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Abstract

I present a type�preserving translation that eliminates sub�
typing and bounded quanti�cation without introducing any
run�time costs� This translation is based on Mitchell and
Pierce�s encoding of bounded quanti�cation using intersec�
tion types� I show that� previous negative observations
notwithstanding� the encoding is adequate given a su��
ciently rich target type theory� The necessary target type
theory is made easily typecheckable by including a collection
of explicit coercion combinators� which are already desired
for eliminating subtyping� However� no form of coercion
abstraction is necessary �even to support bounded quanti��
cation	� leading to a simple target language�

� Introduction

Type�preserving compilers� those that utilize strongly typed
intermediate languages� o
er several compelling advantages
over untyped compilers� A typed compiler can utilize type
information to enable optimizations that would otherwise
be prohibitively di�cult or impossible� Internal type check�
ing can be used to help debug a compiler by catching errors
introduced into programs in optimization or transformation
stages� Finally� if preserved through the compiler to its ul�
timate output �or at least to some interchange language	�
types can be used to certify that executables are safe� that
is� free of certain fatal errors or malicious behavior ��
�

Typed compilation is often particularly pro�table for
advanced programming languages� which may be challeng�
ing to implement e�ciently or correctly without exploiting
types� However� advanced programming languages with so�
phisticated type systems pose their own challenges to typed
compilation� the typing constructs of a source language
must either be included in the compiler�s typed interme�
diate languages� or be �compiled away� into more primi�
tive constructs� Where possible� it is generally preferable
to reduce sophisticated typing constructs to more primitive
ones� because typed intermediate languages are often fairly
complicated already without the added complexity of source
language features�

In this paper I consider the typed compilation of a
language supporting subtyping and bounded quanti�ca�
tion ��� �
� Subtyping is a pervasive language feature� in that
it interacts with most other language features� and therefore
can substantially complicate programming languages that
include it� This is particularly true for low�level typed in�
termediate languages� Therefore� as is often the case� it is

desirable to dismantle subtyping in favor of more primitive
and easy�to�type constructs�

One well�known way to do so is the seminal �Penn in�
terpretation� of Breazu�Tannen� et al� ��
� The Penn in�
terpretation eliminates instances of subsumption by insert�
ing explicit calls to coercion functions� and handles bounded
quanti�cation by rewriting polymorphic functions to take an
additional coercion argument mapping the function�s type
argument to its upper bound� Although Breazu�Tannen� et
al��s interest was in semantics� their translation can also eas�
ily be viewed as a type�preserving compilation strategy� In�
deed� under one interpretation of subtyping� Breazu�Tannen
et al��s translation cannot be improved upon in any essential
way�

In a practical setting� subtyping can be interpreted in two
di
erent ways� inclusively� where the members of a subtype
actually belong to the supertype� and coercively� in which
a run�time coercion may be necessary to convert members
of the subtype into members of the supertype� For coercive
subtyping� the costs of the Penn interpretation are unavoid�
able �in general	� but for inclusive subtyping� the run�time
application of coercions and run�time passing of coercions to
polymorphic functions represent unnecessary and unaccept�
able costs� In many settings� the avoidability of these costs
makes inclusive subtyping more attractive than coercive�
This has led many language designers to eschew language
features requiring run�time coercions �such as int � float
subtyping	 in favor of ones enjoying a purely inclusive inter�
pretation� such as records with pre�x subtyping and �often	
objects�

What we desire� then� is a type�preserving transforma�
tion that eliminates inclusive subtyping without introduc�
ing any run�time costs� We may begin with a preliminary
observation about the target language of any such transfor�
mation� If subtyping is eliminated� then subsumption must
be performed explicitly� but if that explicit subsumption is
to be performed without run�time cost� then it cannot be
performed by the ordinary dynamic constructs of the lan�
guage� Thus� our target language must include a collection
of combinators for building static coercions� in the style of
Curien and Ghelli ��
� for example�

With such a collection of combinators� and in the ab�
sence of bounded quanti�cation� it is easy to construct a
static coercion to replace each instance of subsumption in
the source language� However� in the presence of bounded
quanti�cation one is once again left with the obvious prob�
lem of producing coercions from quanti�ed types to their
upper bounds� One natural way to solve this problem is to



introduce coercion variables and a way to abstract over them
�statically� so as not to incur run�time cost	� and then to
abstract a new coercion variable at each polymorphic func�
tion just as in the Penn interpretation� Such an approach
might be viewed as an inclusive interpretation of the Penn
interpretation� �An approach similar to this was employed
by Curien and Ghelli� although they tied coercion variables
to particular type variables� and abstracted them automat�
ically in polymorphic functions�	

This approach can be made to work� but the necessary
facilities quickly become complicated as one scales the lan�
guage to support additional features such as modules or
higher�order type constructors� In this paper I propose a
simpler approach in which coercion abstractions and vari�
ables will initially not be necessary at all� Although we will
�nd coercion variables necessary to extend the technique
to recursive types� even then the coercions employed at in�
stances of subsumption will still be closed and no coercion
abstractions will be necessary� The cost of this simpli�ed
target language will be a somewhat more complicated trans�
lation�

The translation is based on an interpretation of sub�
typing using intersection types that was �rst suggested by
John Mitchell and explored further by Benjamin Pierce ���
Section �����
� In the Mitchell�Pierce interpretation� the
bounded quanti�ed type ����� ���	 is interpreted to mean
��� ��� � � 	� In the former type� any type argument is
required to be a subtype of the given bound � � in its inter�
pretation� any type argument is permitted� but is cut down
to a subtype of the bound wherever it is used�

Pierce observed that this encoding does not entirely
work� because it fails to validate the most general rule for
subtyping of bounded quanti�ed types� However� that fail�
ure turns out to be an artifact of the particular type theory�
F� ��� ��
� that Pierce was using� I show that in a moder�
ately more expressive type theory� the Mitchell�Pierce inter�
pretation in fact becomes a valid encoding�

The Mitchell�Pierce encoding is useful for our purposes
because it allows us to eliminate bounded quanti�cation
fully� without any need for coercion abstractions� Instead�
subsumption coercions can be constructed entirely locally�
even in the case of bounded quanti�cation� the promotion
of a type variable to its upper bound is implemented simply
by the coercion from � � � to � �

Since we assume an inclusive interpretation of subtyping�
where subsumption has no run�time action� the compilation
process of this paper will make no changes to the type� and
coercion�erasure of the program in question� The action
of compilation is on the types� in reducing the high�level
language feature of subtyping to lower�level static coercions�
The resulting language� though larger �by the introduction
of coercions	� is simpler and enjoys entirely deterministic
and syntax�directed type checking�

This paper is organized as follows� I begin by developing
the translation eliminating subtyping in two steps� First� in
Section �� I present the translation in an F��like type the�
ory� making clear exactly what typing rules are necessary to
validate the Mitchell�Pierce encoding� The target language
for this version of the translation will still contain subtyp�
ing and will not enjoy tractable type checking� so it will not
su�ce for our ultimate purposes� Then� in Section �� I refor�
malize the translation with a target language where explicit
coercions replace subtyping and that is easily typechecked�
In Section �� I extend these results to account for recur�
sive types� Finally� in Section �� I give a semantics for the

types � ��� � j int j �� � �� j �� � �� j
�������� j top

terms e ��� x j i j �x���e j e�e� j �e�� e�	 j
e�� j e�� j �����v j e�� 


values v ��� x j i j �x���e j �v�� v�	 j �����v
contexts � ��� � j �� ��� j �� x��

Figure �� Source Syntax

Judgement Interpretation

� � ok � is a valid context
� � � type � is a valid type
� � e � � e is a valid term of type �
� � �� � �� �� is a subtype of ��

Figure �� Source and �First	 Target Judgements

�second	 target language that makes precise the notion that
its coercions have no run�time e
ect� In what follows� fa�
miliarity is assumed with the polymorphic lambda calculus�
subtyping� bounded quanti�cation� and intersection types�

� The Mitchell�Pierce Interpretation

The source language for the translation is F� ��
 augmented
with products and a base type �int	� the syntax for which
is given in Figure �� and the judgement forms for which are
given in Figure �� The typing and subtyping rules for the
source language are standard� we discuss the most impor�
tant rules below and the full system �for the language�s �nal
form	 is summarized in Appendix A� Note the use of a value
restriction in the syntax of type abstractions� this is to en�
sure that there are no problems in passing to a type�erasure
semantics in Section �� In what follows� we will write the si�
multaneous capture�avoiding substitution of E�� � � � � En for
X�� � � � � Xn in E as E�E� � � �En�X� � � �Xn
� As usual� we
will consider alpha�equivalent expressions to be identical�

The target language of the encoding is similar to the
source� except that bounded quanti�cation is replaced by
simple quanti�cation� and binary intersection types are
added� The target syntax appears in Figure �� the target�s
judgement forms are the same as for the source �Figure �	�
The typing and subtyping rules for the target language are
standard� except that we will add two somewhat unusual
rules in Section ��� and we will have no need for the intersec�
tion type distributivity rules� The full system is summarized
in Appendix A���

The idea to the Mitchell�Pierce interpretation is the
bounded quanti�ed type is de�ned in terms of ordinary
quanti�cation and intersection types�

��������
def
� ��� ���� � ����


The left�hand type includes type abstractions that may be
applied to any subtype of the given bound ��� The encoding
relaxes this� allowing its members to be applied to any type�
but then cuts that type down to a subtype of �� wherever it
is used�

When the type argument� say � � is in fact a subtype of
the bound�as will always be the case in target programs

�



types � ��� � j int j �� � �� j �� � �� j
���� j �� � �� j top

terms e ��� x j i j �x���e j e�e� j �e�� e�	 j
e�� j e�� j ���v j e�� 


values v ��� x j i j �x���e j �v�� v�	 j ���v
contexts � ��� � j �� � j �� x��

Figure �� �First	 Target Syntax

resulting from well�typed source programs�the types � and
� � �� will be equivalent� and thus the result types ������

and ���� �����
 will also be equivalent� This means that the
application of a type abstraction works as expected� How�
ever� within the body of a type abstraction� � � �� can be
shown to be a subtype of �� without making any assump�
tions about �� and thus promotion of type variables to their
upper bounds also works as expected�

We explore this in greater detail by considering three of
the most important typing rules of the source language� the
subtyping rule for type variables and the typing rules for
type abstraction and application� and the images of those
rules under the encoding�

� The subtyping rule for variables states that any type
variables is a subtype of its given upper bound�

� � � � �
�����	 	 �	

The invariant of the encoding is that any type variable
is replaced by the intersection of that variable with its
upper bound� so when � has upper bound � � it is every�
where replaced by �� � � Thus� the image of this rule�s
conclusion is � � � � � � � � which certainly holds��

� The typing rule for type abstractions is as follows�

�� ��� � v � � � � � � type

� � �����v � ������ �
�� 
	 Dom��		

The image of this rule�s �rst antecedent is�

�� � � v�� � ���
 � � ��� � ���


We may assume that this judgement holds and con�
clude� by the usual rule for type abstraction formation�
that

� � ��� v�� � ���
 � ��� � ��� � ���


holds� which is the image of the rule�s conclusion�

� The typing rule for type application is as follows�

� � e � �������� � � � � ��

� � e�� 
 � ������


The image of this rule�s �rst antecedent is�

� � e � ��� ���� � ����


�Strictly speaking� the image is �� � � � � � � � � where �� and � �

are the images of � and � � but we will omit that level of detail in this
informal discussion�

From this� using the usual rule for type application� we
deduce that�

� � e�� 
 � ���� � ����


Certainly � � �� � � � and� by the second antecedent�
� � � � ��� Using the former subtyping relationship in
positive positions of �� and the latter in negative ones�
we obtain

� � ���� � ����
 � ������


and hence we may conclude by subsumption that

� � e�� 
 � ������


holds� which is the image of the rule�s conclusion�

��� Quanti�er subtyping

The preceding discussion shows that the encoding validates
three of the four rules for bounded quanti�cation� and it is
easy to show that it also validates all the rules not relating
to bounded quanti�cation� However� a complication arises
with the remaining rule� the subtyping rule for bounded
quanti�ed types�

� � � �� � �� �� ��� �� � �� � � ��

� � �������� � ���� ����
�
�

It is not so obvious that the encoding validates this rule�
Consider the judgement�

� � ���top�� � ���int��

Certainly this judgement holds in the source language� since
int � top� However� the image of this judgement under the
encoding is�

� � ��� � � top � ��� � � int

This judgement does not follow from the usual subtyping
rule for �unbounded	 quanti�ed types� since � � top 
�
� � int� In languages where the usual rule is the only rule
for subtyping quanti�ed types �such as Pierce�s F�	� the en�
coding fails�

One way to save the encoding is to restrict the source
language by replacing the F� subtyping rule with the �Ker�
nel Fun� rule� which requires the bounds �� and � �� to be
identical� With such a restriction in the source language�
the problem does not arise�

However� there is no need to do this� We can also make
the encoding work by strengthening the target language�
We will strengthen the target language by adding subtyping
rules that allow the implicit elimination and formation of
quanti�ed types�

� � ���� type � � � � type

� � ���� � � �� ���


� � � type

� � � � ����
�� not free in � 	

The former rule allows quanti�ed types to be instantiated
implicitly using subtyping� rather than explicitly using the
elimination construct for quanti�ed types �e�� 
	� The latter
rule similarly allows implicit formation of quanti�ed types�

�



Note that although the former rule makes the usual elimi�
nation construct redundant� the latter rule cannot replace
the formation construct ���e� because it does not provide
any binding of � to be used in the body e� A stronger typ�
ing rule� as opposed to subtyping� can make the formation
construct unnecessary� but for our purposes we will have no
need for it�

These rules are semantically well�justi�ed in a type�
erasure setting� in which type abstraction and type appli�
cation have no semantic e
ect� However� they make type�
checking problematic� so they are rarely used in practical
programming languages� Nevertheless� this language serves
well to illustrate the Mitchell�Pierce interpretation� More�
over� with the elimination of subtyping in favor of explicit
coercions in Section �� our target language will be easily
typechecked�

With the addition of these two rules� the encoding now
validates the subtyping rule for quanti�ed types� Recalling
the example above�

��� � � top � ���� ��� � � top
� ���� ��� � int	 � top
� ��� �� � int	 � top
� ��� � � int

The �rst line follows by implicit formation� the second by
implicit elimination �beneath the outermost quanti�er	 us�
ing �� � int� the third by alpha conversion� and the last by
the lower bound property of intersection types�

More generally� suppose the images of the antecedents of
the subtyping rule hold� that is � � � �� � �� and

�� � � ���� � � ����
 � � ���� � � ����


First� observe that ��� � ��	� �� � �� � �� and vice versa �for
any type variable �	� The shown direction follows from the
lower bound property of intersection types� and the converse
follows from the greatest lower bound property� since � �� � ��
is given by the �rst antecedent� It follows from this that

�� � � ����� � � ��	 � ����
 � ���� � � ����


using the shown direction in positive positions of �� and its
converse in negative positions�

Now we may show that the rule�s image holds� in an
analogous manner to the example�

��� ���� � ����
 � ���� ��� ���� � ����

� ���� �����

� � � ��	 � ����

� ��� ����� � � ��	 � ����

� ��� ���� � � ����

� ��� � ���� � � ����


The �rst line follows by implicit formation� the second by
implicit elimination using �� � � ��� the third by alpha con�
version� the fourth by the fact shown above� and the last by
the second antecedent�s image�

��� Formalization

The encoding is formalized as a syntax�directed type trans�
lation j� j�� term translation jej�� and context translation
j�j� We begin with the type translation �shown in Figure �	�
which we de�ne in two parts� The �rst part is a parametric
translation j � j� which does not modify type variables� The
key clause is the one for quanti�ed types� which states�

j��������j
def
� ���j��j�� � j��j��


j�j
def
� �

jintj
def
� int

j�� � ��j
def
� j��j � j��j

j�� � ��j
def
� j��j � j��j

j��������j
def
� ���j��j�� � j��j��


jtopj
def
� top

Sub��� � 	
def
� �

Sub���� ��� �	� �	
def
� Sub��� � �� � j� �j��
	

Sub���� x�� �	� � 	
def
� Sub��� �	

j� j�
def
� Sub��� j� j	

Figure �� Type Translation

jxj�
def
� x

jij�
def
� i

j�x���ej�
def
� �x�j� j��jej�

je�e�j�
def
� �je�j�	�je�j�	

j�e�� e�	j�
def
� �je�j�� je�j�	

je�ij�
def
� �jej�	�i

j�����ej�
def
� ���jej�������

je�� 
j�
def
� �jej�	�j� j�


Figure �� �First	 Term Translation

The parametric type translation accounts for the upper
bounds of all bound variables� but does not account for the
upper bounds of free variables� Those are obtained by ref�
erence to the context� Thus� the second part is a context
sensitive translation j � j�� which modi�es type variables ap�
propriately�

Sub��� � 	
def
� �

Sub���� ��� �	� �	
def
� Sub��� � �� � j� �j��
	

Sub���� x�� �	� � 	
def
� Sub��� �	

j� j�
def
� Sub��� j� j	

The term translation �Figure �	 and context translation
�Figure �	 simply apply the appropriate translation to their
component types and delete upper bounds from variables�

With this formalization� we can state the following static
correctness theorem� which summarizes the informal dis�
cussion above� We distinguish between judgements in the
source and target languages by marking the turnstiles �S or
�T � respectively�

Theorem ���

�� If � �S � type and �S � ok then j�j �T j� j� type�

�� If � �S �� � �� and �S � ok then j�j �T j��j� � j��j��

�� If � �S e � � and �S � ok then j�j �T jej� � j� j��

�



j�j
def
� �

j�� ��� j
def
� j�j� �

j�� x�� j
def
� j�j� x�j� j�

Figure �� Context Translation

types � ��� � j int j �� � �� j �� � �� j
���� j �� � �� j top

terms e ��� x j i j �x���e j e�e� j �e�� e�	 j
e�i j ���v j c e

coercions c ��� id j c� � c� j c� � c� j c� � c� j
���c j hc�� c�i j 	i��� � ��
 j
top�� 
 j app����� 
 � � j gen

contexts � ��� � j �� � j �� x��
values v ��� x j i j �x���e j �v�� v�	 j ���v j c v

Figure �� Coercion Calculus Syntax

Although I do not formalize an operational semantics for
the source or target language here� it is easy to see that
the encoding is dynamically correct in any semantics that
respects type erasure� since any source term�s erasure is
identical to its translation�s erasure� This observation also
neatly addresses the issue of the translation�s coherence� any
two translations of a term must be equivalent� since each is
equivalent to the source term�

� The Coercion Interpretation

Our end goal is to eliminate subtyping entirely� not just
to eliminate bounded quanti�cation in favor of intersection
types� To that end� we de�ne a coercion�based calculus to
serve as a target language� and a translation from the orig�
inal source language to the new coercion language� In the
coercion calculus� �subtyping� relationships will be repre�
sented by explicit coercions� which will make typechecking
easy�

The syntax of the coercion calculus is given in Figure ��
Aside from the new syntactic class of coercions� the syntax
is similar to the target language from Section �� To aid in
typechecking� several coercion constructs �	� top� and app	
include type annotations indicating their domains� in dis�
cussion we will omit these annotations when they are clear
from context�

The judgements of the coercion calculus are given in
Figure �� The judgements for type formation and typ�
ing of terms are standard� The �nal judgement� for typ�
ing coercions� is the analog of the subtyping judgement�
� � c � �� � �� indicates that c is a coercion from �� to
��� In this case� the coercion c may be thought of as a wit�
ness that �� is a subtype of ��� When judgements in the
coercion calculus must be distinguished from judgements in
the source language� we will do so by marking the turnstile
�C �

Most of the terms of the coercion calculus have their
usual meanings� The new term construct� c e� indicates the
application of a coercion to a term� this may be thought
of as syntactically indicating the use of subsumption� Also

Judgement Interpretation

� � ok � is a valid context
� � � type � is a valid type
� � e � � e is a valid term of type �
� � c � �� � �� c is a valid coercion from �� to ��

Figure �� Coercion Calculus Judgements

note that the term construct for type application is omitted�
that construct is replaced by the app coercion�

The coercion constructs are interpreted as follows�

� The coercions id and c� � c� denote identity and com�
position� They may be thought of as witnesses to the
re�exivity and transitivity subtyping rules�

� The coercions c� � c�� c� � c�� and ���c lift coercions
over the basic type operators� For example� c� � c�
modi�es a function by applying c� to its argument and
c� to its result� These constructs are witnesses to the
subtyping rules for compatibility with the basic type
operators�

� The coercion hc�� c�i is the introduction construct for
intersection types� and intuitively works by applying
each of the two given coercions and collecting the re�
sults� It has the typing rule�

� � c� � � � �� � � c� � � � ��
� � hc�� c�i � � � �� � ��

This coercion is the witness to the greatest lower bound
rule for intersection types�

� The coercion 	i is the elimination construct for inter�
section types� and works by selecting one of the two
results from an intersection introduction� It has the
typing rule�

� � �� � �� type

� � 	i��� � ��
 � �� � �� � �i
�i � �� �	

This is the witness to the lower bound rule for inter�
section types�

Note that using the last two coercions we can de�ne a
compatibility coercion for intersection types�

c� � c�
def
� hc� � 	�� c� � 	�i

� The coercion top is the introduction construct for the
type of the same name and witnesses the subtyping top
rule�

� The application coercion app � is the elimination con�
struct for quanti�ed types� It witnesses the implicit
elimination rule from Section ��� and has the typing
rule�

� � ���� type � � � � type

� � app����� 
 � � � ���� � � �� ���


Note that the usual elimination form for quanti�ed
types can be built from this coercion�

e�� 

def
� �app �	 e

�



� The generalization coercion gen introduces a member
of a quanti�ed type by wrapping a type abstraction
�i�e�� ���
	 around its argument� It witnesses the im�
plicit introduction rule from Section ��� and has the
typing rule�

� � � type

� � gen � � �����
�� not free in �	

The typing rules for coercions and the rest of the coercion
calculus are summarized in Appendix B��� Typechecking for
this language is easy� due to a unique typing property for
coercions�

Proposition ��� Suppose �� c� and � are given� Then
there exists at most one � � such that � � c � ��� � and� con�
versely� there exists at most one � � such that � � c � � �� � �

Providing this property is the purpose of the domain anno�
tations on the 	� top� and app coercions� Without them�
top� id does not have a unique codomain� for example�

��� The Coercion Translation

With a target language in place� we can now de�ne the
translation eliminating subtyping� The type and context
translations are identical to those used in the �rst transla�
tion �Figures � and �	� The term translation is di
erent�
of course� since it must now provide coercion expressions�
Furthermore� since the necessary coercion expressions are
determined by typing and subtyping derivations �not by the
syntax of the terms themselves	� the translation is given as
a type�directed translation�

The type�directed translation is given as a term trans�
lation and a subtyping translation� The term translation is
given by a judgement � �SC e � � � e�� meaning that e has
type � �in the source	 and e� is its translation� The subtyp�
ing translation is given by a judgement � �SC �� � �� � c�
meaning that the coercion c witnesses that �in the source	 ��
is a subtype of ��� As usual� rules in the term translation are
in one�to�one correspondence with source typing rules� and
rules in the subtyping translation with the source subtyping
rules�

The interesting rules are the ones that deal with quanti�
�ed types� We proceed by looking carefully at these rules�
the complete rules to the translation appear in Appendix C�

� The translation rule for variables is�

� � � � � � 	�
�����	 	 �	

The correctness criterion for subtyping translations is
that if

� �SC �� � �� � c

�and � is well�formed	 then

j�j �C c � j��j� � j��j�

This rule establishes that criterion since j�j� � ��j� j�
and 	� takes � � j� j� to j� j��

� The translation rule for type abstractions is simply�

� �S � type
�� ��� �SC v � � � � v�

� �SC �����v � ������
�
� ���v�

�� 
	 Dom��		

map����
�c�� c�	
def
� c�

map���

�c�� c�	
def
� id �for � 
� 
	

map���int
�c�� c�	
def
� id

map��� �� � ��
�c�� c�	
def
� map�����
�c�� c�	�

map�����
�c�� c�	

map��� �� � ��
�c�� c�	
def
� map�����
�c�� c�	�

map�����
�c�� c�	

map��� ��
�� 	
�c�� c�	
def
� �
� map���� 
�c�� c�	

�where 
 is fresh	

map��� �� � ��
�c�� c�	
def
� map�����
�c�� c�	 �

map�����
�c�� c�	

map���top
�c�� c�	
def
� id

Figure �� De�nition of map

The correctness criterion for term translations is the
usual� that if � �SC e � � � e� �and � is well�formed	
then j�j �C e� � j� j�� This rule preserves that criterion
since ���v� has type

���j� �j������� � ��� Sub��� j� �j�� � j� j��
	
� Sub��� ��� j� �j�� � j� j��
	
� j������ �j�

The second line follows since � is not in the domain of
�� the other two are direct from the de�nitions�

� The translation rule for type application is

� �SC e � �������� � e� � �SC � � �� � c

� �SC e�� 
 � ������
 �
�map���j��j�
�	�� hid� ci	 � app j� j�	 e

�

�� 
	 Dom��		

where map���� 
�c�� c�	 applies c� at all positive occur�
rences of � in � and c� at all negative occurrences� Its
de�nition is given in Figure � and its typing behavior
is speci�ed by the following lemma�

Lemma ��� If �� � � � type and � � c� � �� � ��
and � � c� � �� � �� and � �� � ok then � �
map���� 
�c�� c�	 � � �����
� � �����
�

Since 	� takes j� j� � j��j� to j� j�� and hid� ci goes the
opposite direction� using Lemma ���� we may deduce
that the map expression above takes j��j��j� j��j��j���

to j��j��j� j���
�

When composed with app j� j�� the resulting coer�
cion takes j��������j� � ���j��j��� � j��j���
 to
j��j��j� j���
� Using an easy�to�show substitution
lemma� the latter is equal to j������
j�� as required�

� Finally� the translation rule for subtyping of quanti�ed
types is�

� �SC � �� � �� � c� �� ��� �� �SC �� � � �� � c�

� �SC �������� � ���� ����
�
� �

����c� �
map���j��j�
�	�� hid� c� � 	�i	 �
app �� � j� ��j�		 �

gen
�� 
	 Dom��		

�



Let us examine this coercion starting at the middle� Let
� be a type variable� Then 	� takes ���j�

�
�j�	�j��j� to

��j� ��j�� and hid� c��	�i goes the other direction� since
c� �	� takes �� j�

�
�j� to j��j�� Thus the map expression

takes j��j���� � j�
�
�j�	 � j��j���
 to j��j��� � j�

�
�j���
�

When composed on each end with c� and app���j�
�
�j�	�

the result takes ����j��j���
� � j��j���
 to j� ��j��� �

j� ��j���
� Thus� discharging the variable �� the en�
tire � expression takes �������j��j���

� � j��j���
 to
j���� ����

�
�j�� When composed with gen �and employ�

ing a change of variables	� the result takes j��������j�
to j���� ����

�
�j�� as required�

The static correctness of this translation is formalized by
the following theorem� which summarizes the informal dis�
cussion above�

Theorem ���

�� If � �S � type and �S � ok then j�j �T j� j� type�

�� If � �SC �� � �� � c and �S � ok then j�j �C c �
j��j� � j��j��

�� If � �SC e � � � e� and �S � ok then j�j �T e� � j� j��

As before� the translation can easily be seen to be dynami�
cally correct in any semantics respecting type erasure� since
any source term�s erasure is identical to its translation�s era�
sure�

� Recursive Types

The translation above accounts for a basic source lan�
guage supporting functions� products� and bounded poly�
morphism� A natural question then is whether the approach
scales to larger� more expressive type systems� In fact� the
translation above generalizes easily to account for source�
level intersection and sum types� and dualizes nicely for
bounded existential and union types �with appropriate en�
hancements to the target language	� These extensions are
omitted here because they add little to the present discus�
sion� The approach also generalizes to support recursive
types� but that extension is a bit more involved and merits
some discussion�

Accounting for recursive types requires support for two
subtyping principles� First� we must support the usual rule
for subtyping recursive types�

�� ��top �S � type
�� ���top �S � � type
�� ���top� ���� �S � � � �

� �S ���� � ����� �
��� �� 
	 Dom��		

Second� we must be able to map a type isomorphism through
any type expression �where we think of �� and �� as iso�
morphic when �� � �� and �� � ��	� This requirement
arose both in type application and in subtyping of quanti�
�ed types� Previously this was possible using only the usual
subtyping rules� but this is not the case in the presence of
recursive types�

The problem is that in the subtyping rule for recursive
types above� the premise � � �� is useful only in positive
positions� in negative positions the premise is oriented the
wrong way� Consequently� we can map an isomorphism only

types � ��� � � � j ����
coercions c ��� � � � j � j

rec�� � �� ���c	 j
isorec��� � �� � ����

�� � �� � ����
c�� c�	 j

fold����� 
 j unfold����� 

coercion
contexts  ��� � j  � � � �� � ��

Figure ��� Extensions for Recursive Types

through recursive types in which the recursive variables ap�
pears only positively� Nevertheless� we should have both
orientations available since we are dealing with isomorphism
and not merely subtyping�

The needed subtyping rule provides the usual premise for
positive positions� but also provides the opposite premise
for negative positions� To justify these premises the rule
must ensure that the two types are in fact isomorphic� by
requiring subtyping in each direction� as shown in the rule
in Figure ���

In the usual use of this rule� the appearances of �� in
�� are divided up into positive and negative appearances�
with the negative ones marked ��� in ��� and the positive
ones in ��� � This ensures that the recursive relationship
is available in positive positions when showing left�to�right
subtyping �as in the simple rule	� and is available in negative
positions when showing right�to�left subtyping� as required�
Appearances of �� in �� are similarly divided�

The necessary extensions to the syntax of the coercion
calculus� principally new coercion forms� are given in Fig�
ure ��� Two new coercions �fold and unfold	 are used to in�
troduce and eliminate recursive types� The syntax for these
coercions give their codomain and domain types� respec�
tively� in order to preserve unique typing �Proposition ���	�

More interesting are the coercions witnessing the sub�
typing and isomorphism rules for recursive types� The sub�
typing coercion� rec�� � �� ���c	� applies c to the body of
a member of a recursive type� where c may call itself recur�
sively through the coercion variable �� The typing rule for
rec is�

�� � � � type �� �� � � � type
��� �� ��	� � � � � �� ��	 � c � � � � �

�� � rec�� � �� ���c	 � ���� � ����� �

��� �� 
	 Dom��	� � 
	 Dom� 		

Thus c uses � to coerce subcomponents from type � to ���
Note that the introduction of coercion variables mandates
the use of coercion contexts � 	� However� it also is impor�
tant to note that coercion contexts are necessary only for
typing coercions� no coercion variable need ever appear free
in a term�

The isomorphism coercion� isorec��� � �� � ���� �� �
�� � ���� c�� c�	� applies c� to the body of a member of
a recursive type� but simultaneously de�nes a reverse coer�
cion c�� and makes both coercions recursively available to
each other under the names �� and �� �respectively	� The
resulting typing rule is given in Figure ���

As in the rule it witnesses� the isorec rule divides up
the appearances of the recursive variables in the two types�

�
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Figure ��� Recursive Type Isomorphism Rule
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Figure ��� Isomorphism Coercion Rule

In this version of the rule� the division into positive and
negative is required to be the usual one� The requirement
is imposed so that typechecking of coercions remains syntax
directed �otherwise ��� � �

�
� � etc� are not determined by ��

and ��	� ensuring easy typechecking� It is not required for
type safety� so it could be relaxed� but doing so would be
unlikely to provide any useful expressive power�

Fold and unfold operations in the source language are
translated using fold and unfold coercions in the obvious
manner� Subtyping of recursive types is translated by the
rule�

�� ��top �S � type
�� ���top �S � � type
�� ���top� ���� �SC � � � � � c

� �SC ���� � ����� � �
rec�� � �� ��� map����� �
�	�� hid� topi	 � c �

map���� 
�hid� h�� topii� 	�		

This rule is made somewhat messy by the interpretation of
�� as �� � top� in practice� a compiler would optimize the
case when an upper bound is top� The coercion�s body �rst
coerces � to � �� � ��� � top	��
� thereby setting it up for
c� after which it coerces the resulting � ���� � top���
 back
down to � ��

Finally we can de�ne the necessary �nal clause of map
using the isomorphism coercion by��

map��� ��
��	
�c�� c�	
def
�

isorec��� � 
� � 
��� �� � 
� � 
���
map�
�� 
���� ��	 � map���� 
�c�� c�	�
map���� 
�c�� c�	 � map�
�� 
���� ��		

