A Simplified Account of the Metatheory of
Linear LF !

Joseph C. Vanderwaart and Karl Crary

School of Computer Science, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213, USA

Abstract

We present a variant of the linear logical framework LLF that avoids the restriction
that well-typed terms be in pre-canonical form and adds A-abstraction at the level of
families. We abandon the use of G-conversion as definitional equality in favor of a set
of typed definitional equality judgments that include rules for parallel conversion
and extensionality. We show type-checking is decidable by giving an algorithm
to decide definitional equality for well-typed terms and showing the algorithm is
sound and complete. The algorithm and the proof of its correctness are simplified
by the fact that they apply only to well-typed terms and may therefore ignore the
distinction between intuitionistic and linear hypotheses.

1 Introduction

Decidability of type-checking and the existence of canonical forms for well-
typed terms are arguably the two most important metatheoretic results for
a logical framework such as LF [5]. Type-checking is essential because the
checking of proofs reduces to type-checking of the terms that represent them;
canonical forms are crucial because it is the canonical terms (of certain types)
that may be proven via an “adequacy” theorem to be in a meaningful corre-
spondence with propositions and proofs in a logic.

Canonical forms in the LF type theory are f-normal, n-long forms. It there-
fore seems reasonable to take definitional equality to be (n-conversion, and
decide whether two terms are equal by reducing them to 8n-normal form and
comparing; unfortunately, n-reduction is not as well behaved as [(-reduction

1 This material is based on work supported in part by NSF grants CCR-9984812 and CCR-
0121633. Any opinions, findings, and conclusions or recommendations in this publication
are those of the authors and do not reflect the views of this agency.

Preprint submitted to Elsevier Preprint June 3, 2002

and so this approach encounters significant problems. The original presenta-
tion of LF by Harper, Honsell and Plotkin [5] (hereafter “HHP”) avoided the
difficulties of n-reduction by using (-conversion as definitional equality even
though this destroyed the property that every term is equal to some canonical
form.

Felty’s Canonical LF [4] is a version of LF where all well-typed objects
and families are in canonical form, avoiding all issues of definitional equality.
Felty showed that Canonical LF is essentially the same as full LF if typing
derivations are restricted to pre-canonical terms (those whose -normal forms
are canonical) with (-conversion as definitional equality. A similar approach
was taken by Cervesato and Pfenning for their presentation of the linear logical
framework LLF [1] (hereafter “CP”). The typing rules of LLF forced well-
formed terms into n-long form, making all well-typed #-normal forms canonical
and rendering any 7 rules for definitional equality unnecessary.

Subsequent to the original definition of LLF, Harper and Pfenning [6,7]
(hereafter, “HP”) gave an alternate formulation of ordinary LF that allowed a
clean treatment of definitional equality without having to restrict terms to pre-
canonical form. Their approach was based on the use of a typed definitional
equality judgment as opposed to an untyped reduction relation—that is, they
focused on comparing two objects at a certain type and in a certain typing
contert, rather than (n-normalizing them in isolation. The decidability of
type-checking and the existence of canonical forms for well-typed terms were
then established by giving a set of algorithmic judgments that are sound and
complete with respect to definitional equality and can be instrumented to
extract canonical forms from the terms they compare. The algorithm is similar
to one introduced by Coquand [2], except that Coquand’s algorithm performs
n-expansion based on the shapes of terms, while HP’s is directed by types
and kinds. The type-directed nature of the algorithm has the advantage of
making it scalable to theories such as LLF that contain unit types. Apart
from the typed, declarative formulation of definitional equality, the LF type
theory considered by HP was essentially the same as that of HHP, except that
the A-abstraction construct at the level of type families had to be removed for
technical reasons. This was not considered a problem, as experience with LF
had shown that this form of abstraction was not needed in practice.

In this paper, we present a variant of LLF that employs a typed formulation
of definitional equality in the style of HP, along with a sound and complete
equality algorithm. We also resolve the technical issues that necessitated the
removal of the family-level A-abstraction, and so we are able to give a variant
of LLF that includes abstraction at the family level even though CP’s LLF did
not have this feature. This result has been applied by the authors to establish
the decidability of typing in the LTT type theory for certified code [3], and
has been extended by Polakow for the Ordered Linear Logical Framework [9].

