. [2002]
is operational, with safety given by conventional type preservation and progress
lemmas [Wright and Felleisen 1994; Harper 1994].

However, both systems are similar in that (1) the safety policy and the entire
compliance proof are given in a single logic (for Appel and Felty, higher-order logic
encoded in LF [Harper et al. 1993], and for Hamid et al., the calculus of inductive
constructions [Paulin-Mohring 1993]), and in that (2) the compliance proof centrally
involves at least one intermediate formal system (such as a type system) that is
shown to imply the safety policy. In each case, since the entire proof is conducted
in a single logic, the intermediate formal system must be encoded in that logic, and
any reasoning about the formal system deals with encodings of the intermediate
derivations, not the intermediate derivations directly.

1.1 Our approach.

Our system takes a different logical perspective, one based on metalogic:

(1) For our safety policy, which we call TSP, we define a logic that expresses the
operational semantics of the architecture, but is limited to safe operations only.
(Consequently, a program performing an unsafe operation would become stuck.)
This is the main body of the safety policy. Our work is specialized to the Intel
IA-32 architecture2 [Intel Corporation 2001], but it should be adaptable to
other architectures.

(2) The code supplier is invited to provide a second logic that defines an untrusted
safety checker when interpreted as a logic program (Section 2.2). The safety
checker could identify a single program, but in practice is more likely to imple-
ment a type system accepting many programs.

(3) The final component of the safety policy is the statement of a metatheorem:
for any program P that satisfies the supplier’s safety checker, if a machine
loaded with P eventually runs to a state S, then S transitions to some state S′.
It follows from the metatheorem that P cannot become stuck, and thus—by
construction of the operational semantics—it follows further that that P never
performs an unsafe operation.

(4) The code supplier then has the responsibility to fill in the proof of the safety
metatheorem, which is then itself verified by a meta-proof checker.

(5) Finally, the code consumer executes the safety checker, giving it as arguments
(a) the program in question, and (b) some “advice” that is packaged with the
program. The program is deemed to pass if the safety checker finishes without
an error. In that event, it follows from the metatheorem that the given program
is safe.

2Popularly known as the “x86” architecture.
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safety proof
(Twelf meta-proof)

Fig. 1. A Certified Binary

Figure 1 illustrates schematically the components of a certified binary in our
system. The top three components are passed to a logic program interpreter, and
the bottom two are passed to a meta-proof checker. If both succeed, the program
is accepted and the code may be safely executed. As a practical matter, the same
checker will often be used for many different programs, so it would be profitable
in practice to check the meta-proof once and then record that the safety checker is
known to be sound.

(Note that there are two “checkers” involved in the system: One is the trusted
meta-proof checker that is used to verify metatheorems, and the other is the un-
trusted safety checker that comes from the code supplier.)

At a high-level, this structure is unsurprising; our safety policy is precisely the
now-standard statement of type safety, given at the architecture level. The differ-
ence from other foundational efforts (at this high level) is that the code supplier’s
proof is provided in a metalogic rather than in the same logic used to define the
safety policy.

The importance of this difference is a pragmatic one. Using the Twelf metalog-
ical framework [Pfenning and Schürmann 1999; 2002], one may conveniently work
directly with derivations in a logic, avoiding the extra layer of encoding needed
in previous accounts of foundational certified code. As a result, we were able to
develop our system, including the foundational safety proof for an expressive typed
assembly language called TALT (“TAL Two”) [Crary 2003], in less than two man-
years, a fraction of the time invested in other foundational efforts.

Of course, it may be argued that our system, like previous systems, is still built
around a single logic, in our case the Twelf metalogic. Conversely, it may be argued
that the previous systems are also built on metalogics, in that their central logics
are used as metalogics (i.e., the are used to encode formal systems). Nevertheless,
our system is distinguished in that the Twelf metalogic is designed for the very
purpose of encoding and manipulating other logics. It is this design, wherein logical
derivations may be manipulated conveniently and directly, that gives our approach
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n ::= 0 | s(n)

0 + n = n

n1 + n2 = n3

s(n1) + n2 = s(n3)

Fig. 2. Natural Numbers

its pragmatic advantage.

The remainder of the paper is structured as follows: In Section 2 we discuss how
logics, metatheorems, and meta-proofs are expressed in Twelf. In Section 3 we
present TSP, our system’s architecture semantics and safety policy, the elements of
a certified code system imposed by the code consumer. In Section 4 we discuss a
safety checker based on the typed assembly language TALT [Crary 2003], and in
Section 5 we outline our meta-proof that our TALT-based checker satisfies TSP.
Concluding remarks appear in Section 6.

2. THE TWELF METALOGIC

We begin with a brief tutorial on the use of Twelf to express logics and meta-
reasoning. The ideas underlying this methodology originated with Pfenning [Pfen-
ning 1991] and were developed further in a variety of papers on Twelf and its
predecessor Elf [Pfenning and Rohwedder 1992; Rohwedder and Pfenning 1996;
Pientka and Pfenning 2000; Schürmann 2000; Pfenning and Schürmann 2002]. We
assume familiarity with logic programming, and with the methodology of encoding
logics in LF [Harper et al. 1993], wherein syntactic classes and judgements become
types, and syntactic objects and derivations becomes terms.

2.1 A Simple Logic

As a running example, we will use a very simple logic of natural numbers. The sole
syntax in our logic is that of natural numbers (expressed in unary), and the sole
judgement states that the sum of two numbers is a particular third number. This
logic is given in standard mathematical notation in Figure 2.

