Typed Compilation of Inclusive Subtyping

Karl Crary

Carnegie Mellon University

Abstract

I present a type-preserving translation that eliminates sub-
typing and bounded quantification without introducing any
run-time costs. This translation is based on Mitchell and
Pierce’s encoding of bounded quantification using intersec-
tion types. I show that, previous negative observations
notwithstanding, the encoding is adequate given a suffi-
ciently rich target type theory. The necessary target type
theory is made easily typecheckable by including a collection
of explicit coercion combinators, which are already desired
for eliminating subtyping. However, no form of coercion
abstraction is necessary (even to support bounded quantifi-
cation), leading to a simple target language.

1 Introduction

Type-preserving compilers, those that utilize strongly typed
intermediate languages, offer several compelling advantages
over untyped compilers. A typed compiler can utilize type
information to enable optimizations that would otherwise
be prohibitively difficult or impossible. Internal type check-
ing can be used to help debug a compiler by catching errors
introduced into programs in optimization or transformation
stages. Finally, if preserved through the compiler to its ul-
timate output (or at least to some interchange language),
types can be used to certify that executables are safe, that
is, free of certain fatal errors or malicious behavior [8].

Typed compilation is often particularly profitable for
advanced programming languages, which may be challeng-
ing to implement efficiently or correctly without exploiting
types. However, advanced programming languages with so-
phisticated type systems pose their own challenges to typed
compilation: the typing constructs of a source language
must either be included in the compiler’s typed interme-
diate languages, or be “compiled away” into more primi-
tive constructs. Where possible, it is generally preferable
to reduce sophisticated typing constructs to more primitive
ones, because typed intermediate languages are often fairly
complicated already without the added complexity of source
language features.

In this paper I consider the typed compilation of a
language supporting subtyping and bounded quantifica-
tion [3, 2]. Subtyping is a pervasive language feature, in that
it interacts with most other language features, and therefore
can substantially complicate programming languages that
include it. This is particularly true for low-level typed in-
termediate languages. Therefore, as is often the case, it is

desirable to dismantle subtyping in favor of more primitive
and easy-to-type constructs.

One well-known way to do so is the seminal “Penn in-
terpretation” of Breazu-Tannen, et al. [1]. The Penn in-
terpretation eliminates instances of subsumption by insert-
ing explicit calls to coercion functions, and handles bounded
quantification by rewriting polymorphic functions to take an
additional coercion argument mapping the function’s type
argument to its upper bound. Although Breazu-Tannen, et
al.’s interest was in semantics, their translation can also eas-
ily be viewed as a type-preserving compilation strategy. In-
deed, under one interpretation of subtyping, Breazu-Tannen
et al.’s translation cannot be improved upon in any essential
way.

In a practical setting, subtyping can be interpreted in two
different ways: inclusively, where the members of a subtype
actually belong to the supertype, and coercively, in which
a run-time coercion may be necessary to convert members
of the subtype into members of the supertype. For coercive
subtyping, the costs of the Penn interpretation are unavoid-
able (in general), but for inclusive subtyping, the run-time
application of coercions and run-time passing of coercions to
polymorphic functions represent unnecessary and unaccept-
able costs. In many settings, the avoidability of these costs
makes inclusive subtyping more attractive than coercive.
This has led many language designers to eschew language
features requiring run-time coercions (such as int < float
subtyping) in favor of ones enjoying a purely inclusive inter-
pretation, such as records with prefix subtyping and (often)
objects.

What we desire, then, is a type-preserving transforma-
tion that eliminates inclusive subtyping without introduc-
ing any run-time costs. We may begin with a preliminary
observation about the target language of any such transfor-
mation. If subtyping is eliminated, then subsumption must
be performed explicitly, but if that explicit subsumption is
to be performed without run-time cost, then it cannot be
performed by the ordinary dynamic constructs of the lan-
guage. Thus, our target language must include a collection
of combinators for building static coercions, in the style of
Curien and Ghelli [5], for example.

With such a collection of combinators, and in the ab-
sence of bounded quantification, it is easy to construct a
static coercion to replace each instance of subsumption in
the source language. However, in the presence of bounded
quantification one is once again left with the obvious prob-
lem of producing coercions from quantified types to their
upper bounds. One natural way to solve this problem is to

introduce coercion variables and a way to abstract over them
(statically, so as not to incur run-time cost), and then to
abstract a new coercion variable at each polymorphic func-
tion just as in the Penn interpretation. Such an approach
might be viewed as an inclusive interpretation of the Penn
interpretation. (An approach similar to this was employed
by Curien and Ghelli, although they tied coercion variables
to particular type variables, and abstracted them automat-
ically in polymorphic functions.)

This approach can be made to work, but the necessary
facilities quickly become complicated as one scales the lan-
guage to support additional features such as modules or
higher-order type constructors. In this paper I propose a
simpler approach in which coercion abstractions and vari-
ables will initially not be necessary at all. Although we will
find coercion variables necessary to extend the technique
to recursive types, even then the coercions employed at in-
stances of subsumption will still be closed and no coercion
abstractions will be necessary. The cost of this simplified
target language will be a somewhat more complicated trans-
lation.

The translation is based on an interpretation of sub-
typing using intersection types that was first suggested by
John Mitchell and explored further by Benjamin Pierce [9,
Section 3.5.1]. In the Mitchell-Pierce interpretation, the
bounded quantified type Ya<t. o () is interpreted to mean
Va.o(a A 7). In the former type, any type argument is
required to be a subtype of the given bound ; in its inter-
pretation, any type argument is permitted, but is cut down
to a subtype of the bound wherever it is used.

Pierce observed that this encoding does not entirely
work, because it fails to validate the most general rule for
subtyping of bounded quantified types. However, that fail-
ure turns out to be an artifact of the particular type theory,
Fa [9, 10], that Pierce was using. I show that in a moder-
ately more expressive type theory, the Mitchell-Pierce inter-
pretation in fact becomes a valid encoding.

The Mitchell-Pierce encoding is useful for our purposes
because it allows us to eliminate bounded quantification
fully, without any need for coercion abstractions. Instead,
subsumption coercions can be constructed entirely locally,
even in the case of bounded quantification: the promotion
of a type variable to its upper bound is implemented simply
by the coercion from a A T to 7.

Since we assume an inclusive interpretation of subtyping,
where subsumption has no run-time action, the compilation
process of this paper will make no changes to the type- and
coercion-erasure of the program in question. The action
of compilation is on the types, in reducing the high-level
language feature of subtyping to lower-level static coercions.
The resulting language, though larger (by the introduction
of coercions), is simpler and enjoys entirely deterministic
and syntax-directed type checking.