1.1 Ovwerview

The structure of this paper is as follows. In Section 2 we present our vari-
ant of the Linear LF type theory, which will essentially be an extension of
HP’s formulation of LF with linear implication, additive conjunction and ad-
ditive truth. We will also add a family-level A-abstraction construct similar
to the one that appeared in HHP. Our presentation of the theory will include
the typed definitional equality rules we are using to replace the untyped con-
version relation of CP. The remainder of the paper focuses on proving that
definitional equality is decidable. Section 3 defines a set of “algorithmic equal-
ity” judgments, in the style of HP, that are directed by the shapes of the types
of the objects being compared. Some elementary properties of the algorith-
mic judgments are also proven in that section. The next two sections prove
that the new judgments are correct—that is, sound and complete with re-
spect to definitional equality—for well-typed terms; soundness is established
in Section 4 and completeness in Section 5. Both of these proofs more or less
follow the method of HP, although the linear features of Linear LF make the
soundness proof somewhat more complicated. Finally in Section 6 we verify
that the “algorithmic” judgments we introduced in Section 3 do in fact define
an algorithm—that is, that the search for an algorithmic equality derivation
between two well-typed terms will always terminate. This result is equivalent
to the decidability of definitional equality and thus implies the decidability of
typing in Linear LF.

2 A Variant of Linear LF

In this section we will present our variant of Linear LF type theory. This
version of Linear LF has essentially the same syntax as that presented by CP,
with the addition of A-abstraction at the level of families. The typing rules we
give here, however, differ from CP’s in that we do not restrict terms to pre-
canonical form. Another minor difference is that we use two separate contexts
in our typing judgments, one for intuitionistic and one for linear assumptions,
rather than combining the two. Since none of the variables declared in the
linear context will appear in any types, we may identify linear contexts that
differ only in the order of declarations and thus we do not need a formal
context-splitting judgment for the linear application rules. Our variant of
Linear LF can also be thought of as a linear version of the LF type theory as
presented by HP.

The syntax of Linear LF terms is given by the grammar in Figure 1. There
are three classes, or levels, of terms: objects, families and kinds. Kinds clas-
sify families: families of kind Type are called types, and classify objects, while
[Mu:A.K is the (possibly dependent) kind of a function from objects of family
A to families of kind K. At the family level we have constants (a), function ab-

Kinds K == Type | Iu:A.K
A

Families n=a | AMuAL Ay | AM |
Hu:Al.Ag |
A1—0A2|A1&A2|T
Objects M = ulc]|

NuzAM | My M, |

MuzAM | My My |

(My, My) | wiM | ()
Contexts ' o= e|laK | uwA
Linear Contexts A == €| A uiA

Fig. 1. Syntax of Linear LF

Judgment Meaning

.S sig S is a valid signature

FI' context [' is a valid context

[' = A context A is a valid linear context
' K :kind K is a valid kind

'-A: K A is a family of kind K
CAFM:A M is an object of type A

'K =L :kind K and L are equal kinds
'FA=B:K A and B are equal families
[AFM=N:A M and N are equal objects

Fig. 2. Typing Judgment Forms

stractions and applications as well as (intuitionistic) dependent function types,
linear implication (—o), additive conjunction (&), and additive truth (T). The
object level contains variables (u), constants (c), intuitionistic A-abstraction
and application (M; M,), linear A-abstraction and application (M;" M>), pairs
((My, My,)), projections (m; M) and the object () that inhabits T.

Contexts, both intuitionistic (I') and linear (A), will be used in the typing
and definitional equality rules. Note that the order of assumptions in an
intuitionistic context may be significant, since term variables may appear in
types. The typing rules will prevent types from depending on any linear
assumptions, which justifies our grouping all the linear assumptions into a
separate linear context. We regard linear contexts that differ only in the
ordering of assumptions as identical.

If the variable u does not appear in the family B, then we may write
A — B for TTu:A.B. Similarly, A — K will mean Ilu:A.K if u does not ap-
pear in K. As usual, we denote by E[FE],..., E! /uy,...,u,| the simultaneous
capture-avoiding substitution of the terms E through E! for the correspond-
ing variables u; through u, in F.

2.1

F.Ssig Fg¢ K :kind (a ¢ Dom(S))

- e sig S, a:K sig
5 AT oy
e context o (1 Dom(D)
I' - € context — AF(!:—OXT);EA l;o:tfelx:t e (u ¢ Dom(I'), Dom(A))

Fig. 3. Rules for Well-Formed Contexts
'-A:Type IuwAr K :kind (S(a) = K)
[' = Type : kind ' Tu:A.K : kind Fa: K

I'tA:K' 'K =K :kind I'EA; :Type TI'NuwAiF Ayt K
'-A: K ['F A uA Ay TTu: ALK

'EA:TuA.K Ti;eM: A ' A : Type T'F Ay : Type

I'FAM: K[M/u] ['F Ay — Ay : Type
I'FA;:Type T u:A;F Ay : Type 'FA;:Type TI'F Ajy: Type
['FTlu:A; Ay - Type 'F A & Ay - Type