The syntax for the logic is expressed by the following Twelf definitions:

nat : type.
0 : nat.
s : nat -> nat.

The sum judgement is expressed by the Twelf definition:

sum : nat -> nat -> nat -> type.

Finally, the two inference rules for sum are expressed by:

sum z : sum 0 N N.

sum s : sum (s N1) N2 (s N3)
<- sum N1 N2 N3.
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Given these six declarations defining the logic, we can construct logical deriva-
tions by composing the constants that represent inference rules. For example, the
judgement 1 + 2 = 3 is written as the type:

sum (s 0) (s (s 0)) (s (s (s 0)))

and a derivation of that judgement (i.e., a term of that type) is:

sum s sum z

2.1.0.1 Implicit arguments. Note Twelf’s use of implicit arguments to express
the rules sum z and sum s in a convenient form. In explicit form, the implicit
argument N to sum z (for example) would be explicit, resulting in the type:

{N:nat} sum 0 N N

(where {N:nat} is the Twelf rendering of the universal quantifier ΠN:nat), and
every use of sum z would need explicitly to provide the argument N. In the form
given, N is an implicit argument, and Twelf uses type reconstruction and unification
to determine N’s value in every place where sum z is used.

In explicit form, the above derivation of 1+2 = 3 would be written less compactly
as:

sum s 0 (s (s 0)) (s (s 0)) (sum z (s 0))

2.2 The Operational Interpretation

A Twelf signature is a collection of Twelf declarations. A Twelf signature can be
interpreted in two ways. The interpretation we took in the previous section is that
a signature defines one or more logics. Alternatively, we can adopt an operational
interpretation in which a signature is viewed as a logic program.

In the operational interpretation, the user presents the system with a query in
the form of a judgement (i.e., a Twelf type) containing existentially quantified
variables. Twelf then conducts depth-first proof search, attempting to find values
for those variables such that the judgement is derivable (i.e., the type is inhabited).

For example, given the query 1 + 2 = n, Twelf replies that n can be 3:

?- sum (s z) (s (s z)) N.
Solving...
N = s (s (s z)).

In this case, of course, no further solutions are found.
As an aside, note that Twelf’s interpretation of free variables in queries is dif-

ferent from those in declarations: in the query above, N is taken to be existentially
quantified, but in the declaration of sum z, N is taken to be an implicit argument,
which is therefore universally quantified.

It may be convenient to view a Twelf logic program as a typed Prolog program.
Provided one sets aside Twelf’s higher-order features,3 we may obtain a Prolog

3Unlike Prolog, but like λ-Prolog, Twelf permits nested implication. Operationally, this means
that Twelf (and λ-Prolog) can introduce statically scoped variables that may participate in proof
search. Twelf (as a logic programming language) corresponds closely to λ-Prolog with a richer
type system, but without λ-Prolog’s impure features.
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program from a Twelf signature by extracting the inference rules, deleting their
names, and rewriting them in Prolog syntax. For example, our sample signature
corresponds to the Prolog program:

sum(0, N, N).
sum(s(N1), N2, s(N3)) :- sum(N1, N2, N3).

2.3 Meta-Proofs

An interesting fact about the sum predicate is that whenever it is given ground
(fully specified) inputs in its first two positions, as in the query above, it always
returns a ground result in its third position. (In fact, it always returns exactly one,
but that is not important for our present purposes). Thus, sum is a total relation
from its first two positions to its third.

The totality of sum means it can be interpreted as a metatheorem, asserting
the existence of certain logical objects under certain conditions. In this case, the
theorem proved is uninteresting; it states that for any two natural numbers n1 and
n2, there exists a third natural number n3.

However, we can write logic programs corresponding to more interesting metathe-
orems. For example:4

sum ident : {N:nat} sum N 0 N -> type.

sum ident z : sum ident 0 sum z.
sum ident s : sum ident (s N) (sum s D)

<- sum ident N (D : sum N 0 N).

sum inc : sum N1 N2 N3 -> sum N1 (s N2) (s N3) -> type.

sum inc z : sum inc sum z sum z.
sum inc s : sum inc

(sum s (D : sum N1 N2 N3)
: sum (s N1) N2 (s N3))

(sum s D’
: sum (s N1) (s N2) (s (s N3)))

<- sum inc D (D’ : sum N1 (s N2) (s N3)).

Each of these is a total relation from its first position to its second and therefore
corresponds to a metatheorem. The first, sum ident, states that for any natural
number n, there exists a derivation of n + 0 = n. The second, sum inc, states
that if there exists a derivation of n1 + n2 = n3, then there exists a derivation of
n1 + s(n2) = s(n3).

The names of logical inference rules are significant, since we will wish to work
with them in the metalogic. However, provided we do not plan to prove any meta-
meta-theorems (i.e., theorems regarding the behavior of meta-theorems), we will
never need to refer to the cases of a metatheorem, so the names we give to those

4To make the logic of the proof more clear, we have added a number of type annotations. These
are not necessary for Twelf to check the proof, but are very useful for human readers.
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cases are never significant except for Twelf’s error reporting. Therefore we will save
space in this paper by eliding them and replacing them all with the symbol !.

Using sum ident and sum inc as lemmas, we may prove a mildly interesting
metatheorem:

sum commute : sum N1 N2 N3
-> sum N2 N1 N3 -> type.