This paper is organized as follows: I begin by developing
the translation eliminating subtyping in two steps. First, in
Section 2, I present the translation in an Fa-like type the-
ory, making clear exactly what typing rules are necessary to
validate the Mitchell-Pierce encoding. The target language
for this version of the translation will still contain subtyp-
ing and will not enjoy tractable type checking, so it will not
suffice for our ultimate purposes. Then, in Section 3, I refor-
malize the translation with a target language where explicit
coercions replace subtyping and that is easily typechecked.
In Section 4, I extend these results to account for recur-
sive types. Finally, in Section 5, I give a semantics for the

types T = alint|m o Xn|
Va<ti.m2 | top
terms e u= z|i|AzTe]|eer| (er,e2) |

el]e2|Aasrv]|elr]

values v ou= x| e | (vi,v2) | Aaltw
contegsts T' == €|, alrt |, z:7
Figure 1: Source Syntax

Judgement Interpretation

FT ok I is a valid context

' 7 type 7 is a valid type

'kFe:7 e is a valid term of type 7

k7 <7 71 is asubtype of m

Figure 2: Source and (First) Target Judgements

(second) target language that makes precise the notion that
its coercions have no run-time effect. In what follows, fa-
miliarity is assumed with the polymorphic lambda calculus,
subtyping, bounded quantification, and intersection types.

2 The Mitchell-Pierce Interpretation

The source language for the translation is F< [5] augmented
with products and a base type (int), the syntax for which
is given in Figure 1, and the judgement forms for which are
given in Figure 2. The typing and subtyping rules for the
source language are standard; we discuss the most impor-
tant rules below and the full system (for the language’s final
form) is summarized in Appendix A. Note the use of a value
restriction in the syntax of type abstractions; this is to en-
sure that there are no problems in passing to a type-erasure
semantics in Section 5. In what follows, we will write the si-
multaneous capture-avoiding substitution of Fi,..., E, for
X1,...,Xn, in E as E[E;---E, /X1 - X,]. As usual, we
will consider alpha-equivalent expressions to be identical.

The target language of the encoding is similar to the
source, except that bounded quantification is replaced by
simple quantification, and binary intersection types are
added. The target syntax appears in Figure 3; the target’s
judgement forms are the same as for the source (Figure 2).
The typing and subtyping rules for the target language are
standard, except that we will add two somewhat unusual
rules in Section 2.1 and we will have no need for the intersec-
tion type distributivity rules. The full system is summarized
in Appendix A.1.

The idea to the Mitchell-Pierce interpretation is the
bounded quantified type is defined in terms of ordinary
quantification and intersection types:

Va<ti.1s et Va.rz[a /\Tl/a]

The left-hand type includes type abstractions that may be
applied to any subtype of the given bound 7. The encoding
relaxes this, allowing its members to be applied to any type,
but then cuts that type down to a subtype of 71 wherever it
is used.

When the type argument, say 7, is in fact a subtype of
the bound—as will always be the case in target programs

types T = alint|m o m|n X
Va.r | 1 ATz | top
terms e u= z|i|AzTe]|eres| (e1,e2)]

el]e2|Aaw|er]
u= xz|i|AzTe| (vi,v2) | Aaw
e|D,a |, zr

values
contexts

s IS
|

Figure 3: (First) Target Syntax

resulting from well-typed source programs—the types 7 and
7 A 71 will be equivalent, and thus the result types m2[7/a]
and 72[7 A71/a] will also be equivalent. This means that the
application of a type abstraction works as expected. How-
ever, within the body of a type abstraction, a A 71 can be
shown to be a subtype of 7 without making any assump-
tions about «, and thus promotion of type variables to their
upper bounds also works as expected.

We explore this in greater detail by considering three of
the most important typing rules of the source language, the
subtyping rule for type variables and the typing rules for
type abstraction and application, and the images of those
rules under the encoding.

e The subtyping rule for variables states that any type
variables is a subtype of its given upper bound:

TFa<r ((agT) €T)

The invariant of the encoding is that any type variable
is replaced by the intersection of that variable with its
upper bound, so when « has upper bound 7, it is every-
where replaced by a A 7. Thus, the image of this rule’s
conclusion is ' F a A 7 < 7, which certainly holds.*

e The typing rule for type abstractions is as follows:

Ia<rtwv:7 T k7 type
' Aa<rv: Ya<r.r’

(a ¢ Dom(I'))

The image of this rule’s first antecedent is:
T,akvjaAT/a]: T [aAT/a]

We may assume that this judgement holds and con-
clude, by the usual rule for type abstraction formation,
that

' Aa.vjaAT/a]:Ya. ' [a AT/a]

holds, which is the image of the rule’s conclusion.
e The typing rule for type application is as follows:

'rFe:Va<n.me T'kF7<m
L'k e[r] : r2[r/a]

The image of this rule’s first antecedent is:

F'ke:Va.nlaAT/a

LStrictly speaking, the image is I' - a A 7' < 7' where I’ and 7’
are the images of I and 7, but we will omit that level of detail in this
informal discussion.

From this, using the usual rule for type application, we
deduce that:

DEelr]: n[rAn/a]

Certainly 7 A 71 < 7, and, by the second antecedent,
7 < 7 A 71. Using the former subtyping relationship in
positive positions of 72 and the latter in negative ones,
we obtain

P nrAr/al < mlr/a]
and hence we may conclude by subsumption that
Tk e[r]: m[r/q]

holds, which is the image of the rule’s conclusion.

2.1 Quantifier subtyping

The preceding discussion shows that the encoding validates
three of the four rules for bounded quantification, and it is
easy to show that it also validates all the rules not relating
to bounded quantification. However, a complication arises
with the remaining rule, the subtyping rule for bounded
quantified types:

Frn<n DalrkFn<n
I'-Va<rm.m < Va<r.m)

It is not so obvious that the encoding validates this rule.
Consider the judgement:

I' FVa<top.a < Va<int.a

Certainly this judgement holds in the source language, since
int < top. However, the image of this judgement under the
encoding is:

I' FVa.a A top < Va.a Aint

This judgement does not follow from the usual subtyping
rule for (unbounded) quantified types, since a A top <«
a A int. In languages where the usual rule is the only rule
for subtyping quantified types (such as Pierce’s Fx), the en-
coding fails.

One way to save the encoding is to restrict the source
language by replacing the F< subtyping rule with the “Ker-
nel Fun” rule, which requires the bounds 71 and 7{ to be
identical. With such a restriction in the source language,
the problem does not arise.

However, there is no need to do this. We can also make
the encoding work by strengthening the target language.
We will strengthen the target language by adding subtyping
rules that allow the implicit elimination and formation of
quantified types:

'+ Va.r type T'F 7' type
' FVa.r < 7' /a]

I' -7 type
I'k7r <Va.r

The former rule allows quantified types to be instantiated
implicitly using subtyping, rather than explicitly using the
elimination construct for quantified types (e[r]). The latter
rule similarly allows implicit formation of quantified types.

(o not free in 1)

Note that although the former rule makes the usual elimi-
nation construct redundant, the latter rule cannot replace
the formation construct Aa.e, because it does not provide
any binding of « to be used in the body e. A stronger typ-
ing rule, as opposed to subtyping, can make the formation
construct unnecessary, but for our purposes we will have no
need for it.

These rules are semantically well-justified in a type-
erasure setting, in which type abstraction and type appli-
cation have no semantic effect. However, they make type-
checking problematic, so they are rarely used in practical
programming languages. Nevertheless, this language serves
well to illustrate the Mitchell-Pierce interpretation. More-
over, with the elimination of subtyping in favor of explicit
coercions in Section 3, our target language will be easily
typechecked.