(S(c) = A) 'FA:Type I’AJuAFM: B
I'ET: Type [ebe: A F;Al—j\u:A.M:A—OB
(C(u) = A) CAEM Ay T;AF My : Ay
IeFu: A Uy A F (M, M) 0 Aj&As ARG T
'-A:Type T u:A;A-M:B
DuwArFu: A AR AAM :TTu:A.B
AR M: Aj&kA, ATFEM,:A— B T5AFMy: A
A F mM: A, (1=12) T;AL Ay F M, M, : B
OAFE M, :TTuw:A.B Tieb-My: A
[y A F My M, : B[Ms/ul
CCAEM:A THA =A: Type
CAEM:A

Fig. 4. Typing Rules

Typing and Definitional Equality Rules

In LF and LLF, the types and kinds of constants are given by a signature.
It is by the choice of signature that the logical framework is instantiated to
represent a particular logic. For simplicity, in the bulk of this paper we will
tacitly assume a fixed signature S; the exception is in the well-formedness

rules for signatures, where we use a subscripted turnstile (-g) to indicate that
certain premises are to be understood with respect to the signature mentioned
in the conclusion.

The judgment forms of the LLF type theory are shown in Figure 2; the
typing rules are shown in Figure 4, and the definitional equality rules are
shown in Figures 5 and 7. The validity judgment for linear contexts specifies
an intuitionistic context giving types to all the free variables that may occur
in the linear assumptions. The restriction that linear assumptions not appear
in types or kinds is enforced by using only an intuitionistic context for kind
and family judgments, and forcing the linear context in which an object is
typed for dependent application to be empty.

The definitional equality rules include compatibility rules for all the syn-
tactic constructs of the calculus, as well as parallel conversion rules and ex-
tensionality rules for each of the type and kind constructors of the theory.
Symmetry and transitivity of equality are explicitly included as rules; reflex-
ivity is shown to be admissible.

2.2 Injectivity

In the proof of soundness for the algorithm, it will be important that the type
constructors of Linear LF are injective up to definitional equality; that is, if
A—o B =(C — D, then A =C and B = D. This property is formalized in
the following lemma.

Lemma 2.1 (Injectivity)
(i) If T+ Tu:A;. Ay = Tu:By.By : Type and F T context then ' Ay = By :
Type and I',u:A; - Ay = By : Type.
(ii)) If ' A —o Ay = By —o By : Typeand - I' context then I' - A; = By :
Type and I' = Ay = By : Type.
(iii) If T' = Ay & Ay = By & By : Type and = T context then I' = A} = By :
Type and I' F Ay = By : Type.

In the presence of A-abstraction and parallel conversion rules at the family
level, the proof of this lemma is nontrivial. We have estabilshed the injectivity
property for our variant of Linear LF using a logical relations argument; the
details are interesting, but space considerations prevent our including them
here. The proof may be found in the companion technical report [10].

3 Equality Algorithm
3.1 FErasure

To avoid serious difficulties with dependencies on terms, the algorithm and
Kripke logical relation presented by HP use simple types and simple kinds in

Compatibility
(C(u) = A) (S(c) = 4)
ebFu=u:A ebFe=c: A uwAru=u:A
AE M, =M,y :TIuw:A.B T;e Ny =Ny: A
[AF My Ny = My Ny : B[Ny /u]
AT My =My:A—o B T AN =Ny: A
A, Ay M{"Ny=My"Ny: B
DA R M, =M, : Ay (i=1,2)
[AFEN =Nyt Ay DAEM, =M, : A & Ay
[y AF (M, Ny) = (Mo, No) : Ay & Ay A EmM, =mM,y: A;
'FA;=A:Type Ay, =A:Type I''u:A; A+ M, =M,:B
A F A cALM, = MuzAy. My - TTu:A.B
'FA;=A:Type Ay, =A:Type [AJuA+- M, =M,:B
Ty AF AwAL M, = Ay My : A —o B

Type Conversion
AFEM =My A THA =A: Type
F, A M1 = MQ A

Equivalence
F,Al_MQZMlA F,Al_MlegA F,Al_MgzMgA
F,Al_MlegA F,Al_MIZMQA

Parallel Conversion
'FA:Type TTWuA;AFM, =My,:B T;e-Ny=Ny: A
[A F (AuwA.My) Ny = Ms[No/u] : B[Ny /u]
'FA:Type AL, wAEMy=My:B T[';AF N, =Ny: A
I AL Ao b (AwA M) Ny = My[Ny/u] - B
AFEM =N Ay ;AR M, =Ny Ay
[y A F (M, My) = Nj @ A;

(1=1,2)
Fig. 5. Definitional Equality Rules: Objects (Except Extensionality)

place of ordinary families and kinds. Not only are the type-directed phase
of HP’s algorithm directed by simple types and the Kripke logical relation
indexed by simple types and kinds, but the contexts (or “worlds”) in both
the algorithmic judgments and the logical relation give only simple types to
variables. The process of erasing ordinary families and kinds into simple ones
effectively identifies types that differ only in the terms that appear in them.
We adopt this practice of erasure as well, extending it to erase the dis-
tinction between intuitionistic and linear assumptions in a context. The need
for this arises because of the splitting of the linear context that occurs in the