! : sum commute (sum z : sum 0 N N) D
<- sum ident N (D : sum N 0 N).

! : sum commute
(sum s (D : sum N1 N2 N3)

: sum (s N1) N2 (s N3))
D’’
<- sum commute D (D’ : sum N2 N1 N3)
<- sum inc D’ (D’’ : sum N2 (s N1) (s N3)).

Observe that sum commute is total from its first position to its second.

2.4 Meta-proof Checking

So far we have been informal in our justification of totality, but of course, Twelf
must be able to check whether a relation is total in order to determine if it is a
valid metatheorem. Type checking ensures that no relation fails with a run-time
type error, which leaves three ways a relation can fail to be total: mode failure,
termination failure, and coverage failure. We illustrate each form of failure by an
invalid proof of the false meta-proposition sum zero:

sum zero : {N:nat} sum N N 0 -> type.

—In mode failure, the relation returns a non-ground (i.e., not fully specified) result,
or passes a non-ground argument as an input to a lemma. For example, the non-
proof:

! : sum zero N (D : sum N N 0).

is well-typed, but does no actual work. Its return value is entirely unspecified,
and hence is non-ground. The slightly more sophisticated version:

! : sum zero N D’
<- sum commute (D : sum N N 0) D’.

is similar; it passes a non-ground value as an input to a lemma.
—In termination failure, the relation may loop forever. This corresponds to an

invalid induction. For example:

!: sum zero N D
<- sum zero N (D : sum N N 0).

—In coverage failure, not all cases of the theorem are covered. For example, the
incomplete proof:
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! : sum zero 0 (sum z : sum 0 0 0).

correctly proves the meta-proposition in the case when N is zero, but leaves out
the nonzero case for which it fails.

Twelf checks the totality of relations with some assistance from the program-
mer. First, the programmer states a relation’s inputs and outputs with a %mode
declaration:

%mode sum ident +N -D.
%mode sum inc +D1 -D2.
%mode sum commute +D1 -D2.

The + modes indicate inputs and the - modes indicate outputs (the variable names
are insignificant). Since the mode declaration is essential to reading a relation as
a metatheorem, henceforth we will always include the mode declaration with every
metatheorem statement.

Second, the programmer directs Twelf to verify the relation to be total, and
provides some information to help it do so (e.g., the induction argument with
which to show termination). We omit those declarations in the interest of brevity.
For this paper, the reader may distinguish metatheorems from ordinary relations
by the presence of a mode declaration.

3. THE SAFETY POLICY

The main body of our safety policy, TSP, is an operational semantics for the con-
crete architecture. For our work we have chosen to use the Intel IA-32 architecture,
as it is the architecture used by the greatest number of potential grid participants.
We have begun with a fairly small number of instructions, but new instructions
are easy to add to the superstructure we have built. In the interest of brevity, the
discussion here is largely generic in regard to the architecture; we do not discuss
any of the issues peculiar to the IA-32.

Our operational semantics includes only safe operations; unsafe operations (for
example, a store or jump to address 0x0) are simply omitted from the semantics.
This means that no transition exists out of any machine state in which an unsafe
operation is about to be performed. In the usual parlance, such states are stuck.

A second, minor component of the safety policy is a definition of the possible
initial states of the machine when loaded with a given program. With these two
components, we can define the overall safety policy:

A program P is safe if no stuck state is reachable from an initial state
of P .

The code formalizing this is given in Section 3.6. It follows that in no state reachable
by P is an unsafe operation about to be performed, and consequently no unsafe
operation ever is performed.
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3.1 Indeterminism

An important issue complicating the operational semantics is indeterminism.5 In
some cases it is infeasible to determine the outcome of an operation, either because
the outcome is fundamentally unknowable (e.g., an input operation), or because
the operation’s semantics is too complex for a complete specification to be practical
(e.g., garbage collection resulting from an allocation operation). In such cases, our
semantics must assume that any possible transition could be taken, and require
that all of them are safe. The formal safety of the machine cannot depend on the
alternative the machine takes at runtime.

The most obvious approach to indeterminism is to make the semantics’ transition
relation non-functional, that is, to allow it to relate states to multiple following
states. This simple approach does not work well for two reasons. First, for the
purpose of developing safety proofs, it turns out to be much more convenient to
work with a deterministic (functional) relation (Section 5.4).

Second, recall that any state that might perform an unsafe operation must be
given no transitions at all; it is not sufficient simply to omit the unsafe transition, as
then the state would not be stuck, and would therefore be deemed safe. To design
the relation in this manner is subtle and error-prone, and leads to the likelihood of
subtle errors in the safety policy.

Instead, we force the transition relation to be deterministic by adding an imagi-
nary oracle to the state. When the outcome of an operation cannot be determined,
the semantics simply consults the oracle. All possible outcomes are covered by this
mechanism because the definition of initial states (Section 3.6) quantifies over all
finite oracles, and any safety violation will happen within a finite amount of time.

3.2 Data

We use two notions of numbers in our semantics. One is the natural numbers from
Section 2.1, which are used for various auxiliary purposes. The other is binary N,
which contains N -bit binary numbers, the sort of number actually manipulated by
the architecture. Given these, we can define our principal data types:

bw : nat = 8. %% byte width in bits
ww : nat = 4. %% word width in bytes
wwb : nat = 32. %% word width in bits

%abbrev abyte = binary bw. %% "actual byte"
%abbrev aword = binary wwb. %% "actual word"
%abbrev address = aword.

string : nat -> type.
# : string 0.
/ : abyte -> string N -> string (s N).