With the addition of these two rules, the encoding now
validates the subtyping rule for quantified types. Recalling
the example above:

Vo'.Ya.a A top
Va!'. (@' A int) A top
Va. (a A int) A top
Va.a A int

Va.a A top

INTINIA

The first line follows by implicit formation, the second by
implicit elimination (beneath the outermost quantifier) us-
ing o’ A int, the third by alpha conversion, and the last by
the lower bound property of intersection types.

More generally, suppose the images of the antecedents of
the subtyping rule hold, that is I' - 7{ < 71 and

Tyak mlaAr/a] < mlaATi/al

First, observe that (¢ A7{) A7 < aA7{ and vice versa (for
any type variable a)). The shown direction follows from the
lower bound property of intersection types, and the converse
follows from the greatest lower bound property, since 77 < 7
is given by the first antecedent. It follows from this that

T,abk ml(aAm) ATi/a] < mlaAT/a)

using the shown direction in positive positions of 7 and its
converse in negative positions.

Now we may show that the rule’s image holds, in an
analogous manner to the example:

Va. m2[a A 11/a] Vo' Va. mla A 11 /a]
Vo' . mo[(a' A1) A Ti/a]
Va. m2[(a A1) ATi/al
Va.mla A 11/al

Va. myfa A 11 /a]

INIA TTINIA

The first line follows by implicit formation, the second by
implicit elimination using o’ A 7{, the third by alpha con-
version, the fourth by the fact shown above, and the last by
the second antecedent’s image.

2.2 Formalization

The encoding is formalized as a syntax-directed type trans-
lation |7|r, term translation |e|r, and context translation
|T'|. We begin with the type translation (shown in Figure 4),
which we define in two parts. The first part is a parametric
translation | - |, which does not modify type variables. The
key clause is the one for quantified types, which states:

Va<ri.m| = Va.n|aA|n|/a]

la] = «
lint| € int
ol g
|71 X 72| :=: 71| X |72
Va<ri.m| = Va.r|laA]|n|/a]
|top| < top
Sub(e;7) 1
Sub((T,a<r');7) = Sub(D;r[aAlr'|/a])
Sub((T,z:7');7) = Sub(T;7)
Irle = Sub(Ts 7))

Figure 4: Type Translation

def

|z|r T
lilp =
Az:relr = Azir|p.elr
lerea|r :=: (lex]r)(Je2|r)
.
l(er,e2)[r = (ler|r, [ez2|r)

el < (lelr).i
[Aa<telr = Aa.le|ra<n

le[rlle = (lelo)[I7lr]

Figure 5: (First) Term Translation

The parametric type translation accounts for the upper
bounds of all bound variables, but does not account for the
upper bounds of free variables. Those are obtained by ref-
erence to the context. Thus, the second part is a context
sensitive translation |- |r, which modifies type variables ap-
propriately:

Sub(e;7) = 7
Sub((T,at);7) = Sub(Tir[aA|r|/a])
Sub((T,z:r');7) = Sub(T;7)
Irle = Sub(T;|r))

The term translation (Figure 5) and context translation
(Figure 6) simply apply the appropriate translation to their
component types and delete upper bounds from variables.

With this formalization, we can state the following static
correctness theorem, which summarizes the informal dis-
cussion above. We distinguish between judgements in the
source and target languages by marking the turnstiles -5 or
Fr, respectively.

Theorem 2.1
1. IfT'ks 7 type and Fs T ok then |T'| Fr |T|r type.
2. IfTts i <1 and bs T ok then |T| Fr |mi|r < |m2r.
3. IfT'kse:7 and ks T ok then |T| Fr |e|r : |7|r.

et Judgement Interpretation
e d:ef ¢ FT ok I' is a valid context
T, a<r| = T, I'F 1 type T is a valid type
IT,z:r] = |T|,x:|7|r F'ke:r e is a valid term of type T

I'Fe:m71 =7 c¢is a valid coercion from 7 to T

Figure 6: Context Translation

Figure 8: Coercion Calculus Judgements

types T = alint|m o m|n X
Va.r | 71 A T2 | top note that the term construct for type application is omitted;
terms e == z|i|AriTe]|eies | (e1,e2)] that construct is replaced by the app coercion.
ei|Aaw|ce The coercion constructs are interpreted as follows:
coercions ¢ = id|cioca2|c1 —>ealer Xea |

Va.c | (c1,e2) | mi[ri A 12] |
top[r] | app[Va.7] ' | gen
conterts e|Dya |, z:7
values v o= z|i| AmTe] (vi,v2) | Aaw | cv

=
I

Figure 7: Coercion Calculus Syntax

Although I do not formalize an operational semantics for
the source or target language here, it is easy to see that
the encoding is dynamically correct in any semantics that
respects type erasure, since any source term’s erasure is
identical to its translation’s erasure. This observation also
neatly addresses the issue of the translation’s coherence: any
two translations of a term must be equivalent, since each is
equivalent to the source term.

3 The Coercion Interpretation

Our end goal is to eliminate subtyping entirely, not just
to eliminate bounded quantification in favor of intersection
types. To that end, we define a coercion-based calculus to
serve as a target language, and a translation from the orig-
inal source language to the new coercion language. In the
coercion calculus, “subtyping” relationships will be repre-
sented by explicit coercions, which will make typechecking
easy.

The syntax of the coercion calculus is given in Figure 7.
Aside from the new syntactic class of coercions, the syntax
is similar to the target language from Section 2. To aid in
typechecking, several coercion constructs (m, top, and app)
include type annotations indicating their domains; in dis-
cussion we will omit these annotations when they are clear
from context.

The judgements of the coercion calculus are given in
Figure 8. The judgements for type formation and typ-
ing of terms are standard. The final judgement, for typ-
ing coercions, is the analog of the subtyping judgement;
I' F ¢ : 71 = 7 indicates that ¢ is a coercion from 71 to
7o. In this case, the coercion ¢ may be thought of as a wit-
ness that 71 is a subtype of 2. When judgements in the
coercion calculus must be distinguished from judgements in
the source language, we will do so by marking the turnstile
l_c.

Most of the terms of the coercion calculus have their
usual meanings. The new term construct, ce, indicates the
application of a coercion to a term; this may be thought
of as syntactically indicating the use of subsumption. Also

e The coercions id and ¢; o ¢z denote identity and com-

position. They may be thought of as witnesses to the
reflexivity and transitivity subtyping rules.

The coercions ¢1 — ¢2, ¢1 X c2, and Va.c lift coercions
over the basic type operators. For example, ¢i — c2
modifies a function by applying c: to its argument and
co to its result. These constructs are witnesses to the
subtyping rules for compatibility with the basic type
operators.

The coercion (ci,c2) is the introduction construct for
intersection types, and intuitively works by applying
each of the two given coercions and collecting the re-
sults. It has the typing rule:

're:r=n e :7=>n
F|—<(217(22>:T:>T1/\T2

This coercion is the witness to the greatest lower bound
rule for intersection types.

The coercion m; is the elimination construct for inter-
section types, and works by selecting one of the two
results from an intersection introduction. It has the
typing rule:

' 7 AT type
FFmnAnl:niAn =1

(i=1,2)

This is the witness to the lower bound rule for inter-
section types.

Note that using the last two coercions we can define a
compatibility coercion for intersection types:

def
citNca = (Cl O 1, C2 071'2)

The coercion top is the introduction construct for the
type of the same name and witnesses the subtyping top
rule.