I'FA:Type I'TAF M, :1Iu:A.B
AR M, :TIuw:A.B T,uw:A; A Miu=Myu:B
A M, =M, : Tu:A.B
'-A:Type T5AFM,:A—B
AFEMy:A—oB T;AulAEM,"u=M,"u:B
CAEM, =M,: A— B

F,Al_MlAl&AQ FAl_Mg Al&AQ F,Al_MT
AEmM, =m; My A; for i =1,2 AEN:T
F;Al_Mleg:Al&AQ F,AI_M:NT

Fig. 6. Definitional Equality Rules: Object Extensionality

'+ K, =K, : kind
[' F Type = Type : kind '+ Ky =K, : kind
'K, =K;3:kind T'F K3 =K, :kind
'+ K, =K, :kind
A :Type I'E A =Ay:Type T' u:A+F K, = K, : kind
'+ Tu:A Ky = ITu:Ays. Ky : kind
A =A:Type T'EAy,=A:Type I'Nu:AF B, =DBy: K
I'EAu:AL.B) = MutAy. By : TTu: ALK
I'EB:Type T''uuBF A =Ay: K T';e-M,=M,:B
['F (Au:B.Ay) My = Ay[My/u) = K[M; /u]
'EB:Type T'HA, :llu:B.K
I'FAy:lIu:B.K ThuBFAu=Au:K (S(a) = K)

kA=A, : TTu:B.K 'Fa=a: K
I'FA =Ay:Type ' By = By : Type
' A —o By = Ay —o By : Type 'ET=T:Type
PFA =A3: K THA3;=Ay: K 'FAy,=A: K
A=Ay K 'FA =4y K
' A = A, : Type '-A, = Ay : Ilu:B.K
'+ By = By : Type Ie-M, =M, : B
' A1&B; = A& B; : Type ' Ay My = Ay My : K[M;/u]
I'E A = Ay : Type 'FA =A,: K'
[u:A; - By = By : Type ' K'=K :kind

'+ H’LL:Al.BI [Tu: A2 32 Type '+ Al = A2 K

Fig. 7. Definitional Equality Rules: Kinds and Families

Simple Kinds K o=t | Tk

Simple Types T = alnmon|ln—on|n&kn|T
Simple Contexts X == €| X wr
(a)” =« (Type)™ =t~
(Au:Ap.Ay)™ = AS (Mu:A.K)” = A~ - K~
(AM) =A"
(Mu:Ay.Ay)~ = AT — A ()" =¢
(A —o Ay)™ = Ay —o A, (D, uA)™ =T, u: A~
(A & Ay)~ = A; & A; (A, uiA)™ = A=, u:A-
(T)"

Fig. 8. Simple Types and Erasure

typing and definitional equality rules for linear function applications. If this
context-splitting were to be enforced in the algorithmic judgments, then the
transitivity proof for those judgments would be upset by the possibility that
different derivations mentioning the same linear application term might split
the context differently.

Essentially, we want to avoid this problem by not requiring the algorithmic
equality rule for linear applications to split the linear context. Such a change
by itself would destroy the property that every linear assumption in a judgment
must be used, so we also have to remove the restriction on linear variable use.
However, this leaves us with two separate contexts that are treated in exactly
the same way, so we go a step further and combine the intuitionistic and linear
contexts into one. Consequently there is no distinction between intuitionistic
and linear assumptions in the algorithm or logical relation. This does not
affect soundness, since we only wish to prove the algorithm sound for well-
typed terms, which must respect linearity.

Our grammar for families and kinds with no term dependencies, and con-
texts that combine intuitionistic and linear assumptions, is given in Figure 8.
The erasure function (-)~ given in the figure maps ordinary families, kinds
and contexts to simple ones.

To validate our intuition that erasure should remove all dependencies on
terms, we prove the following lemma which states that substitution does not
affect erasure and that definitionally equal terms have the same erasure.