5We use the term “indeterminism” to emphasize that a program is safe only if all possible execu-
tions are safe. In contrast, “nondeterminism” does not seem to have a consistent definition, but
often refers to an existential quantification over executions.
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%abbrev word = string ww.
%abbrev byte = string 1.

The most common data type in the semantics is string, which contains strings
of bytes constructed using / for cons6 and # for nil. It is convenient for the type
of strings to indicate the string’s length; thus we may define words as string ww.
When we do not care about the length of a string, we may say string , using the
Twelf wildcard.7

3.3 State

The state of the architecture consists of a memory, a register file, a flag register
(containing the IA-32’s condition codes), an instruction pointer, and an oracle.

Main memory (or, more precisely, the accessible portion of main memory) is
divided into sections. A section is a piece of memory that is known to be contiguous,
and offsets into it may be used to access particular locations. The sections are
arranged in the address space of representable pointers, that is, it lies between 0
and 232 − 1. Memory is maintained as a list of sections ordered by their start
addresses.

Sections are classified into valid and reserved. We say that an address is valid
if it falls within a valid section, and similarly reserved if it falls within a reserved
section. We say that an address is undefined if it falls within no section.

Valid sections are available to the program; they allow loads, stores, and jumps
to any address within them. Valid sections contain a string that indicates their
contents and a segment descriptor. The contents string can be altered (of course),
but may not change in length. The segment descriptor may be one of hs (heap
segment), cs (code segment), and ss (stack segment). The segments differ in how
they are treated by the garbage collector (Section 3.5).

Reserved sections, on the other hand, are largely unavailable to the program;
they do not allow loads or stores to any address within them. Reserved sections
are used for a variety of purposes. For example, one use of reserved sections is to
represent functions provided to the program by a runtime library. The program
is permitted to jump to the beginning of such a section, but no other jumps to
reserved addresses are permitted.

The principal difference between reserved sections and ranges of undefined ad-
dresses (other than special properties that reserved sections may have) is that a
reserved section will remain for the duration of the program. However, any unde-
fined range may be selected by the memory allocator and thereby become a valid
section.

6The curious choice of name for the cons constant is justified by making / infix, so that a word
may be written byte1 / byte2 / byte3 / byte4 / #
7There is an important distinction between the wildcard and implicit arguments such as N. Im-
plicit arguments are universally quantified, whereas wildcards are existentially quantified. There-
fore, implicit arguments may not unify with each other or with constants, but wildcards may unify
with anything, including implicit arguments.
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segment : type.

ss : segment.
cs : segment.
hs : segment.

rsection : nat -> type. %% "reserved section"

section : nat -> type.

section valid : segment -> string N -> section N.
section reserved : rsection N -> section N.

memory : type.

mnil : memory.
mcons : address -> {n:nat} section n -> memory -> memory.

%% start address, size, contents, rest of memory

The register file is a list of contents of registers. It has a fixed length (eight8),
and contains words instead of arbitrary strings.

numregs : nat = 8.

regs : nat -> type.
regs nil : regs 0.
regs cons : word -> regs N -> regs (s N).

The full register file then has type regs numregs.
The flag register has four bits representing the carry, overflow, zero and sign flags.

Other flags such as the direction and parity flags are currently not supported.

flags : type.

flags : bit % cf
-> bit % zf
-> bit % sf
-> bit % of
-> flags.

The instruction pointer is a simple address. These components are assembled
into the machine state:

8We include only the general purpose registers (including esp). The EFLAGS and EIP register are
handled specially, and the segment registers are omitted (we assume they are all set to the same
segment, providing a flat address space). Floating point and the SIMD features of later IA-32
models are also currently unsupported.
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state : type.
state : memory

-> regs numregs
-> flags
-> address %% instruction pointer
-> oracle -> state.

A few operations halt execution of the program, but are still considered safe. A
simple example is when the program finishes and exits; more interesting examples
are processor exceptions that the runtime can trap (e.g., stack overflow or divide-
by-zero). We say that these operations transition to a “stopped” state:

stopped : state.

3.4 The Transition Relation

The transition relation is defined by three rules. In the ordinary case, the semantics
fetches the next instruction and then executes it:

fetch : state -> inst -> type
transition’ : inst -> state -> state -> type.
...

transition : state -> state -> type.
transition main : transition ST ST’

<- fetch ST IN
<- transition’ IN ST ST’.

Here, fetch is an auxiliary relation that fetches and decodes the next instruction.
Due to the baroque encoding on instructions on the IA-32, fetch contains much
of the uninteresting complexity of our safety policy. The interesting content of
the safety policy is largely contained in the auxiliary relation transition’, which
carries out an instruction in a particular state.

In the event that the instruction pointer is at the beginning of a function pro-
vided by the runtime library, fetch is unable to fetch any instructions, so the rule
transition main does not apply. (Recall that loads from reserved sections are
not permitted.) Instead, the rule transition runtime (given below) applies. The
auxiliary relation at runtime address indicates that a runtime facility is to be ex-
ecuted, and that facility is executed by the auxiliary relation transition runfac,
which is defined in a similar manner to transition’.

at runtime address : state -> runfac -> type
transition runfac : runfac -> state -> state -> type.
...

transition runtime : transition ST ST’
<- at runtime address ST RF
<- transition runfac RF ST ST’.