The application coercion app 7 is the elimination con-
struct for quantified types. It witnesses the implicit
elimination rule from Section 2.1 and has the typing
rule:

I'FVYoa.r type T'F 7' type

I'F app[Va.7| 7' : Va.r = 71" /q]

Note that the usual elimination form for quantified
types can be built from this coercion:

def

e[r] = (app7)e

e The generalization coercion gen introduces a member
of a quantified type by wrapping a type abstraction
(i.e., Aa.—) around its argument. It witnesses the im-
plicit introduction rule from Section 2.1 and has the
typing rule:

'k 7 type
I'-gen: 7= Vo.r

(a not free in 7)

The typing rules for coercions and the rest of the coercion
calculus are summarized in Appendix B.1. Typechecking for
this language is easy, due to a unique typing property for
coercions:

Proposition 3.1 Suppose T', ¢, and 7 are given. Then
there exists at most one 7' such that T+ c: 7=1" and, con-
versely, there erists at most one 7' such that T kc: 7 = 7.

Providing this property is the purpose of the domain anno-
tations on the 7, top, and app coercions. Without them,
top — id does not have a unique codomain, for example.

3.1 The Coercion Translation

With a target language in place, we can now define the
translation eliminating subtyping. The type and context
translations are identical to those used in the first transla-
tion (Figures 4 and 6). The term translation is different,
of course, since it must now provide coercion expressions.
Furthermore, since the necessary coercion expressions are
determined by typing and subtyping derivations (not by the
syntax of the terms themselves), the translation is given as
a type-directed translation.

The type-directed translation is given as a term trans-
lation and a subtyping translation. The term translation is
given by a judgement I o e : 7 =3 €', meaning that e has
type 7 (in the source) and €’ is its translation. The subtyp-
ing translation is given by a judgement I' 5o 71 < 70 =2 ¢,
meaning that the coercion ¢ witnesses that (in the source) 7
is a subtype of 7. As usual, rules in the term translation are
in one-to-one correspondence with source typing rules, and
rules in the subtyping translation with the source subtyping
rules.

The interesting rules are the ones that deal with quanti-
fied types. We proceed by looking carefully at these rules;
the complete rules to the translation appear in Appendix C.

e The translation rule for variables is:

_— < r
'Fa<rt = m ((asr)€l)

The correctness criterion for subtyping translations is
that if
FFsem<m 3 c

(and I' is well-formed) then
IT| ke c:|mi|r = ||

This rule establishes that criterion since |a|r = aA|7|p
and 72 takes a A |7|r to |T|r.

e The translation rule for type abstractions is simply:

I'ks 7 type
Ia<rblscv:7 =

['Fse Aa<ro:Va<r.t =2 Aad’

(a ¢ Dom(T))

maplval(cs,c) £ e
map[ev.f](c+,c-) = id (for a # B)
. def .
map[e.int](c4,c-) = id
def
map[a. 11 = 12](cy,c—) = map[a.Ti](c—,cq) —
map[a.72](c4,c—)
def
map[a. 71 X 12](c4,c—) = map[a.Ti](cy,c—) X
map[a.72](c4,c—)
maplor. (V) (erre) S VA.maplacr](cs,c)
(where 3 is fresh)
maplo. 71 A To](cq,c—) = mapla.mi](ci,c—) A
map[a.72](c4,c—)
map[a.top](ce,c) = id

Figure 9: Definition of map

The correctness criterion for term translations is the
usual, that if T Fso e : 7 = € (and T is well-formed)
then |I'| ¢ €' : |7|r. This rule preserves that criterion
since Aa.v’ has type

Vo |r' | a<ry = V. Sub(T; |7 |[aAlr|/a])
= Sub(T;Va.|r'|[aAlT|/a])
= |[Va<r.7'|r
The second line follows since « is not in the domain of
I', the other two are direct from the definitions.

The translation rule for type application is

Fksce:Va<m.me 3 e Ther<mn =c

Ihgc elr]: rlr/a] =
(map[av.| 72 [r] (71, (id, c)) o app |7|r) €’
(a ¢ Dom(I))

where map[a.7](c4+, c—) applies ¢4 at all positive occur-
rences of a in 7 and c_ at all negative occurrences. Its
definition is given in Figure 9 and its typing behavior
is specified by the following lemma:

Lemma 3.2 IfT'a bk 7 type and T F ¢y : 11 = 7
and ' - c- : 7 =1 and - T,a ok then T F
map[a.7|(c4,c—) : T[ri/a] = T[r2/a].

Since 7 takes |7|r A |7i|r to |7|r, and (id,c) goes the
opposite direction, using Lemma 3.2, we may deduce
that the map expression above takes |72 |r[|7|rA|71|r/q]
to [72|r(|7|r/al.

When composed with app |7|r, the resulting coer-
cion takes |Va<m.m|r = Va.|r|r[a A |7i|r/a] to
|72|p[|7|r/@]. Using an easy-to-show substitution
lemma, the latter is equal to |72[7/a]|r, as required.

Finally, the translation rule for subtyping of quantified
types is:
Thse i< = e Naribee <1 3 e
I bFse Va<n.mo < Va<lr .7y =
Va.(c2 0
map|a.|m2|r](71, (id,c1 o m2)) ©
app (a A|ri|r)) o

gen

(a ¢ Dom(T'))

Let us examine this coercion starting at the middle. Let
a be a type variable. Then m; takes (aA|7{|r)AlT1|r to
aA|r|r; and (id, ¢1 om2) goes the other direction, since
c1 0w takes aA|7{|r to |71|r. Thus the map expression
takes |T2|[‘[(a A |T{|[‘) A |T1|[‘/a] to |T2|[‘[a A |T{|[‘/a].
When composed on each end with ¢ and app(aA|7i]|r),
the result takes Vo'.|r2|r[a’ A |ri|r/a] to |ms|rla A
|71|r/a]. Thus, discharging the variable a, the en-
tire V expression takes Va.Va'.|r2|r[a’ A |ri|r/a] to
|Va<7{.75|r. When composed with gen (and employ-
ing a change of variables), the result takes |Va<ri.72|r
to |Ya<.m3|r, as required.

The static correctness of this translation is formalized by
the following theorem, which summarizes the informal dis-
cussion above:

Theorem 3.3
1. If T'ts 7 type and Fs T ok then |T'| Fr |T|r type.

2.IfTFse 1 <72 = ¢ and Fs ' ok then || k¢ ¢ :
|T1|F:>|T2|F.

8. IfTksce:7 =3 ¢ and ks T ok then |T| Fr e @ |7|r.

As before, the translation can easily be seen to be dynami-
cally correct in any semantics respecting type erasure, since
any source term’s erasure is identical to its translation’s era-
sure.

4 Recursive Types

The translation above accounts for a basic source lan-
guage supporting functions, products, and bounded poly-
morphism. A natural question then is whether the approach
scales to larger, more expressive type systems. In fact, the
translation above generalizes easily to account for source-
level intersection and sum types, and dualizes nicely for
bounded existential and union types (with appropriate en-
hancements to the target language). These extensions are
omitted here because they add little to the present discus-
sion. The approach also generalizes to support recursive
types, but that extension is a bit more involved and merits
some discussion.