Lemma 3.1 (Erasure Preservation)

(i) For any family A, variable u and object M, (A[M/u])~ = (A)".
(ii) [T+ A=DB:K, then A~ = B~
(iii) IfTF K = L : kind, then K~ = L~

YSEM <= My:1 Type-Directed Object Equality

SEM «— My:T Structural Object Equality
YFA <<= Ay : K Kind-Directed Family Equality
YHEA +— Ay Kk Structural Family Equality

Y+ Ky +— Ks:kind™ Algorithmic Kind Equality

Fig. 9. Algorithmic Equality Judgment Forms

MY M YSFM < N:a N N YFMe N
YFM<< N:« YFM<+<= N:«
YEFM<+— N:«
YFM<+«<—= N:« YFM<«— N:T
YountFMu< Nu:n YountFMu<s Nu:n
YXEM<«<= N:m =1 YFM<«= N:1 —o1

YFaoM<«<— mN:1m YFmM<c= mN:n
YSEFM<<«—= N:11&n
(E(U):T) (S(C):A) E"M1<—>M237'1&7'2
YFru<—u:T Yhe+—c: A SEmM —— mMy T
YXEM +— My:mm—17 XFEN < Ny:my
EFM1N1<—>M2N2§7_1
XM — My:m—o1 YEFEN < Ny:1
El_MlAN1<—>M2AN2§7_1

A A YA = B:ito BYS B SEA«= Bt
YFA<— B:t YFA<—— B:t
YHFA+— Bt~ YS,uthH Au<—= Bu:k
YFA<—— B:t YFA<— B:7—>«

(S(a) = K) ShEA <Ayt NFEB < B:t

Yhra+—a: K~ YA —o By Ay —o Byt~

YA +— A7k YEM < My: T
El_AlMlHAQMglFL

E|_A1<:>A2§t7 E,UIAl_l_Bl<:>B21ti

Y Tu:A.By «— [u:As.By it~ YET+—T:t™
E|_A1<:>A21t_ YHFBy < By:t~
El_Al&BlHAQ&BQIt_ YhHEtT+—t :kind

El_A1<:>A21t7 E,UlAl_l_KlHKzlkind_
S HuA Ky — Tu:As. K5 : kind™

Fig. 10. Algorithmic Equality Rules

10

3.2 The Equality Algorithm

Our algorithmic equality judgment forms are shown in Figure 9. The rules are
shown in Figure 10. For objects and families we give both classifier-directed
rules (that is, type-directed rules for comparing objects and kind-directed
rules for comparing families) and structural rules. The classifier-directed rules
apply extensionality until a base classifier is reached, then reduce to weak
head normal form and compare structurally. The structural rules compare
the constant, variable or primitive head and revert to the classifier-directed
phase of the algorithm for any other subterms. Since there are no classifiers
for kinds (or, put another way, every kind is of the same sort), we only need
structural rules to compare kinds.

Intuitively, the classifier-directed portion of the algorithm takes a context,
two terms, and a classifier and attempts to derive the corresponding algo-
rithmic equality judgment, returning either success or failure; the structural
portion takes a context and two terms in weak-head normal form and attempts
to synthesize a simple type or kind for which the structural equality judgment
is derivable, returning that classifier if it exists.

Notice that the algorithm ignores all issues of linearity. There is no dis-
tinction between intuitionistic and linear assumptions—the algorithm does not
enforce any restrictions on the number of times something may be used—and
the structural rule for linear applications does not split the context. Later, we
will see that in the soundness proof, all the necessary information about al-
location of linear assumptions is extracted from the typing derivations rather
than the derivations of algorithmic equality.

4 Soundness of Algorithmic Equality

In this section we will prove the soundness result for our algorithm; essentially,
we want to show that if two terms are algorithmically equal then they are
definitionally equal. It is clear, however, that this can only be true for well-
typed terms. (Consider the type-directed rule at type T!) Our soundness
theorem will therefore have to require that typing derivations exist for the
terms being compared. Since our algorithm does not enforce the linearity
restrictions present in the definitional equality rules, the proof must also rely
on the typing derivations to determine how linear contexts should be split
among premises when dealing with linear function applications.

This can pose some difficulty if the two typing derivations disagree on
how the context should be split. This can’t be avoided, as equal terms may
sometimes use their resources differently if unit expressions are involved. For
example, in the context A = w:T,v:T,w:T — T —o A, the terms (w"()) u
and (w”()) v are equal, but there is no linear context in which u and v may
be simultaneously well-typed, let alone equal.

11

To solve this problem, we follow a suggestion proposed by Pfenning [8].
The key is to observe that the way to prove those two problematic applications
equal is to use the fact that any variable of type T is equal to (). Using this
extensionality rule and congruence rules, we prove that both of the above
terms are equal to (w”())"(); thus by transitivity they are equal to each other.
But changing an expression of type T into () is just n-expansion, and HP
showed that the type-directed algorithm can be instrumented to find n-long
forms. Therefore, the soundness proof should, rather than directly proving
the algorithmically equal terms to be definitionally equal, extract a mediating
term and prove that it is definitionally equal to both. Comparison with HP’s
discussion of pseudo-canonical forms strongly suggests that in the classifier-
directed cases of the proof, this mediating term will be canonical except for
the type labels on A-abstractions, but we will not prove this.