The semantics does not attempt to represent the intermediate states of a runtime
function; it treats runtime functions as if they were atomic operations. Note that a
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jmp or call instruction directed to a runtime function does not immediately invoke
the runtime function; it merely sets the instruction pointer to the beginning of that
function. The function itself is executed in the next transition. Therefore there is
no special case in the semantics jmp or call for calls to the runtime.

Since our simple safety policy expects all safe states to make transitions, and in
particular makes no allowance for safe terminal states, we have need of a “stopped”
state that transitions to itself:

transition stopped : transition stopped stopped.

The main work is done by the helper relations transition’ and transition runfac.
We give two cases by way of example:

trans add :
transition’ (ii add E O) ST ST’

<- load ST E W1
<- oload ST O W2
<- add W1 W2 W3 RF
<- store ST E W3 ST1
<- store result flags ST1 RF ST2
<- next ST A
<- puteip ST2 A ST’.

trans jmp :
transition* (ii jmp O) ST ST’

<- oload ST O W
<- implode word W A
<- puteip ST A ST’.

An IA-32 add instruction takes two arguments: an effective address E that is the
destination for the result and one of the summands, and an operand O providing
the other summand. An effective address is either a register or a memory location;
an operand (in this case) is either an effective address or an immediate value.

To perform the add, we load the values of E and O, obtaining the words W1 and
W2. We then add the summands, obtaining a result W3 and some result flags RF
(e.g., the carry and zero flags). We then store W3 back into E and the result flags
into the flag register, obtaining state ST2. Finally, we compute the address A of
the next instruction and store it into the instruction pointer, obtaining the final
state ST’.

An IA-32 jump instruction takes only an operand O, indicating the target of the
jump. It is performed by resolving the operand to obtain the target address W.
The address W is rephrased9 as a 32-bit address A, which is then written into the
instruction pointer.

9Recall from Section 3.2 that a word (the result type of oload in this case) is defined to be a
sequence of four 8-bit numbers, rather than a single 32-bit number.
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3.5 Garbage Collection

Our operational semantics must specify the behavior, not only of the instruction set
itself, but also of the operations provided by the runtime library. Most notable of
the runtime operations is memory allocation. Memory allocation is largely straight-
forward (we simply add a new section to the memory at an address determined by
the oracle), except that any allocation may invoke the garbage collector. Thus we
must define the possible behaviors of the garbage collector.

The actual collection process is carried out simply by deleting a set of sections
from the heap. The complexity arises in show that set is determined. To fully
specify the behavior of a garbage collector would be a daunting task, and, moreover,
it is not clear that a safe program should depend on the fine details of the collector’s
implementation in any case. Instead, we specify a collection of possible behaviors
for the garbage collector that will include the collector’s actual behavior, among
others. Exactly which behavior will take place is determined by the oracle, so a
safe program must be prepared for any of them.

The possible behaviors are exactly those in which an unreachable set (as defined
below) of heap sections is selected to be deleted. Note that this definition makes no
promise of liveness. The empty set is always unreachable, so it is always permissible
for it to collect nothing.

Our definition of unreachability is based on that in Crary [2003]. Informally,
given some current state, a set S of heap sections is reachable if there exists a
pointer into S either from the root set or from the complement of S (relative to
the set of all heap sections). A set is unreachable if it is not reachable. The root
set consists of all registers and the stack (that is, the region of the stack segment10

above the stack pointer).
Our runtime uses the Boehm-Demers-Weiser conservative collector [Boehm and

Weiser 1988], so no invariants are maintained to assist in pointer identification.
Any number that equals a legitimate pointer value is deemed to be a pointer. This
greatly simplifies the semantics of garbage collection, but it does prevent the use of
non-conservative collection. Relative to non-conservative collection, our notion of
reachability is weaker, and therefore our notion of unreachability is stronger. This
in turn means that fewer collection behaviors are considered possible, and therefore
that more programs are considered safe, including some that would not be safe with
a non-conservative collector.

3.6 The Safety Policy

The final element needed by the safety policy is a definition of the possible ini-
tial states of a program. The relation initial state S ST relates a program to
its possible initial states. A possible initial state is obtained by performing the
following operations:

(1) placing the program into memory (at an arbitrary start address),
(2) choosing arbitrary places in memory to place the runtime functions (including

10It is an invariant of the semantics that there exists exactly one section in the heap segment. The
semantics requires that the stack pointer point into that section at the beginning of collection;
otherwise the program will be stuck.
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a “global offset table” [Tool Interface Standards Committee 1995] to contain
them),

(3) choosing an arbitrary size for the stack and filling it with arbitrary values,
(4) setting the ESP register to the end of the stack area and the EBX register to the

address of the global offset table,
(5) setting the instruction pointer to the beginning of the program,
(6) filling the flags and remaining registers with arbitrary initial values, and
(7) choosing an arbitrary value for the oracle.

We can now state the safety policy. First, we say that a program S (i.e., a string
of bytes) can reach a state ST if ST is reachable in zero or more transitions from an
initial state of S:

reachable : string -> state -> type.
reachable z : reachable S ST

<- initial state S ST.
reachable s : reachable S ST2

<- reachable S ST1
<- transition ST1 ST2.

Second, we declare, but do not define, a type of advice and a predicate check
that takes a program and advice as inputs.

advice : type.

check : advice -> string -> type.

The code supplier is responsible for filling in the definitions of both advice and
check.