Accounting for recursive types requires support for two
subtyping principles. First, we must support the usual rule
for subtyping recursive types:

I a<top ks 7 type
I',a'<top ks 7' type
I,a'<top,a<a’ Fs 7 < 7’

a,a’ € Dom(T
ks pat < pa.1’ (0" ¢)

Second, we must be able to map a type isomorphism through
any type expression (where we think of 71 and 7 as iso-
morphic when 71 < 72 and 72 < 71). This requirement
arose both in type application and in subtyping of quanti-
fied types. Previously this was possible using only the usual
subtyping rules, but this is not the case in the presence of
recursive types.

The problem is that in the subtyping rule for recursive
types above, the premise o« < o’ is useful only in positive
positions; in negative positions the premise is oriented the
wrong way. Consequently, we can map an isomorphism only

e | po.T
S | X | ,
rec(xy:a=a'.c) |
isorec(x+ : a1 = ab,
X— a2 = al.
C+,C_) |
fold[uc.7] | unfold[pa.7]

types T
coercions ¢

coercion

conterts @ = €| P, x:T1=>T

Figure 11: Extensions for Recursive Types

through recursive types in which the recursive variables ap-
pears only positively. Nevertheless, we should have both
orientations available since we are dealing with isomorphism
and not merely subtyping.

The needed subtyping rule provides the usual premise for
positive positions, but also provides the opposite premise
for negative positions. To justify these premises the rule
must ensure that the two types are in fact isomorphic, by
requiring subtyping in each direction, as shown in the rule
in Figure 10.

In the usual use of this rule, the appearances of «a; in
71 are divided up into positive and negative appearances,
with the negative ones marked o} in 7;" and the positive
ones in 7; . This ensures that the recursive relationship
is available in positive positions when showing left-to-right
subtyping (as in the simple rule), and is available in negative
positions when showing right-to-left subtyping, as required.
Appearances of az in 72 are similarly divided.

The necessary extensions to the syntax of the coercion
calculus, principally new coercion forms, are given in Fig-
ure 11. Two new coercions (fold and unfold) are used to in-
troduce and eliminate recursive types. The syntax for these
coercions give their codomain and domain types, respec-
tively, in order to preserve unique typing (Proposition 3.1).

More interesting are the coercions witnessing the sub-
typing and isomorphism rules for recursive types. The sub-
typing coercion, rec(x : a = o .c), applies ¢ to the body of
a member of a recursive type, where ¢ may call itself recur-
sively through the coercion variable x. The typing rule for
rec is:

I'alk 7 type o' F 7' type
(T,a,a); (@, x :a=a)Fc:T=1

[Frec(xy:a=d.c): pa.t = pa .7
(a, 0/ ¢ Dom(T'), x ¢ Dom(®))

Thus ¢ uses x to coerce subcomponents from type a to .
Note that the introduction of coercion variables mandates
the use of coercion contexts (®). However, it also is impor-
tant to note that coercion contexts are necessary only for
typing coercions; no coercion variable need ever appear free
in a term.

The isomorphism coercion, isorec(x+ : a1 = ab,x— :
as = al.cq,c), applies ¢4 to the body of a member of
a recursive type, but simultaneously defines a reverse coer-
cion c—, and makes both coercions recursively available to
each other under the names y+ and x— (respectively). The
resulting typing rule is given in Figure 12.

As in the rule it witnesses, the isorec rule divides up
the appearances of the recursive variables in the two types.

I', a1 <top, oy <top Fs 7" type
I', a2<top, ah<top Fs 7, type

T, a1<top,a)<top ks 7, type
T, as<top,a5<top Fs 7, type

T, o) <top, ay<top, i <ah, az<al Fs 17 < 75f

F7 a’lgtop7 aggtopaalsaéy a?Sall l_S T{ S Tf

a1, al,as,ab € Dom(T)

I |—5 M. T1 S HO2.T2

L = Tfr[al/a'ﬂ =1 [ou/al]
T =75 [an/ab] = 75 [oa /o]

Figure 10: Recursive Type Isomorphism Rule

T,a1,a) F 77 type
T,az,ab - T; type

T,ai,a] b type
T as,a5 - 75 type
I';® Fecy IT1+:>T2+ I':® Fc_ 1Ty =T

I =T,a1,a], a2, a,

' =&, x4 a1 = ah,x— a2 =]
ai,a,az, ay € Dom(T), x4+, xX— & Dom(®)
a1 positive, o} negative in 7]

T;® F isorec(x+ : a1 = b, X— : Q2 = Q.Cy,C) @ pa1.T1 = Q2. T2

a2 negative, a’ positive in 75"
a1 negative, o) positive in 7,
az positive, as, negative in 75
n =7t lar/a)] = 7 [/
T2 = 75 [as/ab] = 75 [@z/ab)

Figure 12: Isomorphism Coercion Rule

In this version of the rule, the division into positive and
negative is required to be the usual one. The requirement
is imposed so that typechecking of coercions remains syntax
directed (otherwise 7;", 7, etc. are not determined by 7
and 72), ensuring easy typechecking. It is not required for
type safety, so it could be relaxed, but doing so would be
unlikely to provide any useful expressive power.

Fold and unfold operations in the source language are
translated using fold and unfold coercions in the obvious
manner. Subtyping of recursive types is translated by the
rule:

', a<top s T type
T, a'<top ks 7’ type
I o' <top,a<a’ ke 7< 7 = ¢

[hse pat < pad. v’ =
rec(x : @ = o .map[a/.7|(71, (id, top)) oco
mapl.7)((id, (x, top)), 1))
This rule is made somewhat messy by the interpretation of
o' as o' A top; in practice, a compiler would optimize the
case when an upper bound is top. The coercion’s body first
coerces T to T[a A (o’ A top)/a], thereby setting it up for
¢, after which it coerces the resulting 7'’ A top/a’] back
down to 7'.

Finally we can define the necessary final clause of map
using the isomorphism coercion by:?

mapla. (u3.7)](c, c-)

def

isorec(x : fi = B, x— : B2 = 1.
map[B.7](x+, X) © map[a.7](cy, c-),
map[a.7](c—, c4) o map[B.7] (X -, x+))

(Where ﬂl;ﬂi;ﬂ%ﬂé;Xh X - are fresh)

2With this clause, some strengthening of the induction hypothesis
in necessary to show Lemma 3.2, since x4+ and x_ do not operate on
the same types.

5 Dynamic Semantics of the Coercion Calculus

It remains to put this compilation strategy on a solid footing
by establishing an operational semantics for the coercion
calculus. We desire two properties of the semantics: we
want the usual type safety property, of course, but we also
want to make explicit the inclusive nature of subtyping, that
is, that coercions have no run-time effect.

We take the view that the run-time substance of a term
is reflected in the term’s erasure, the portion of the term
remaining after all types, type abstractions and coercions
are erased. Types, type abstractions and coercions will be
viewed as having purely static importance.®

This view immediately advises the design of the opera-
tional semantics. Consider evaluation of the term (c1, c2)v.
A naive approach would be to include a term form for in-
tersection types (written, say, (e, e2)), and to define the se-
mantics so that (c1,c2)v evaluates to {civ,cov). With such
an approach, intersection types become little different than
products, suggesting there is likely a problem. The erasure
view immediately exposes this problem: with this evalua-
tion rule a coercion can change the erasure of a term, in this
case by introducing a new pair. Thus, this interpretation
violates the spirit of the enterprise. A similar issue can be
seen to arise with the top coercion; if top v evaluates to, say,
(), then again the erasure changes.