Using this insight, we can prove the main lemma of this section, which will
imply soundness of the algorithm. Given two terms that are well-formed and
algorithmically equal, the proof constructs a term that is definitionally equal
to each of them. Decisions about how the linear context should be split in the
definitional equality derivations are made based on the given typing deriva-
tions, and since two separate equality derivations are being constructed, there
is no need to attempt to resolve differences between the two typing deriva-
tions. Soundness of algorithmic equality follows directly from this lemma,
using transitivity.

Lemma 4.1 Assume b I' context and, where applicable, I' = A; context. As-

sume further that if (uiC) € Ay and (WiC") € Ay), then C' = C".

(i) f ;A F M :Aand ;00 - N: Aand ¥ F M < N : A and
I'",A; CX foreachti, then there is some P such thatI'; Ay =P =M : A
and I'; Ag = P =N : A.

(i) If T80 F M : Aand T;A¢ F N : Band ¥ - M <— N : 7 and
I'",A; CX for each i, then I' = A = B : Type and there is some P such
that I; A P=M:Aand I'; Ao P=N:Aand A =B~ =r.

(i) IfTFA:K andTFB: K andT" F A<= B: K, thenT - A=B:
K.

(w) fTFA:K andTHB:LandTHFA«— B:k,then'FA=B:K
and ' = K =L :kind and K~ =L~ =K.

(v) IfT' = K : kind and T' = L : kind and '~ = K <— L : kind~ then
' K =L : kind.

12

Proof. By induction on the algorithmic equality derivation. We will only
show two cases.

Case:
E,U?Tl F M "u < My u:m
Zl_M1<:>M2§7'1—0T2

Note that A = A} — Ay where A7 =7 and A = 7.

Using Regularity and inversion lemmas, I' = A; : Type and so
' = A;,uiA; context for each i.

By rules, I'; A;, uiA; = M; u : 7 for each 7.

Also, note that (A;,uA;)” C (X, u:ry).

By the i.h., I'; A;, uwA; = P = M; u : Ay for each 1.

By equivalence rules, I'; A;,uiA; = P = P : As.

By rule, I ulA; Fu=u: A;.

By parallel conversion, I'; A;, u?A; E (S\u:Al.P)Au =P: A,
By transitivity, I'; A;, utA; F (S\u:AI.P)Au = M, u : A, for each 1.
By extensionality, ['; A; F j\u:Al.P =M,;: A — As.

Case:
El_MlHMQITQ—OTl El_N1<:>N2:7—2
Y F MlANl <—>M2AN2 T

By inversion, A; = (A}, A) and I'; Al F M, : Ay — A and T; A = Ny = Ay
and ' Ay = A : Type.

Similarly, Ay = (A}, AY) and I'; AL - My : By —o By and I'; AJ F Ny @ By and
'+ By =B : Type.

Observe that I' = Al context and I' = A context.

By the ih.,, THF (C = Ay — A; : Typeand I' - C = By — B; : Type and
;A FP=M,:C.

Also note that A7 = B] =7 and A, = B, = .

By rules, ' - Ay —o Ay = By —o By : Type.

By injectivity, I' = A; = B; : Type for j =1, 2.

By symmetry and transitivity, ' - A = B : Type.

By type conversion, I'; A = Ny : Ay and [Al - P = M; : Ay —o Ay

By the i.h.,, [TAY - Q = N; : As.

By a congruence rule, I'; A; = P Q = M;"N; : A;.

By type conversion, I'; A; - P"QQ = M;" N, : A.

Using erasure preservation, A~ = B~ = 7. O

13

Theorem 4.2 (Soundness of Algorithmic Equality) Assumel T' context
and I' = A context.

(i) fT;AFM:AandT;AFEN:Aand 7, A" M <= N : A", then
[CAEM=N:A.

(i) IfTFA:K,TFB: K andl" FA<= B: K ,thenT'FA=B:K.

(i) If T+ K : kind, ' = L : kind and " - K <— L : kind ", then' - K =
L : kind.

Proof. By Lemma 4.1, symmetry and transitivity. O

5 Completeness of Algorithmic Equality

In this section we prove that algorithmic equality is complete — that is, that
any two terms that are definitionally equal are also algorithmically equal. To
do this, we define a Kripke logical relation in the style of HP such that logi-
cally related terms are algorithmically equal. We then prove that definitional
equality implies the logical relation, thereby establishing completeness.

5.1 A Kripke Logical Relation

Our Kripke logical relation is defined inductively over the same simple types
and kinds as were used in the algorithm, and is extended to include substi-
tutions, where it is defined inductively over simple contexts. The worlds are
simple contexts, ordered by inclusion. More formally, we will say that a con-
text X' extends X, written X' = X, if ¥’ contains all the declarations in ¥ and
possibly more. Our logical relations on terms, families and substitutions are
defined in Figure 11.