The purpose of advice is to provide a means by which program-specific informa-
tion can be supplied to the checker, so that the checker itself need not be specialized
to a particular program. No guarantees are made regarding the quality of the ad-
vice; they serve only as hints. However, one expects that most checkers will fail if
given faulty advice.

Finally, we declare, but do not prove, the safety metatheorem:

safety : check S
-> reachable S ST
-> transition ST ST’ -> type.

%mode safety +D1 +D2 -D3.

This metatheorem says that whenever there exists a derivation of check S (i.e., there
is some advice such that S with the advice passes the code supplier’s safety checker),
and there exists a derivation of reachable S ST (i.e., S can reach state ST), then
there exists a derivation of transition ST ST’ (i.e., ST is not stuck).

Recall that the code supplier is responsible for filling in the proof of safety. In
so doing he or she establishes the soundness of his or her safety checker.

The safety policy consists of 3557 lines of Twelf code, including comments. A
breakdown appears in Table I.
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TSP Components

lines purpose

32 Top-level safety policy
110 Initial states
130 Architecture data and state
191 Natural number arithmetic
247 ALU operations
248 GC
527 Instructions and transitions
622 Memory and register utilities
645 Instruction decode
805 Binary number arithmetic

3557 Total

Table I. Safety Policy Breakdown

4. TALT

As a particular instance of a correct safety checker, we have implemented a safety
checker based on the typed assembly language TALT [Crary 2003], and developed
safety proofs for it that satisfy TSP. We briefly discuss the checker here, and then
focus on its safety proof in the next section.

Our checker does not use TALT directly. Like most declarative specifications
of programming languages, it would not behave well were it taken directly as a
logic program. So at the least, we would need to reformulate the type system
with execution in mind. In fact, we must go a bit further: TALT is optimized
for theoretic elegance, not for typechecking, and it is likely that its typechecking
problem is undecidable. Consequently, we first develop a variant of TALT called
XTALT (“explicitly typed TALT”) that does enjoy decidable typechecking, and,
moreover, we formulate it to behave well as a logic program.

A complete discussion of XTALT is beyond the scope of this paper. Briefly, it
makes typechecking syntax directed by adding explicit type annotations and by
requiring explicit coercions in place of uses of subtyping.

The XTALT checker is defined using two main relations:

parse program : string -> program -> type.
check program : program -> type.

The relation parse program S P determines that the binary S corresponds to
the XTALT program P, and the relation check program P determines that P is
well-typed. The XTALT safety checker passes a binary S provided it corresponds
to a XTALT program P (supplied as advice), and P is well-typed:

%{ advice : type }%
advice : program -> advice.

%{ check : advice -> string -> type. }%
check : check (advice P) S

<- parse program S P
<- check program P.
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XTALT Checker Components

lines purpose

95 Top-level checking
185 Checking coercions
231 Checking values and operands
304 Checking individual instructions
388 XTALT syntax
617 Checking type validity and equivalence

1051 Parsing programs

2871 Total

Table II. Safety Checker Breakdown

Recall that advice and check are pre-declared by the safety policy, so we have
only to fill in their definitions.

The XTALT checker consists of 2871 lines of Twelf code, including comments. A
breakdown appears in Table II.

5. THE SAFETY PROOF

The proof that the XTALT checker satisfies TSP is structured in three stages:

(1) Static Stage: a purely static portion that proves the soundness of the XTALT
typechecker relative to the TALT type system.

(2) Abstract Stage: a type safety proof for TALT relative to an abstract machine,
using the usual tools of progress and type preservation.

(3) Concrete Stage: a type-free simulation argument that the TALT abstract
machine is realized by the IA-32 architecture.

We will discuss the first two stages only briefly, and focus our attention on the
third.

5.1 The Static Stage

In the first stage, we define the TALT type system and prove that the XTALT
checker is sound with respect to it. At the top level, TALT defines a type machine
of abstract machines, and a well-typedness predicate machineok on them.

Next we define an elaboration relation that formalizes the correspondence be-
tween XTALT and TALT programs. At the top level it relates XTALT programs
to TALT machines:

elab program : program -> machine -> type.

With these definitions made, we prove two main theorems. The first states the
soundness of the XTALT type checker:

sound program : elab program P M
-> check program P
-> machineok M -> type.

%mode sound program +D1 +D2 -D3.
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This says that if the XTALT program P elaborates to the TALT abstract ma-
chine M, and the XTALT checker says that P is well-typed, then M is also well-typed.

The second theorem states the soundness of the binary parser:

initial impl : parse program S P
-> initial state S ST
-> elab program P M
-> implements ST M -> type.

%mode initial impl +D1 +D2 -D3 -D4.

This says that if the binary S corresponds to the XTALT program P, and ST is
an initial state for S, then P elaborates to some TALT abstract machine M that is
implemented by ST. (The relation implements is discussed in Section 5.3.)

These two theorems are folded into the final safety proof in Section 5.5.

5.2 The Abstract Stage

In the second stage, we give TALT an operational semantics in terms of a low-level
abstract machine. We then prove type safety for that abstract semantics. The
development of this stage is given in detail in Crary [2003] and we will not repeat
it here except to summarize its top-level results.

The TALT type system is summarized by the predicate machineok (as discussed
above), and the operational semantics is given by the relation stepsto. Given
these, the final results of Crary are two safety theorems:11

progress : machineok M
-> stepsto M M’ -> type.