Instead, the semantics rules that {(c1, c2)v is a value form,
and any further “computation” with the coercions ¢; or ¢
is suspended until a projection coercion is applied. When
projection occurs, m;({c1,c2)v) evaluates to ¢;v, and at no
point does the erasure change. The value form {c1,c2)v is
most Eroﬁtably read as a single value with two different
views.

3This view can be reconciled with languages in which types can be
run-time objects by explicitly reflecting types into the term structure
as in Crary, et al. [4].

“Dimock et al. [6] employ a similar idea: They include an inter-
section pair construct, and solve the above problem by requiring the
erasure of e; and ex to be identical for (e1,e2) to be syntactically
well-formed. They can then define the erasure of an intersection pair

canonical
values V. u= i|dxire| (v1,v2) | A |
(c1,c2)v | top[r] v | fold[ua.T]v

idv —. v
(cioc)v = ci(cav)
(c1 =) Amite) —e Az’ ca(e[cim/x))
(where ¢y : 7/ = 1)
(e1 X e2)(v1,v2) e (c1v1,c202)
(Va.o)(Aa.w) +—c Aa.cv
(mi[tD(er, e2)v) e civ
(app[r’] T)(Aaw) ¢ wv[r/a]
genv —. Aa.w (afresh)
unfold[r](fold[r'|v) ¢ v

v v

- (¢ not (—,—), top or fold)
c

(Rules for rec and isorec appear in Appendix B.2.)

Figure 13: Canonicalization

The semantics similarly defines topv and foldwv to be
value forms, and given this it proves to be convenient to
say that cv is a value for any coercion c¢. One pleasant
consequence of this is that a term is a value exactly when
its erasure is a value.

Another consequence of this design is that values do
not enjoy useful canonical forms. For example, a func-
tional value may have the form Az:7.e, as one would pre-
fer, but it may also have the form m({id,c)(Az:7.€)) or
(c1 = c2)(Ax:Te), for example. Therefore, the operational
semantics utilizes two relations, the usual small-step eval-
uation relation (written e — ¢e'), and an auxiliary, canon-
icalization relation (written v . v') that converts values
to canonical form. The canonicalization relation is purely
a technical device; it represents no run-time action whatso-
ever, as formalized in Proposition 5.4 and Theorem 5.5.

For example, the rules for evaluating applications are as
follows:

!
er = e e e

1}6'—)1}6,

’
e1e2 — e1e2

’
V1 e U1

vive = vive (Azm:T.e)v = e[v/T]

The first, second, and fourth rules are standard. The third
uses the canonicalization relation to place the function into
canonical form so that the fourth rule can apply.

The canonical value forms and canonicalization rules are
given in Figure 13. The remaining evaluation rules appear
in Appendix B.2.

As usual, type safety follows from subject reduction and
progress lemmas for evaluation, each of which requires a
similar, auxiliary lemma for canonicalization:

Lemma 5.1 (Subject Reduction)
e IfFv:Tandv—cv then kv : 7.

o Ifre:Tanderr e thente' :7.

to be the common erasure of its components.

©° ¥ oz (e.i)° = (e°).i
A (Aa.w)® EC L
o def o o def o
(Az:Te)® = Aze (ce)® =
(e1e2)° et ejes

Figure 14: Erasure

Lemma 5.2 (Progress)
e If- v : T then either v is canonical or v —. v'.

e IfFe: T then either e is a value or e — €',

Theorem 5.3 (Type Safety) Ifte: 7 and e —* ¢’ then
e’ is not stuck (that is, either €' is a value or e’ — e").

Two additional facts formalize the assertion that coercions
have no run-time effect: First, as discussed above, canonical-
ization (i.e., application of coercions) never affects a value’s
erasure. Second, any canonicalization sequence terminates
in finitely many steps; this is important since nontermina-
tion is certainly a run-time effect. More importantly, with-
out canonicalization the type safety result does not apply to
the erased language, as nontermination of canonicalization
could shield the typed language from an unsafe state that
the erased language was able to reach.

Proposition 5.4 (Invariant Erasure) Let (—)° be de-
fined as in Figure 14. Then if vi —¢ v2 then vy = vs.
Theorem 5.5 (Canonicalization) If F v T then v
canonicalizes in a finite number of steps.

Theorem 5.5 is proven using a logical relation argument that
is detailed in Appendix D. It is worthwhile to note that
this theorem depends on the typing condition; canonicaliza-
tion can fail for ill-typed values. For example, (unfold o
rec(y.unfold o x o fold) o fold)w loops as it tries to canon-
icalize.

6 Conclusion

This work sheds new light on the Mitchell-Pierce interpreta-
tion of subtyping by showing that, in a type theory support-
ing implicit formation and elimination of quantified types,
it is an entirely satisfactory encoding of full F< bounded
quantification. By itself, this is a result of primarily theoret-
ical importance (particularly given the intractable richness
of the necessary type theory); however, with the calculus of
explicit coercions this result becomes of practical interest to
typed compilation.

By reifying subtyping derivations as explicit coercions,
we not only provide an easily typechecked target language,
but we also achieve this work’s ultimate goal of compiling
away subtyping entirely. Later phases of a typed compiler
need deal only with the coercions, and some typed compilers
(such as the Typed Assembly Language compiler [7]) sup-
port similar, if not quite so expressive, coercion constructs
already. Moreover, by translating bounded quantification
using intersection types rather than coercion abstractions,
we allow the use of a relatively simple calculus of coercions.

A The Source Language A.1 The First Target Language

T'ks 7 type

To obtain the (first) target language from the source language,
delete the variable subtyping rule, replace the rules for intro-
duction, elimination, and subtyping of quantified types and for

TFs 7 type TV (7)€ Dom(I))

m ((z:7) € T)

T'Fsi:int

I'ks 1 type I,z Fse:m

D r
ks Azimie:m1 — 72 (@ ¢ Dom(I"))

IF'kFsei:mm—>m Tlksex:m
T'ks ejes:m

TkFser:m1 Thksex:m

It (e1,e2): 71 X T2

F'kFse:m X712 .
_ =1,2
Thsei:T; (¢ 2)
Ia<rtrswv:7 T ks 7 type
I'ts Aa<t. : Va<r.7’

(a & Dom(I"))

I'tse:Va<ri.my I'Fs7< 7
ks elr]: m[1/a]

F'Fse:mm Thsgm <7

I'kFse:m
I'ks 7 type
ks <71

s <12 TI'kFsm<T3
I'tsm <73

Trsa<r ((a<m) €T)

Fksr <71 Thksm <7

Fksm—me <71 <7}

ks <7 Trksm <7

Pks T x7T2 <7 XT)

kst <71 T,a<r]Fsm2 <7

I'ks Ya<r.m < Va<7].7)

I's 7 type
ks 7 <top
'*5601(

FsT ok TI'Fgs 7T type

Fs T, a<r ok (¢ Dom(I))

Fs ok I'kgs 7 type

Fs I',z:7 ok (@ & Dom(I))

variable context formation by

Takrov:T
- D r
'ty Aaw : Va.r (o & Dom(T")
Ftre:Var Tk 7 type

T kg elr]:7[7"/a]

Nabrm <7
I'tFr Vo <Va.m

(a € Dom(I'))

Fr T ok

FrToook (a € Dom(T"))

and add the following rules:

T'F7 71 A T2 type
T Tl 2 Lyp (i:l,?)