Lemma 5.1 (Monotonicity of Logical Relations) Let R be any logical
relation. If (,Y') F R then (X, w:r,X') - R.

Proof. By induction on the type or kind, using the weakening property of
algorithmic equality. a

Our next lemma states that logically related terms are algorithmically

equal, and that structurally equal terms are logically related.

Lemma 5.2

(i) If S+ M =N € [r] then X+ M <= N : 7.

(it) f X - A= B € [k] then ¥+ A<= B : k.
(iii) If X M «— N :7 then ¥+ M = N € [7].

(iv) If ¥+ A+— B:k then ¥+ A= B € [k].

Proof. By simultaneous structural induction over simple types and kinds. O

14

) SFM=Nec[a]ifSFM e N:a.
i) XF M =N¢€|[n - n]iff V¥ = 3, ¥ F M, = N; € [ri] implies
Ell_MMlzNNle[[Tg]].
(i) X M =N € [— n] iff VZ' = X, ¥ - M; = N, € [ri] implies
S F M M, = N°N; € [n].
(IV) El_M:NE[[Tl&TQ]] iﬁizl_ﬂ'lM:’ﬂ'lNE[[Tl]l andEl—mM:
7TQN € [[7'2]].
(v) ¥XF M = N € [T], always.
(vij SFA=Be[t]iff X - A<= B:t".
(vi) X F A=Ber - k]ifVY = X ¥ F M =N € [r] implies
S'FAM = BN € [x].
(viii)) ¥ F o1 = 0y € [¢] iff 01 = 03 = -, the empty substitution.
(ix) X' F oy[u—M] = ogJu—Ms) € [(E,w:r)] if ¥ F 0y = 09 € [X] and
Ell_MIZMQG [[T]]

Fig. 11. Definition of our Kripke Logical Relation

5.2 Definitionally Fqual Terms are Logically Related

It takes a little more work to prove the next part of completeness, namely
that any two terms that are definitionally equal will be related by our Kripke
logical relation. We must prove symmetry, transitivity and closure under
head expansion before tackling the proof by induction on definitional equality
derivations; due to space considerations we omit those lemmas here.

Now we can prove the main lemma of this section, namely that logically
related substitutions map definitionally equal terms to logically related terms.
Once we have done this we can use the fact that identity substitutions are
logically related to establish completeness of the algorithm. Because the defi-
nitional equality judgments enforce linearity but the logical relations do not,
the statement of the main lemma must allow the domain of the substitutions
to contain variables that are not mentioned in the equality judgment.

Lemma 5.3
(i) fT; AEMy=My: Aand S+ oy =09 € [I7,A™,0] then X+ oy M; =

ooMy € [[A_]l
(ZZ) IfF l_Al = AQ K and X F 01 =09 € [[F_,@]] then X+ 0'1A1 = 0'2142 €
[K7T

Proof. By induction on derivations. We will show only a few of the interesting
cases.

15

Case:
F,All_MlezA—OB F,Agl_leNQA
F;Al,AQ F MlANl = MQANQ : B

First, note that (A — B)” = A~ — B~

Let © = A,,0 and ©; = A[,0. Then for each i, ¥ - 07 = 0y €
[[FivAiiv@i]]'

By the lh, YoM, = o9M,y € [[Ai —o0 Bi]] and X F oy Ny = 09N, € [[Ai]]

By definition of [[Ai —o Bi]], Y F (O'lMl)A(O'lNl) = (O'QMQ)A(O-QNQ) € [[Bi]]

That iS, X Ul(MlANI) = O'Q(MQANQ) € [[B_]]

Case:
A wAE M, =M, : B
A =A:Type ' Ay =A: Type

AR j\u:Al.Ml = j\u:AgMg :A—oB

WLOG, we may assume u ¢ Dom(©).

Note that (A — B)”" = A~ — B™.

So, suppose ¥’ > ¥ and X' - Ny = N, € [A™].

By Lemma 5.1, ¥ -0y, =0y € [[7, A7, 0].

By definition of the logical relation,

Yoy lu—Ni| = ogfu—Ny| € [T, A7, u:A™, O].

By the i.h., X' F oy[u— N | My = oo[u—Ny|Ms € [B].
That iS, Y- (UlMl)[Nl/U] = (O'QMQ)[NQ/U] € [[Bi]]

By closure under head expansion,

S F (Ao Ay.oy M) Ny = (Au:oyAy.00Ms)" N, € [B7].
Thus by definition of [A~™ — B7],

Y \woy Aoy My = M\uzoeAy.o9 My € [A- — B7].
That is, & F oy (Au:A1. M) = 0o(AuzAs. M) € [A~ — B7]. 0

Lemma 5.4 ¥ I idy = idy € [X].

Proof. By Lemma 5.2 and the definition of the logical relation for substitu-
tions.