%mode progress +D1 -D2.

preservation : machineok M
-> stepsto M M’
-> machineok M’ -> type.

%mode preservation +D1 +D2 -D3.

These are the standard type safety lemmas [Wright and Felleisen 1994; Harper
1994]: progress states that when the abstract machine state M is well-typed, it
takes a step to some M’; and preservation states that when M is well-typed and
steps to M’, then M’ is well-typed.

Unlike the concrete semantics of TSP, which we forced to be deterministic, the
TALT abstract machine is indeterministic.12

That is, a TALT machine state may step to more than one following state. This
is because the actual result of an operation is sometimes determined by information

11Crary [2003] also proved a third theorem stating that well-typedness is preserved by garbage
collection, but that theorem is now folded into the type preservation theorem.
12The alert reader may observe an apparent inconsistency in our methodology. In Section 3.1
we argued that using a non-functional relation in TSP’s operational semantics would be subtle
and error-prone, but we are willing to use one for TALT’s operational semantics. The difference
between the two situations is that TALT’s operational semantics is proven correct relative to
another system (TSP), but TSP is merely stated; we cannot show it correct relative to anything.
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that it abstracts away. For example, when doing pointer arithmetic, the condition
codes are determined by the actual numeric values of the operands, but in the
abstract machine, pointers are taken as abstractions, so their numeric values are
not available. In addition, the abstract machine has no access to the oracle, so
any instruction that consults the oracle is indeterministic in the abstract machine.
The simulation in the concrete stage must manage this mismatch between the two
semantics.

5.3 The Concrete Stage

In the third stage we show that the abstract operational semantics of TALT maps
correctly onto the semantics of the concrete machine. This argument is type-free,
as all type-theoretic issues are dealt with in the abstract proofs, but it is still fairly
involved due to the myriad technicalities of the concrete architecture. We present
the high-level structure of the proof, without going into the technicalities.

First we define a relation implements ST M, which states that the concrete state
ST implements the abstract state M. Second, we define a multi-step transition rela-
tion transitions N ST ST’, which states that ST transitions to ST’ in exactly N
steps:

transitions : nat -> state -> state -> type.
transitions z : transitions 0 ST ST.
transitions s : transitions (s N) ST1 ST3

<- transition ST1 ST2
<- transitions N ST2 ST3.

5.3.1 Simulation. One main lemma of the concrete stage is simulation:

simulate : implements ST M
-> stepsto M M1
-> transitions (s N) ST ST’
-> stepsto M M2
-> implements ST’ M2 -> type.

%mode simulate +D1 +D2 -D3 -D4 -D5.

This lemma is read as follows: If ST implements M, and M steps abstractly to some
M1, then there exists another abstract machine M2 (possibly the same as M1) and a
concrete machine ST’ implementing M2, such that ST transitions to ST’ in one or
more steps, and M steps to M2. Note that the lemma allows for an abstract step to
correspond to multiple concrete transitions.

Observe how this lemma addresses the indeterminism of the abstract machine.
The fact that M steps to some M1 indicates that M is safe. However, it is not
necessarily the case that M1 corresponds to the transition that actually takes place,
so the simulate theorem returns a second machine M2 that does correspond to the
actual transition.

5.3.2 Determinism. The other main lemma of the concrete stage is determinism:
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state eq : state -> state -> type.
state eq : state eq ST ST.

determinism : transition ST ST1
-> transition ST ST2
-> state eq ST1 ST2 -> type.

The relation state eq ST1 ST2 holds exactly when ST1 and ST2 are identical.
Therefore the lemma is read as follows: If ST transitions to ST1, and ST transitions
to ST2, then ST1 and ST2 are identical.

5.4 Concrete Progress and Preservation

We say that a concrete state ST is ok if ST transitions in zero or more steps to some
ST’ that implements a well-typed abstract state:

ok : state -> type.
ok : ok ST

<- transitions ST ST’
<- implements ST’ M
<- machineok M.

We can now prove concrete progress and preservation, using ok as the relevant
notion of typeability. The machine-readable proofs of these and the other remaining
theorems are given in Appendix A.

Lemma 5.1.

iprogress : ok ST -> transition ST ST’ -> type.
%mode iprogress +D1 -D2.

Proof: Since ST is okay, it steps to some ST’ in some N steps. If N ≥ 1, the result
is immediate. Otherwise ST = ST’, so implements ST M and machineok M. By
progress, stepsto M M’, and therefore by simulate, ST takes a step. 2

Lemma 5.2.

ipreservation : ok ST
-> transition ST ST’
-> ok ST’ -> type.

%mode ipreservation +D1 +D2 -D3.

Proof: Since ST is ok, it steps to some ST’’ (which implements a well-typed
abstract state) in some N steps. Suppose N ≥ 1. Then transition ST ST1 and
transitions ST1 ST’’. By determinism, ST’ = ST1, and ST1 is ok, so ST’ is
also ok.

Suppose N = 0. Then ST implements a well-typed abstract state M. By progress,
we have stepsto M M1. By simulate, transitions ST ST’’, stepsto M M2,
and implements ST’’ M2. By preservation, M2 is well-typed, so ST’’ is ok.
Finally, by determinism, ST’ = ST’’, so ST’ is ok. 2
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5.5 Safety

It remains to put the pieces together to prove safety. First we show that every
initial state of a program that passes the safety checker is ok:

Lemma 5.3.

initial ok : check S
-> initial state S ST
-> ok ST -> type.