FkrmiAm <7

'trr7<7m T'tr7<m
Fkr7<7m1 AT

'tz Va.r type T'bFz 7' type
I'br Va7 < 7[1'/a]

T'F7r 7 type

TFr 7 <Var (e not free in 1)

B The Coercion Calculus

B.1 Static Semantics

T'F 7 type

Frrime (FV() € Dom(1)

- . r [
F'_I:T((:L‘T)G) I'F2:int

'k7 type Tyax:miFe:m

'EArimie: 7 — 7o

I'teir:mm—717 TI'Fey:m

I'keles:m

Tker:mm Threx:m

Ik (e1,e2) : 71 X T2

I'te:m1 X1 .
— (i =1,2
F'kei:n; @ 2)
HakFov:T
' Aaw : Ya.r (@ & Dom(I")
IF'kFe:mn [ebFc:Ti=>m
I'kce:m

10

(z ¢ Dom(I))

B.2 Dynamic Semantics

k7 type Evaluation
ekid:7=71

erse er e} erse
ke :mm=>13 I;®Fex:imi =7 cer ce 8162}—>8’162 ver ve
Ii5®Fcroca:mi =73
idkci:m=>mn Ii®Fer:m=1) v —e V)
[0 Fcp —ep: (11— 72) = (1] = 75) v1v2 > VU2 (Az:T.e)v — elv/x]
. . ! . . !
iédrecr:m=r @b :in=m 61’—>8'1 s of
. . ! !
F,CI)F01><CQ.(7'1><7'2):>(T1 ><T2) (81,62)»—>(e’1,62) (v,e) —~ (v, e')
Tya);®@kFc:m1 =7
a & Dom(I" ’ ’
I;® - Va.c: Va.r, = Va.m (o ¢) e e Ve i=1,2)
e.q— e v.i— v (v1,v2).5— v;
idbkcri7r=m Ok :7T=>m
;@ (c1,ca) : 7= 71 ATo Canonicalization
v e v

I'F 71 AT2 type (e not (—,—), top or fold)

;o FmnAn]:miAn=>"7

(1=1,2) cv —ecv'

idv ¢ v
'k 7 type (croca)v e c1(c2v)
I';® + top[7r] : 7 = top (c1 > e2)(AziTee) ¢ Azt .co(e[ciz/x])
(where F ey : 7/ = 7)

[k Va7 type T'F 7 type (e1 (>< c2))(EJ1,v2; e (c1vi,cav2)
- T 7 Va.c)(Aa.v) —¢ Aa.cv
;@ F app[Va.7] 7 : Vo = 7[7' /] ((m [7[_]2](C)l(, 62)11; e ci[v/ |
app[7'] T)(Aa.v) = [T/
[F7 type (a g FV (7)) genv —. Aa.w («fresh)
i@ Fgen: 7= Vo unfold[7](fold[r'lv) ¢ v
— ((x 1 =>m)ed
i@ x:71 =7 («)) rec(x : a = &' .c)(fold[pa.T]v) ¢
L fold[ua'.7']
Iyak 7 type o' =77 type ((clpa.t, pa’ .7 rec(x : a = ' .c)/a, d’ , x]) v)
! ! !
Lo, a); (@, xta=a)FeiT=7 (where F rec(x : a=ad.c) : pa.T = pa’.7")

I8 Frec(x :a=a'.c): pat = pa .7’

!
(@, a” & Dom(T), x ¢ Dom(&)) isorec(x+ : a1 = ah,x— 1 a2 = aj.cy,c)

- (fold[pai.m1]v)

F,al,a:l F le: type F,al,ajl = T type e

Loz, - Tz+ type+ [,az,ay 7y type fold[pas.72]
o' bFep:r =7 IM®bFe i1y =7 (e lpar .1, por .71, pan T2, pea. T2,
isorec(x4 : a1 = ah,X— a2 = af.cq,c_),
isore;c(x_ : a2 =al,x+ a1 =>ab.co,cq)/
I' =T,a1,0},az,) a1, 0, a2, 05, X4, X-]v) ,
B = ®,xg 01 = oy a2 = al (where F isorec(x4 :a1 = abh,x— a2 =>a)j.cy,c):
a1, al, a2, ay € Dom(T), x4+, x— & Dom(®) BOL.T1 = [102.T2)
aj positive, o} negative in 7]

: s . .
a2 negative, as positive in 7, C The Coercion Translation

a1 negative, o positive in 7,
L. ' Lot
o EOS_I:IVQ, a? nfgaﬁwe in ‘11—2 Thece:T = e
1 =7, [a1/a)] =1 [a1/a]]
— .t R]
T2 = Ty [an/as] = Ty [az/as)] - ((1. . 7_) c F)
Thrscx:7 = o

;@ F isorec(x4 a1 = ab, x— tae = af.cqy,c):
oy Ty = o . T2

I'® F pa.m type
[;® - fold[ua.7] : T[pa.7/a] = pa.7

I'tsci:int = 2
I'® F pa.m type

;@ - unfoldpa.7| : pa.T = T[pa.7/a] Phs7type Tyomibsoe:m =3 ¢ (@ ¢T)
Dkse Axime: 11— 12 = Ax:|71|p.e
Feok Fbscer:mn—7 =€) Dhscex:m = €
% (a & Dom(I)) Tksoele2: T2 = efey
FT ok I'F 7 type (z & Dom(I")) Pkscer:m1 3 €] Thscex:m = €
F T, z:7 ok [tso (e1,e2) 171 X 72 = (€], €h)

11

Thsce:mi X1 =3 €

- — (i=1,2)
IFktsced:r =2 e

Ia<rtrscv:7 = v T kg7 type
I'rsc v:Valr.t = Aav'

(agl)

Iksc e:Va<lr.ms = €
Lkscelr]:mr/a] =

(map[a.|72[r](71, (id,¢)) o app |7|r) €/
(a € Dom(T")

I'Fsem<m1 = ¢

F'Fsce:mmt = e Thse1 <T = c
I'Fsce:m = ce

IF'Fsen <m = ¢

I's 7 type
FFsc’TST = id

Frsemi <72 =21 ke <13 = 2
F}_SC7'1§7'3 = c20cC1

- < T
IF'Fsca<t = 72 ((asr) €T)

Fhsem <71 =1 Thsem <7 = e

Ibse (11 = 712) < (1] = 75) = (c1 —e2)

Fkse1 <7 = e1 Thsem<Th = e

Phse 71 XT2 <T] XTh =% c1 Xe2

Fbsem <71 = a1

I bFse Ya<t.m <Va<t{.Tj =
VCM.(CQ (e}
mapla.|72|r] (71, (id, €1 0 m2)) 0
app (a A [7{|r)) ©
gen

Ia<t{bsc 72 <T) = e2

(a & Dom(I'))

I's 7 type
I'Fse 7 <top =% top

D Canonicalization Proof

We define a set of closed values S to be canonically closed
when:

e if v € Sand v, v thendv' €5, and

e if v € S and v' —. v and v’ has the same type as v
then v' € S.