Theorem 5.5 (Completeness)
(i) IFT;AFM=N:Athen D=, A~ F M e N : A~
(ii) [TFA=B:K then D~ A <= B: K-

Proof. By Lemmas 5.2, 5.3 and 5.4. O

6 Decidability of Equality

Having established soundness and completeness for our algorithmic equality
judgments, we may prove that equality is decidable — in effect, that the

16

algorithmic rules do in fact define an algorithm . The proof is split into two
parts. First, we prove that algorithmic equality is decidable when each of the
terms being compared is algorithmically equal to some other term. Then, we
use this fact to prove that definitional equality is decidable for all well-typed
terms by noting that any well-typed term is algorithmically equal to itself.

Lemma 6.1

(i) If S+ M<= M :7 and ¥+ N <= N': 1 then it is decidable whether
M N:T.

(1)) If S+ M <— M' : 71 and ¥+ N <— N': 1y then it is decidable whether
YF M <— N :13 for some T3.

(1)) If © - A<= A" : k and ¥ - B <= B’ : k then it is decidable whether
YFA<+ B:k.

(iv) If S+ A«— A" ky and ¥ F B <— B': kg then it is decidable whether
YF A +— B: k3 for some Ks.

(v) If S+ K «— K’ :kind and ¥+ L <— L' : kind~ then it is decidable
whether ¥ = K <— L : kind™.

Proof. By induction on derivations. a

Theorem 6.2 (Decidability for Well-Formed Terms)

(1)) IfT; A M: A and T; A F N @ A then it is decidable whether T; A
M= N :A.

(i) IfTHA: K and T F B : K then it is decidable whether T A =B : K.

(i5i) If '+ K : kind and T' = L : kind then it is decidable whether T'+= K = L :
kind.

Proof. Because algorithmic equality is sound (Theorem 4.2) and complete
(Theorem 5.5), it suffices to check algorithmic equality in each case. Further-
more, by reflexivity and completeness, each term is algorithmically equal to
itself. Thus by Lemma 6.1, algorithmic equality of the two terms is decid-
able. O

7 Conclusion

We have presented a variant of the LLF type theory in which terms need not
be in pre-canonical form in order to be well-typed. Our variant differs from
the original presentation of LLF by Cervesato and Pfenning by employing
a set of typed definitional equality judgments rather than taking definitional
equality to be untyped (- or #n-conversion. We have proved that this notion of
definitional equality for well-typed terms is decidable by giving a type-directed
algorithm and proving it sound and complete. The algorithm is simplified by

17

the identification of intuitionistic and linear assumptions, relying on the well-
formedness of the terms being compared to ensure linearity is respected.

We have not addressed the problem of finding canonical forms for terms,
or proving that they exist. However, we believe that our algorithm, like that
of Harper and Pfenning on which it is based, can be instrumented to extract
canonical forms for the terms it compares. In fact, a trick very similar to
this instrumentation is performed implicitly in our soundness proof, where
algorithmically equal terms are proved definitionally equal by extracting a
mediating term. It appears that this mediating term is canonical except for
the type labels on A- (and A-) abstractions.

References

[1] Iliano Cervesato and Frank Pfenning. A linear logical framework. In Eleventh
IEEE Symposium on Logic in Computer Science, pages 264-275, July 1996.

[2] Thierry Coquand. An algorithm for testing conversion in type theory. In
Gérard Huet and Gordon Plotkin, editors, Logical Frameworks, pages 255-279.
Cambridge University Press, 1991.

[3] Karl Crary and Joseph C. Vanderwaart. An expressive, scalable type theory for
certified code. Technical Report CMU-CS-01-113, Carnegie Mellon University,
May 2001.

[4] Amy Felty. Encoding dependent types in intuitionistic logic. In Gérard Huet
and Gordon D. Plotkin, editors, Logical Frameworks, pages 214-251. Cambridge
University Press, 1991.

[5] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining
logics. Journal of the Association for Computing Machinery, 40(1):143-184,
January 1993.

[6] Robert Harper and Frank Pfenning. On equivalence and canonical forms in the
LF type theory. Technical Report CMU-CS-99-159, Carnegie Mellon University,
September 1999.

[7] Robert Harper and Frank Pfenning. On equivalence and canonical forms in the
LF type theory. Technical Report CMU-CS-00-148, Carnegie Mellon University,
July 2000.

[8] Frank Pfenning. Personal communication.

[9] Jeff Polakow. Ordered Linear Logic and Applications. PhD thesis, Carnegie
Mellon University, August 2001. Available as Technical Report CMU-CS-01-
152.

[10] Joseph C. Vanderwaart and Karl Crary. A simplified account of the metatheory
of Linear LF. Technical report, Carnegie Mellon University, 2002.

18