%mode initial ok +D1 +D2 -D3.

Proof: By inversion on check, there exists an XTALT program P such that
parse program S P and check program P. By initial impl, there exists an ab-
stract machine M such that elab program P M and implements ST M. Then by
sound program, we have machineok M. Therefore, since ST transitions to itself in
zero steps, we conclude ok M. 2

We may now prove that any state reachable from a program that passes the
safety checker is ok:

Lemma 5.4.

safety’ : check S
-> reachable S ST
-> ok ST -> type.

%mode safety’ +D1 +D2 -D3.

Proof:

—(Case reachable z) Suppose initial state S ST. By initial ok, ST is ok.
—(Case reachable s) Suppose reachable S ST’ and transition ST’ ST. By

induction, ST’ is ok, so by ipreservation, ST is ok. 2

Using iprogress, safety is an immediate consequence of safety’. This com-
pletes the proof.

The complete safety proof for the safety checker consists of 59,896 lines of Twelf
code, including comments. A breakdown appears in Table III. It takes 126 seconds
to check in Twelf 1.5 on a Pentium 4 with one gigabyte of RAM.

6. CONCLUSION

Using the metalogical approach we advocate here, one may work conveniently with
derivations in logics, including type systems and safety policies. This enables rela-
tively rapid development of foundational certified code.

However, there are some costs to the Twelf metalogical approach, at least as
things stand today. First, in the Twelf metalogic one is limited to Π-1 reasoning
(i.e., reasoning involving only propositions of the form ∀x1 . . . ∀xm∃y1 . . . ∃yn.P
where P is quantifier-free). Using Skolemization, propositions can often be cast in
this form, so this is rarely an obstacle. However, some proof techniques (notably
logical relations) cannot be cast in Π-1 form and therefore cannot be employed. The
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Proof Components

lines purpose

8250 Static stage
2086 TALT type system

21051 Abstract stage
1085 TALT abstract machine

22712 Concrete stage
4712 Shared

59896 Total

Table III. Proof Breakdown

Twelf developers are exploring ways to relax this restriction, but none are available
at this time.

Second, since checking the validity of a meta-proof involves more than just type-
checking (which is all that is required for checking the validity of a proof within
a logic), the proof checker for the Twelf metalogic is larger and more complicated
than checkers for simpler logics can be (e.g., Appel et al. [Appel et al. 2002]). As
a result, it can expected to take longer to develop the same degree of trust in our
system. However, recall that our purpose in developing an foundational system
is more to improve flexibility and extensibility by eliminating trusted components
that may prove unsatisfactory in the future, and less to improve confidence by
minimizing the size of the remaining trusted components.

Despite these limitations, we believe the advantages of the Twelf metalogical
approach are compelling. In addition to the practical benefit of rapid development,
metalogic also holds the promise of making it easier to draw connections between
distinct certified code systems (which in practice are all expressed in distinct formal
systems). For example, one might show that one safety policy implies another, and
in so doing make it possible to unify two lines of development of certified code
systems. We plan to explore this in the future.

APPENDIX

A. TWELF PROOFS

ok resp : state eq ST ST’ -> ok ST -> ok ST’ -> type.
%mode ok resp +D1 +D2 -D3.

! : ok resp state eq D D.

iprogress : ok ST -> transition ST ST’ -> type.
%mode iprogress +D1 -D2.

! : iprogress (ok Dmok Dimpl transitions z) Dtrans
<- progress Dmok Dstep
<- simulate Dimpl Dstep (transitions s Dtrans) .

! : iprogress (ok (transitions s Dtrans)) Dtrans.
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ipreservation : ok ST -> transition ST ST’ -> ok ST’ -> type.
%mode ipreservation +D1 +D2 -D3.

! : ipreservation (ok Dmok Dimpl transitions z) Dtrans Dok
<- progress Dmok Dstep
<- preservation Dmok Dstep Dmok’
<- simulate Dimpl Dstep (transitions s Dmtrans Dtrans’) Dcoll Dimpl’
<- determinism Dtrans’ Dtrans Deq
<- collect ok Dcoll Dmok’ Dmok’’
<- ok resp Deq (ok Dmok’’ Dimpl’ Dmtrans) Dok.

! : ipreservation (ok Dmok Dimpl (transitions s Dmtrans Dtrans’)) Dtrans Dok
<- determinism Dtrans’ Dtrans Deq
<- ok resp Deq (ok Dmok Dimpl Dmtrans) Dok.

initial ok : check S -> initial state S ST -> ok ST -> type.
%mode initial ok +D1 +D2 -D3.
! : initial ok (check Dcheck Dparse) Dinitial

(ok Dmok Dimpl transitions z)
<- initial impl Dparse Dinitial Delab Dimpl
<- sound program Delab Dcheck Dmok.

safety’ : check S -> reaches S ST -> ok ST -> type.
%mode safety’ +D1 +D2 -D3.

! : safety’ Dcheck (reaches z Dinitial) Dok
<- initial ok Dcheck Dinitial Dok.

! : safety’ Dcheck (reaches s Dtrans Dreach) Dok’
<- safety’ Dcheck Dreach Dok
<- ipreservation Dok Dtrans Dok’.

safety : check S -> reaches S ST -> transition ST ST’ -> type.
%mode safety +D1 +D2 -D.

! : safety Dcheck Dreaches Dtrans
<- safety’ Dcheck Dreaches Dok
<- iprogress Dok Dtrans.
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