�where 
�� 

�
�� 
�� 


�
�� ��� �� are fresh	

�With this clause� some strengthening of the induction hypothesis
in necessary to show Lemma ��
� since �� and �� do not operate on
the same types�

	 Dynamic Semantics of the Coercion Calculus

It remains to put this compilation strategy on a solid footing
by establishing an operational semantics for the coercion
calculus� We desire two properties of the semantics� we
want the usual type safety property� of course� but we also
want to make explicit the inclusive nature of subtyping� that
is� that coercions have no run�time e
ect�

We take the view that the run�time substance of a term
is re�ected in the term�s erasure� the portion of the term
remaining after all types� type abstractions and coercions
are erased� Types� type abstractions and coercions will be
viewed as having purely static importance��

This view immediately advises the design of the opera�
tional semantics� Consider evaluation of the term hc�� c�iv�
A naive approach would be to include a term form for in�
tersection types �written� say� he�� e�i	� and to de�ne the se�
mantics so that hc�� c�iv evaluates to hc�v� c�vi� With such
an approach� intersection types become little di
erent than
products� suggesting there is likely a problem� The erasure
view immediately exposes this problem� with this evalua�
tion rule a coercion can change the erasure of a term� in this
case by introducing a new pair� Thus� this interpretation
violates the spirit of the enterprise� A similar issue can be
seen to arise with the top coercion� if top v evaluates to� say�
��� then again the erasure changes�

Instead� the semantics rules that hc�� c�iv is a value form�
and any further �computation� with the coercions c� or c�
is suspended until a projection coercion is applied� When
projection occurs� 	i�hc�� c�iv	 evaluates to civ� and at no
point does the erasure change� The value form hc�� c�iv is
most pro�tably read as a single value with two di
erent
views��

�This view can be reconciled with languages in which types can be
run�time objects by explicitly re�ecting types into the term structure
as in Crary� et al� 
���

�Dimock et al� 
�� employ a similar idea� They include an inter�
section pair construct� and solve the above problem by requiring the
erasure of e� and e� to be identical for he�� e�i to be syntactically

well�formed� They can then de�ne the erasure of an intersection pair

�



canonical
values V ��� i j �x���e j �v�� v�	 j ���v j

hc�� c�iv j top�� 
 v j fold����� 
 v

id v ��c v
�c� � c�	v ��c c��c�v	

�c� � c�	��x���e	 ��c �x�� �� c��e�c�x�x
	
�where � c� � �

�� � 	
�c� � c�	�v�� v�	 ��c �c�v�� c�v�	
����c	����v	 ��c ��� c v

�	i�� 
	�hc�� c�iv	 ��c civ
�app�� �
 �	����v	 ��c v����


gen v ��c ���v �� fresh	
unfold�� 
�fold�� �
v	 ��c v

v ��c v
�

c v ��c c v
�
�c not h
�
i� top or fold	

�Rules for rec and isorec appear in Appendix B����

Figure ��� Canonicalization

The semantics similarly de�nes top v and fold v to be
value forms� and given this it proves to be convenient to
say that c v is a value for any coercion c� One pleasant
consequence of this is that a term is a value exactly when
its erasure is a value�

Another consequence of this design is that values do
not enjoy useful canonical forms� For example� a func�
tional value may have the form �x���e� as one would pre�
fer� but it may also have the form 	��hid� ci��x���e		 or
�c� � c�	��x���e	� for example� Therefore� the operational
semantics utilizes two relations� the usual small�step eval�
uation relation �written e �� e�	� and an auxiliary� canon�
icalization relation �written v ��c v�	 that converts values
to canonical form� The canonicalization relation is purely
a technical device� it represents no run�time action whatso�
ever� as formalized in Proposition ��� and Theorem ����

For example� the rules for evaluating applications are as
follows�

e� �� e��

e�e� �� e��e�

e �� e�

v e �� v e�

v� ��c v
�
�

v�v� �� v��v� ��x���e	v �� e�v�x


The �rst� second� and fourth rules are standard� The third
uses the canonicalization relation to place the function into
canonical form so that the fourth rule can apply�

The canonical value forms and canonicalization rules are
given in Figure ��� The remaining evaluation rules appear
in Appendix B���

As usual� type safety follows from subject reduction and
progress lemmas for evaluation� each of which requires a
similar� auxiliary lemma for canonicalization�

Lemma ��� �Subject Reduction�

� If � v � � and v ��c v
� then � v� � � �

� If � e � � and e �� e� then � e� � � �

to be the common erasure of its components�

x�
def
� x �e�i	�

def
� �e�	�i

i�
def
� i ����v	�

def
� v�

��x���e	�
def
� �x�e� �c e	�

def
� e�

�e�e�	
� def

� e��e
�
�

Figure ��� Erasure

Lemma ��� �Progress�

� If � v � � then either v is canonical or v ��c v
��

� If � e � � then either e is a value or e �� e��

Theorem ��� �Type Safety� If � e � � and e ��� e� then
e� is not stuck �that is� either e� is a value or e� �� e��	�

Two additional facts formalize the assertion that coercions
have no run�time e
ect� First� as discussed above� canonical�
ization �i�e�� application of coercions	 never a
ects a value�s
erasure� Second� any canonicalization sequence terminates
in �nitely many steps� this is important since nontermina�
tion is certainly a run�time e
ect� More importantly� with�
out canonicalization the type safety result does not apply to
the erased language� as nontermination of canonicalization
could shield the typed language from an unsafe state that
the erased language was able to reach�

Proposition ��	 �Invariant Erasure� Let �
	� be de�

ned as in Figure ��� Then if v� ��c v� then v�� � v�� �

Theorem ��� �Canonicalization� If � v � � then v
canonicalizes in a 
nite number of steps�

Theorem ��� is proven using a logical relation argument that
is detailed in Appendix D� It is worthwhile to note that
this theorem depends on the typing condition� canonicaliza�
tion can fail for ill�typed values� For example� �unfold �
rec��� unfold �� � fold	 � fold	v loops as it tries to canon�
icalize�


 Conclusion

This work sheds new light on the Mitchell�Pierce interpreta�
tion of subtyping by showing that� in a type theory support�
ing implicit formation and elimination of quanti�ed types�
it is an entirely satisfactory encoding of full F� bounded
quanti�cation� By itself� this is a result of primarily theoret�
ical importance �particularly given the intractable richness
of the necessary type theory	� however� with the calculus of
explicit coercions this result becomes of practical interest to
typed compilation�

By reifying subtyping derivations as explicit coercions�
we not only provide an easily typechecked target language�
but we also achieve this work�s ultimate goal of compiling
away subtyping entirely� Later phases of a typed compiler
need deal only with the coercions� and some typed compilers
�such as the Typed Assembly Language compiler ��
	 sup�
port similar� if not quite so expressive� coercion constructs
already� Moreover� by translating bounded quanti�cation
using intersection types rather than coercion abstractions�
we allow the use of a relatively simple calculus of coercions�

�



A The Source Language

� �S � type

� �S � type
�FV ��� � Dom����

� �S e � �

� �S x � �
��x��� � ��

� �S i � int

� �S �� type �� x��� �S e � ��

� �S �x����e � �� � ��
�x �� Dom����

� �S e� � �� � �� � �S e� � ��
� �S e�e� � ��

� �S e� � �� � �S e� � ��

� �S �e�� e�� � �� � ��

� �S e � �� � ��
� �S e�i � �i

�i � �� ��

�� ��� �S v � � � � �S � type

� �S 	����v � ������ �
�� �� Dom����

� �S e � �������� � �S � � ��

� �S e
� � � ��
����

� �S e � �� � �S �� � ��

� �S e � ��

� �S �� � ��
� �S � type

� �S � � �

� �S �� � �� � �S �� � ��

� �S �� � ��

� �S � � �
������ � ��

� �S � �� � �� � �S �� � � ��

� �S �� � �� � � �� � � ��

� �S �� � � �� � �S �� � � ��

� �S �� � �� � � �� � � ��

� �S � �� � �� �� ��� �� �S �� � � ��

� �S �������� � ���� ����
�
�

� �S � type

� �S � � top

�S � ok

�S � ok

�S � ok � �S � type

�S �� ��� ok
�� �� Dom����

�S � ok � �S � type

�S �� x�� ok
�x �� Dom����

A�� The First Target Language

To obtain the ��rst� target language from the source language

delete the variable subtyping rule
 replace the rules for intro�
duction
 elimination
 and subtyping of quanti�ed types and for
variable context formation by

�� � �T v � �

� �T 	��v � ����
�� �� Dom����

� �T e � ���� � �T � � type

� �T e
� �� � � 
� ����

�� � �T �� � ��

� �T ����� � �����
�� �� Dom����

�T � ok

�T �� � ok
�� �� Dom����

and add the following rules�

� �T �� 	 �� type

� �T �� 	 �� � �i
�i � �� ��

� �T � � �� � �T � � ��

� �T � � �� 	 ��

� �T ���� type � �T � � type

� �T ���� � � 
� ����

� �T � type

� �T � � ����
�� not free in ��

B The Coercion Calculus

B�� Static Semantics

� � � type

� � � type
�FV ��� � Dom����

� � e � �

� � x � �
��x��� � ��

� � i � int

� � �� type �� x��� � e � ��

� � �x����e � �� � ��
�x �� Dom����

� � e� � �� � �� � � e� � ��
� � e�e� � ��

� � e� � �� � � e� � ��

� � �e�� e�� � �� � ��

� � e � �� � ��
� � e�i � �i

�i � �� ��

�� � � v � �

� � 	��v � ����
�� �� Dom����

� � e � �� �� � � c � �� 
 ��

� � c e � ��

��



� � c � �� 
 ��
� � � type

��� � id � � 
 �

��� � c� � �� 
 �� ��� � c� � �� 
 ��

��� � c� � c� � �� 
 ��

��� � c� � � �� 
 �� ��� � c� � �� 
 � ��

��� � c� � c� � ��� � ���
 �� �� � � ���

��� � c� � �� 
 � �� ��� � c� � �� 
 � ��

��� � c� � c� � ��� � ���
 �� �� � � ���

��� ��� � � c � �� 
 ��

��� � ���c � ����� 
�����
�� �� Dom����

��� � c� � � 
 �� ��� � c� � � 
 ��

��� � hc�� c�i � � 
 �� 	 ��

� � �� 	 �� type

��� � �i
�� 	 ��� � �� 	 �� 
 �i
�i � �� ��

� � � type

��� � top
� � � � 
 top

� � ���� type � � � � type

��� � app
���� � � � � ���� 
 � 
� ����

� � � type

��� � gen � � 
����
�� �� FV ����

��� � 	 � �� 
 ��
��	 � �� 
 ��� � ��

�� � � � type �� �� � � � type
��� �� ���� ��� 	 � �
 ��� � c � � 
 � �

��� � rec�	 � �
 ���c� � 
��� 
 
���� �

��� �� �� Dom���� 	 �� Dom����

�� ��� ��� � ��� type �� ��� ��� � ��� type

�� ��� ��� � ��� type �� ��� ��� � ��� type

��� �� � c� � ��� 
 ��� ��� �� � c� � ��� 
 ���

��� � isorec�	� � �� 
 ���� 	� � �� 
 ���� c�� c�� �

����� 
 
������
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�

� �� Dom��	� ��� �� �� Dom��	

�� positive� ��� negative in ���
�� negative� ��� positive in ���
�� negative� ��� positive in ���
�� positive� ��� negative in ���
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��� � 
��� type

��� � fold

��� � � � 

������
 
���

��� � 
��� type

��� � unfold

��� � � 
��� 
 � 

������

� � ok

� � ok

� � ok
� �� � ok

�� �� Dom����

� � ok � � � type

� �� x�� ok
�x �� Dom����

B�� Dynamic Semantics

Evaluation

e �� e�

c e �� c e�

e� �� e��

e�e� �� e��e�

e �� e�

v e �� v e�

v� ��c v��

v�v� �� v��v� ��x���e�v �� e
v�x�

e� �� e��

�e�� e�� �� �e��� e��

e �� e�

�v� e� �� �v� e��

e �� e�

e�i �� e��i

v ��c v�

v�i �� v��i �v�� v���i �� vi
�i � �� ��

Canonicalization

v ��c v�

c v ��c c v�
�c not h
�
i� top or fold�

id v ��c v
�c� � c��v ��c c��c�v�

�c� � c����x���e� ��c �x�� �� c��e
c�x�x��
�where � c� � � �
 ��

�c� � c���v�� v�� ��c �c�v�� c�v��
����c��	��v� ��c 	�� c v

��i
� ���hc�� c�iv� ��c civ
�app
� �� ���	��v� ��c v
����

gen v ��c 	��v �� fresh�
unfold
� ��fold
� ��v� ��c v

rec�	 � �
 ���c��fold

��� �v� ��c

fold

���� ��
��c

���� 
���� �� rec�	 � �
 ���c���� ��� 	�� v�

�where � rec�	 � �
 ���c� � 
��� 
 
���� ��

isorec�	� � �� 
 ���� 	� � �� 
 ���� c�� c��
�fold

������v�
��c

fold

������
�c�

������ 
������ 
������ 
������

isorec�	� � �� 
 ���� 	� � �� 
 ���� c�� c���
isorec�	� � �� 
 ���� 	� � �� 
 ���� c�� c���
��� ���� ��� �

�
�� 	�� 	�� v�

�where � isorec�	� � �� 
 ���� 	� � �� 
 ���� c�� c�� �

����� 
 
������

C The Coercion Translation

� �SC e � � � e�

� �SC x � � � x
��x � �� � ��

� �SC i � int � i

� �S �� type �� x��� �SC e � �� � e�

� �SC �x����e � �� � �� � �x�j��j��e
�
�x �� ��

� �SC e� � �� � �� � e�� � �SC e� � �� � e��

� �SC e�e� � �� � e��e
�
�

� �SC e� � �� � e�� � �SC e� � �� � e��

� �SC �e�� e�� � �� � �� � �e��� e
�
��

��



� �SC e � �� � �� � e�

� �SC e�i � �i � e��i
�i � �� ��

�� ��� �SC v � � � � v� � �S � type

� �SC v � ������ � � 	��v�
�� �� ��

� �SC e � �������� � e� � �SC � � �� � c

� �SC e
� � � ��
���� �
�map
��j��j������ hid� ci� � app j� j�� e

�

�� �� Dom����

� �SC e � �� � e � �SC �� � �� � c

� �SC e � �� � c e

� �SC �� � �� � c

� �S � type

� �SC � � � � id

� �SC �� � �� � c� � �SC �� � �� � c�

� �SC �� � �� � c� � c�

� �SC � � � � ��
������ � ��

� �SC � �� � �� � c� � �SC �� � � �� � c�

� �SC ��� � ��� � �� �� � � ��� � �c� � c��

� �SC �� � � �� � c� � �SC �� � � �� � c�

� �SC �� � �� � � �� � � �� � c� � c�

� �SC � �� � �� � c� �� ��� �� �SC �� � � �� � c�

� �SC �������� � ���� ����
�
� �

����c� �
map
��j��j������ hid� c� � ��i� �
app �� 	 j� ��j��� �

gen

�� �� Dom����

� �S � type

� �SC � � top � top

D Canonicalization Proof

We de�ne a set of closed values S to be canonically closed
when�

� if v 	 S and v ��c v
� then v� 	 S� and

� if v 	 S and v� ��c v and v� has the same type as v
then v� 	 S�

We de�ne an assignment to be a �nite mapping from type
variables to pairs ��� S	� such that � is a closed type� and
S is a canonically closed set of closed values having type
� � If � is an assignment� we write ��v	 to mean the result
of performing the substitution obtained by ignoring the set
components of the assignment�

We next de�ne a logical relation R�
� over values to be

the least relation such that R�
� �v	 holds if � v � ��� 	� v

canonicalizes� and�

� if � is � then v 	 S where ���	 � ��� S	

� if � is �� � �� then R�
�� �	�v	 and R�

�� �	�v	

� if � is ���� � then for any closed type � ���
R�
� �	� ����
��app �

��	v	

� if � is ���� � then R�
� �	���
�unfold v	�

Note that function spaces �and products as well	 are con�
sidered to be base types� which dramatically simpli�es the
construction of the relation� as it eliminates any negative
appearances of the relation being de�ned� This is possible
because there exist no coercions that eliminate functions or
products�

Lemma D�� When R�
� is well�de
ned �that is� when the

FV ��	 � Dom��		� it is canonically closed�

De�ne the relation R�
����� over coercions so that R

�
������c	

i
 R�
�� �v	 implies R

�
���c v	� for all values v� Let ���

 be the

set of assignments whose domain is exactly the domain of
�� Also let �� 

� be the set of mappings 
 from Dom� 	 to
closed coercions such that R�

�����
��		� for all � 	 Dom� 	�

Lemma D�� If �� � c � ����� and � 	 ���

 and 
 	 �� 

�
then R�

������
���c			�

Proof

By induction on derivations� The interesting cases are
those for rec and isorec�

Case �
 Suppose the last rule applied is rec forma�
tion� and let � 	 ���

 and 
 	 �� 

�� Suppose R�

��	� �v	�
We wish to show that R�

���	� ��
���rec�� � �����c			 v	�
We show this by induction on the derivation of R�

��	� �v	�

Let c� � 
���c		� By assumption� v canonicalizes and
has appropriate type� so v ���

c fold v�� Thus rec�� �
�����c�	 v canonicalizes and it certainly has appropriate
type�

It remains to show that R�
� �	���	� ���
�unfold�rec�� �

�� ���c�	 v		� Let S be the set of values v� such that
R�
��	� �v

�	 follows from a smaller derivation than that of
R�
��	� �v	� It is not di�cult to show that S is canonically

closed� Let �� extend � so that ����	 � �������	� S	
and �����	 � �������� �	� R�

���	� �	� Also let 

� extend 
 so

that 
���	 � rec�� � �����c�	� Note that �� 	 ���� �� ��

�

By induction� R�
���	� ��rec�� � � � ���c�	 v�	 for all

v� 	 S� and thus R��

�����rec�� � � � ���c�		� Thus

� 	 ��!� � � � � ��

��� Hence� by the outer induc�

tion hypothesis� R��

��� ��

�����c			� Let c�� � 
�����c		 �

c�������� 	� ������� �	� rec�� � �� ���c�	��� ��� �
�

We may show by induction on � that R��

� �unfold v	
�since R�

� 	��	���
�unfold v	 by a smaller deriva�

tion than R�
��	� �v		� Thus� using the above�

R��

� � �c
���unfold v		� We may then show� by induc�

tion on � � that R�
� �	���	� ����
�c

���unfold v		� Observe
that�

unfold�rec�� � �� ���c�	 v	
���

c unfold�rec�� � �� ���c�	 �fold v�		
��c unfold�fold�c��v�		
��c c��v�

��



and

c���unfold v	 ���
c c���unfold�fold v�		

��c c��v�

Therefore� R�
� �	���	� ����
�unfold�rec�� � �����c�	 v		 by

canonical closure�

Case �
 Suppose the last rule applied is isorec
formation� The reasoning in this case is similar to the
previous one� except that �� and 
� are de�ned so that�

�����	 � ���������	� S	
������	 � ���������	� R

�
���	��	

�����	 � ���������	� �	
������	 � ���������	� R

�
���	��	


����	 � isorec��� � �� � ���� �� � �� � ����

���c�		� 
���c�			


����	 � isorec��� � �� � ���� �� � �� � ����

���c�		� 
���c�			

where S is de�ned analogously to the previous case�

Then R��

�����
�
�
����		 holds by the same sort of induc�

tion as in the previous case� and R��

�����
�
�
����		 holds

vacuously�

Using Lemma D��� we may easily prove Theorem ��� by an
induction on typing derivations�
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