We define an assignment to be a finite mapping from type
variables to pairs (7,S), such that 7 is a closed type, and
S is a canonically closed set of closed values having type
7. If o is an assignment, we write o(v) to mean the result
of performing the substitution obtained by ignoring the set
components of the assignment.

We next define a logical relation R over values to be
the least relation such that RZ(v) holds if - v : o(7), v
canonicalizes, and:

12

e if 7 is & then v € S where o(a) = (7, S)

e if 7 is 71 A 72 then R7 (miv) and R7,(m2v)

"

e if 7 is Va7 then for closed type 7",

R7, [r”/a]((aPP 7")v)

any

e if 7 is pa.7’ then R7,(,,j(unfoldv).

Note that function spaces (and products as well) are con-
sidered to be base types, which dramatically simplifies the
construction of the relation, as it eliminates any negative
appearances of the relation being defined. This is possible
because there exist no coercions that eliminate functions or
products.

Lemma D.1 When RZ is well-defined (that is, when the
FV () C Dom(o)), it is canonically closed.

Define the relation RY, . ., over coercions so that R?, .., (c)
iff RZ (v) implies R7,(cv), for all values v. Let [I'] be the
set of assignments whose domain is exactly the domain of
I'. Also let [®]o be the set of mappings ¢ from Dom(®) to
closed coercions such that Rg,(¢(x)), for all x € Dom(®).

Lemma D.2 [fI';®Fc: 11=7 and o € [I'] and ¢ € [®]o
then R, .., (p(o(c))).

Proof

By induction on derivations. The interesting cases are
those for rec and isorec.

Case 1: Suppose the last rule applied is rec forma-
tion, and let o € [I'] and ¢ € [®]o. Suppose R}, ,(v).
We wish to show that R,/ ./ (¢(o(rec(x : a=a'.c)))v).
We show this by induction on the derivation of R}, ,(v).

Let ¢ = ¢(o(c)). By assumption, v canonicalizes and
has appropriate type, so v —; foldv'. Thus rec(x :
a=ra’.c') v canonicalizes and it certainly has appropriate
type.

It remains to show that R7/[,,s ,/q)(unfold(zrec(x
a=a'.c')v)). Let S be the set of values v such that
R}, - (v") follows from a smaller derivation than that of
R}, -(v). It is not difficult to show that S is canonically
closed. Let o' extend o so that ¢'(a) = (o(ua.7),S)
and o’ (') = (o(pa’.7"), R,,s .+). Alsolet ¢’ extend ¢ so
that ¢'(x) = rec(x : a=a’.c’). Note that o’ € [[',a, @'].

o

By induction, R;. ./ (rec(x : a = o'.c)v') for all

v' € S, and thus R’ (rec(y : @ = o’.c')). Thus
¢ € [¥,x : a = a']e’. Hence, by the outer induc-
tion hypothesis, R7_. _ (¢'(0"(c))). Let ¢’ = ¢/ (¢ (c)) =
do(pa.t),o(pa .7'),rec(x : a=a'.c')/a,a’, x].

We may show by induction on 7 that RJ (unfoldv)
(since R, ./q)(unfoldv) by a smaller deriva-
tion than Rj, ,(v)). Thus, wusing the above,
Ri:(c”(unfoldv)). We may then show, by induc-

tion on 7, that R7 (¢ (unfoldw)). Observe
that:

pa! .’ /al]

unfold(rec(x : @ =a'.c')v)

s unfold(rec(x:a = a’.c')(foldv'))
. unfold(fold(c’v"))
e '

and

¢’ (unfoldw)
e

¢ (unfold(foldv'))

NI

Therefore, RZi1yar 1 7oy (unfold(rec(x : a=a’.c') v)) by
canonical closure.

Case 2: Suppose the last rule applied is isorec
formation. The reasoning in this case is similar to the
previous one, except that o’ and ¢’ are defined so that:

o'(1) = (o(pai.m),S)

U:(a'l) = (o(par.m), Ry, +,)

o) = (o(parm),0)

0', (a2) = ((/j’a2 TZ) R,uag 1—2) ,
¢ (x+) = isorec(x+:a1i=ah,x— a2 = aj.

p(o(ct)); pla(c-)))

isorec(x— : @2 = al, X+ : @1 = ab.

p(o(c-)) pla(cs)))

defined analogously to the previous case.
(¢’ (x+)) holds by the same sort of induc-

)) holds

where S is
Then R®

1 2112
/
tion as in the previous case, and Ra2:,a (¢'(x=
vacuously.

[8] Greg Morrisett, David Walker, Karl Crary, and Neal
Glew. From System F to typed assembly language.
ACM Transactions on Programming Languages and
Systems, 21(3):527-568, May 1999. An earlier version
appeared in the 1998 Symposium on Principles of Pro-
gramming Languages.

[9] Benjamin C. Pierce. Programming with Intersec-
tion Types and Bounded Polymorphism. PhD thesis,
Carnegie Mellon University, School of Computer Sci-
ence, Pittsburgh, Pennsylvania, December 1991.

Benjamin C. Pierce. Intersection types and bounded
polymorphism. Mathematical Structures in Computer
Science, 7(2):129-193, April 1997.

Using Lemma D.2, we may easily prove Theorem 5.5 by an
induction on typing derivations.

References

[1] Val Breazu-Tannen, Thierry Coquand, Carl A. Gunter,
and Andre Scedrov. Inheritance as implicit coercion.
Information and Computation, 93:172-221, 1991.

[2] Luca Cardelli, Simone Martini, John C. Mitchell, and
Andre Scedrov. An extension of system F with subtyp-
ing. Information and Computation, 109(1-2), 1994.

[3] Luca Cardelli and Peter Wegner. On understanding
types, data abstraction, and polymorphism. Computing
Surveys, 17(4):471-522, December 1985.

[4] Karl Crary, Stephanie Weirich, and Greg Morrisett.
Intensional polymorphism in type-erasure semantics.
In 1998 ACM International Conference on Functional
Programming, pages 301-312, Baltimore, September
1998. Extended version published as Cornell Univer-
sity technical report TR98-1721.

[5] Pierre-Louis Curien and Giorgio Ghelli. Coherence of
subsumption, minimum typing and type-checking in
F<. Mathematical Structures in Computer Science,
2(1):55-91, 1992.

[6] Allyn Dimock, Robert Muller, Franklyn Turbak, and
J. B. Wells. Strongly typed flow-directed representa-
tion transformations. In 1997 ACM International Con-
ference on Functional Programming, pages 11-24, Am-
sterdam, June 1997.

[7] Greg Morrisett, Karl Crary, Neal Glew, Dan Gross-
man, Richard Samuels, Frederick Smith, David Walker,
Stephanie Weirich, and Steve Zdancewic. TALx86: A
realistic typed assembly language. In Second Work-
shop on Compiler Support for System Software, At-
lanta, May 1999.

13

