
A Simple Proof Technique for Certain Parametricity Results�

Karl Crary

Carnegie Mellon University

Abstract

Many properties of parametric� polymorphic functions
can be determined simply by inspection of their types�
Such results are usually proven using Reynolds�s para�
metricity theorem� However� Reynolds�s theorem can
be di�cult to show in some settings� particularly ones
involving computational e�ects� I present an alternative
technique for proving some parametricity results� This
technique is considerably simpler and easily generalizes
to e�ectful settings� It works by instantiating polymor�
phic functions with singleton types that fully specify the
behavior of the functions� Using this technique� I show
that callers� stacks are protected from corruption during
function calls in Typed Assembly Language programs�

� Introduction

A polymorphic function can be termed parametric �		

if it always uses the same algorithm� regardless of the
type at which it is applied� In particular� a parametric�
polymorphic function can neither branch on nor other�
wise analyze its type argument� In many type theories
�such as the polymorphic lambda calculus� all polymor�
phic functions must be parametric�

It has long been recognized �	
� 	�� �� �
 that in type
theories in which all polymorphism is parametric� many
properties of polymorphic functions can be determined
solely by inspection of their types� For instance� in the
polymorphic lambda calculus� any function having the
type ��� � � � must be the identity function� In an

�This research was sponsored by the Advanced Research
Projects Agency CSTO under the title �The Fox Project� Ad�
vanced Languages for Systems Software�� ARPA Order No�
C�		� issued by ESC
ENS under Contract No� F��
������C�
����� The views and conclusions contained in this document are
those of the authors and should not be interpreted as represent�
ing o�cial policies� either expressed or implied� of the Defense
Advanced Research Projects Agency or the U�S� Government�

To appear in ���� International Conference on Func�
tional Programming� Paris� France� September �����

extension of the polymorphic lambda calculus with a
uniquely inhabited unit type�� a simple intuitive argu�
ment for this fact can be made by appealing to para�
metricity�

We write the application of a polymorphic
function f to a type argument � as f �� 
� Sup�
pose f has type ��� �� �� Then f �unit
��
has type unit and is therefore equal to ���
Consequently� f �unit
 is either the constant
�� function or the identity function� By para�
metricity� at any type f must be either the
constant �� function or the identity function�
The former is ill�typed� so f must be the iden�
tity function�

Results such as this can be of practical importance�
For example� Typed Assembly Language with stacks
�STAL� ��� �
� contains a notion of stack types� and al�
lows polymorphism over stack types as well as ordinary
types� In STAL� a function returning an integer would
be seen to have type ���fsp � �� ra � fsp��� r��intgg�
This type is read� �For any stack type �� the function
may be called so long as the stack has type �� and the
register ra contains a return address that can be called
when the stack has type � and r� contains an integer��
The type indicates that the function returns the stack
with the same type ��� as it received it� This property is
certainly necessary for proper functioning of the caller�
but a stronger property is also desirable� that the callee
returns not only a stack with the same shape� but the
exact same stack� without meddling with it in any way�

This property is exactly the sort of abstraction prop�
erty that Reynolds envisioned in his seminal paper on
parametricity �	

� Polymorphism in STAL is paramet�
ric� so we can give an intuitive argument similar to the
previous one�

We write the empty stack and its type as
nil� Suppose g has type ���fsp � �� ra �
fsp��� r��intgg� Suppose further that the

�Without a primitive unit type� although the result is still
true� this simple argument is circular� as it requires identifying
some type with a unique element� for which the usual candidate
is the type in question� ����� ��



stack is empty and h is a continuation func�
tion accepting an empty stack and an integer
in r�� Then g�nil
 can be called after moving
a pointer to h into ra� If and when g trans�
fers control back to the continuation h� the
stack must be empty� Consequently� g�nil

transfers control back to its return address�

with either an empty stack or the same stack�
By parametricity� at any stack type� g returns
with either an empty stack or the same stack�
The former possibility is barred by the type�
so g must always return the same stack�

These sorts of results are usually formalized using
Reynolds�s parametricity theorem �	

 �he called it
the abstraction theorem�� The parametricity theorem
states �in part� that when given related arguments� a
function returns related results� The identity function
result is then shown� for any prospective argument� by
choosing the relation to be the one�point relation that
only relates the prospective argument to itself� That
relation obviously relates the argument to itself� so it
also relates the result to itself� Hence� by choice of the
relation� the argument and result are equal�

This sort of result only scratches the surface of the
power of the parametricity theorem� The theorem is ca�
pable of concluding far�ranging results about the behav�
ior of expressions from no information other than their
types �	�
� This is a pleasant situation� provided that
one is working in a context for which the theorem has
been proved� There has been considerable work in the
direction of extending the parametricity theorem past
the polymorphic lambda calculus into more expressive
type theories �	�� 	� �� �� �
�

Unfortunately� the parametricity theorem has been pro�
hibitively di�cult to prove for some type theories� par�
ticularly those with computational e�ects�� Conse�
quently� many appealing parametricity conjectures re�
main unproven� For instance� STAL certainly sup�
ports computational e�ects� so the intuitive argument
for stack preservation has heretofore been unsubstanti�
ated by formal proof�

An Alternative In this paper I present an alterna�
tive proof technique for certain parametricity results�
This technique is limited in scope� it su�ces for con�
siderably fewer results than the parametricity theorem�
However� for those results to which it does apply� it has
the advantage that it is very simple and easily extends
to richer type systems� including those with computa�
tional e�ects�

The essence of the technique is to show that the type
theory in question may be soundly extended with a no�
tion of singleton types �types containing only a single

�This assumes that g has no other access to h and ignores
possible variation in behavior resulting from side�e�ects� A more
careful proof appears in Section 	�

�Although parametricity with e�ects has been problematic
in lambda�calculus�like languages� it has been successfully used
with computational e�ects in Algol�like languages ����

particular term�� This extension is done only by adding
new rules� so any judgements derivable in the original
type system are derivable in the extended system� In
the extended system we may instantiate polymorphic
functions at singleton types� and any result value that
consequently belongs to the singleton type has its iden�
tity determined thereby� Finally� since the function is
parametric� we can conclude that the same value is ob�
tained when the function is instantiated at an ordinary
type� In essence� this argument specializes the para�
metricity theorem to a one�point relation� where it is
much easier to prove�

Informally� we use this technique to show the identity
function result as follows�

We write singleton types as s�v���� Suppose f
has type ��� ��� and v has type � � and sup�
pose we wish to show that f �� 
v � v� In the
extended system� f �s�v���
 has type s�v�� ��
s�v��� and v has type s�v���� so f �s�v�� �
v has
type s�v�� �� Therefore f �s�v�
v � v� Since f
is parametric� f �� 
v is also equal to v�

In the remainder of this paper� I formalize this tech�
nique for the polymorphic lambda calculus and apply
it to some examples� Then� to show how it general�
izes to richer type systems� I use it to show the stack
preservation property in STAL�

� The Proof Technique

The treatment of the polymorphic lambda calculus I use
here is standard� For ease of reference� its syntax� and
its static and dynamic semantics are given in Figure 	�
Evaluation is call�by�value and is given by a small�step
relation e �� e�� We write the capture�avoiding substi�
tution of E for X in E� as E��E�X
� As usual� alpha�
equivalent expressions �written E � E�� are considered
identical�

The �rst step in the proof technique is to augment the
original language �in this case the polymorphic lambda
calculus� with singleton types� We will perform this
augmentation only by adding rules� so any judgement
derivable in the original language will also be derivable
in the augmented language� We will write judgements
derivable in the original language with the symbol � and
in the augmented language with the symbol �s� The
rules governing the dynamic semantics will be entirely
unchanged�

We write singleton types as s�v�� �� Two rules govern
their usage�

� �s v � �

� �s s�v��� type

� �s v � �

� �s v � s�v���

There are several important remarks to make about this
formulation of singleton types�

�



Syntax
types � ��� � j �� � �� j ����
terms e ��� x j �x���e j e�e� j ���e j e�� 

values v ��� x j �x���e j ���e
contexts � ��� � j �� � j �� x��

Static semantics

� � � type
�� � ��

� � �� type � � �� type

� � �� � �� type

�� � � � type

� � ���� type
�� �� ��

� � x � �
�x�� � ��

� � � type � � � � type �� x�� � e � � �

� � �x���e � � � � �
�x �� ��

� � e� � � � � � � � e� � �

� � e�e� � � �

�� � � e � �

� � ���e � ����
�� �� ��

� � e � ���� � � � � type

� � e�� 
 � � �����


Dynamic semantics

e� �� e��

e�e� �� e��e�

e� �� e��

v e� �� v e�� ��x���e�v �� e�v�x


e �� e�

e�� 
 �� e��� 
 ����e��� 
 �� e����


Figure 	� The Polymorphic Lambda Calculus

	� This formulation is far short of a useful program�
ming language with singleton types� In particular�
no elimination rule for singleton types is provided�
No such rule is required for the proofs we are in�
terested in� instead� elimination will be performed
externally by a canonical forms lemma�

�� The notion of equality inherent in this axiomati�
zation of singleton types is very strong� the type
s�v��� will contain a value v� only if v and v� are
identical� and will only contain a term e only if
e ��� v� This strong formulation is by no means
essential to the proof technique �weaker notions
such as observational equivalence would work�� but
it provides the strongest possible parametricity re�
sult�

�� In anticipation of our interest in extending this
technique to e�ectful computation� singleton types
are restricted to values� thereby avoiding the dubi�
ous notion of an e�ectful type�

�� In the augmented system� types can contain free
occurrences of term variables� and we will �nd it
necessary to substitute for those variables� Such
substitutions are syntactically well�formed only for
substitutends that are values� Since evaluation is
call�by�value� this will not be problematic�

The main proof burden is to show that the addition of

singleton types is a sound extension� Ordinarily this
requires the proof of Subject Reduction and Progress
lemmas �	�
� but for our purposes we only require Sub�
ject Reduction�

Lemma � �Subject Reduction� If �s e � � and e ��
e� then �s e

� � � �

As usual� the Subject Reduction lemma is proven by
induction on typing derivations� using substitution lem�
mas for types and values�

Lemma � �Type Substitution� If � �s � type then�

�� If �� � �s �
� type then � �s �

�����
 type� and

�� If �� � �s e � �
� then � �s e����
 � �

�����
�

Lemma � �Value Substitution� If � �s v � � then�

�� If �� x�� �s �
� type then � �s �

��v�x
 type� and

�� If �� x�� �s e � �
� then � �s e�v�x
 � �

��v�x
�

With these obligations ful�lled� we can now prove most
of the identity function result� Suppose � f � ��� �� �

�



and � v � � � Then �s f �s�v���
v � s�v���� Suppose also
that f �s�v���
v ��� v�� By Subject Reduction� �s v� �
s�v����

From �s v
� � s�v��� we wish to deduce that v � v�� This

is apparent in an inspection of the typing rules� since
the only rules that can assign a value a singleton type
are the singleton introduction rule and the variable rule�
and v� cannot be a variable since the context is empty�
To summarize formally�

Lemma � �Canonical Singleton Forms�
If � �s v � s�v��� � then either v � v� or �for some x�
v � x and �x�s�v����� � ��

Corollary � If �s v � s�v���� then v � v��

Thus� from our initial suppositions� we can deduce that
f �s�v�� �
v ��� v� implies v � v�� To conclude� we invoke
parametricity to show that f �� 
v computes to the same
value as f �s�v���
v� To do so we use the following de��
nition and lemma� which together state that terms that
di�er only in their types compute in the same manner�

De	nition 
 Two terms t and t� are identical modulo
type annotations �written t �� t�� if they di	er only
in their component type expressions� Formally� �� is
the least congruence such that �for any e� � and � ��
�x���e �� �x��

��e and e�� 
 �� e��
�
�

Lemma � �Parametricity� If e� �� e� then�

�� If e� ��
� v� then there exists v� such that e� ��

� v�
and v� �� v��

�� If e� ��
� v� and e� ��

� v� then v� �� v��

Since f �s�v���
v �� f �� 
v and f �s�v���
v �� v� we may
conclude by Lemma � that the result of f �� 
v is identical
modulo type annotations to v� The full argument is
summarized as Theorem ��

Theorem � If � f � ��� � � � and � v � � and
f �� 
v ��� v� then v� �� v�

Proof

Since augmentation preserves derivability� �s f �
��� �� � and �s v � � � Therefore �s v � s�v��� so
�s f �s�v���
v � s�v���� Since f �� 
v ��� v�� by Para�
metricity there exists v�� such that f �s�v���
v ��� v��

and v� �� v
��� By Subject Reduction� �s v

�� � s�v�� ��
By Corollary �� v�� � v� Hence v� �� v� �

Although Theorem � used a empty context� we can eas�
ily prove similar results for nonempty contexts analo�
gously� Lemmas � and � allow working beneath a sub�
stitution� and since an unaugmented context will con�
tain no singleton bindings� we can always be in Lemma
��s �rst case�

Similar arguments can show results determining the be�
havior of functions with a variety of di�erent types� such
as�

� Functions with type ����	� � � 	 � � must be
extensionally equivalent to the K combinator�

� Functions with type ��� ��	� ���	��	���must
be extensionally equivalent to ��� �f� f ��
id �

� Functions with type ����	� ��		�� �		�� must
be extensionally equivalent to the swap function
�in an extension supporting product types��

�
� Multiplicate Results

The technique as presented so far su�ces to determine
behaviors for a variety of types that imply a single�
valued result� but it does not help in cases where a func�
tion can have multiple possible results� For example� a
function with type ��� ����� always returns one of
its two arguments�

To extend the technique to this sort of problem� we
want to use� instead of singleton types� a more general
type that speci�es a �xed �nite set of members� We can
build such types from singletons using union types� The
union type ��
 �� will contain all members of �� and all
members of ���

� � �� type � � �� type

� � �� 
 �� type

� � e � �� � � �� type

� � e � �� 
 ��

� � e � �� � � �� type

� � e � �� 
 ��

Again� the primary burden is to show that the addition
of union types is a sound extension� The Subject Re�
duction lemma remains true� and is proven in exactly
the same way� as are the other lemmas� so I will not
repeat them here� The only additional tool necessary is
a canonical forms lemma for union types�

Lemma � �Canonical Union Forms� If � �s v �
�� 
 �� then either � �s v � �i �for i � 	 or �� or �for
some x� v � x and �x���� 
 ���� � ��

Corollary �� If �s v � �s�v��� � 
 � � � 
 s�vn���� then
v � vi for some 	 � i � n�

Theorem �� If � f � ��� �� �� � and � v� � � and
� v� � � and f �� 
v�v� ��� v� then either v� �� v� or
v� �� v��

Proof

Since augmentation preserves derivability� �s f �
��� ����� and �s v� � � and �s v� � � � Therefore

�



�s v� � s�v����
s�v��� � and �s v� � s�v��� �
s�v��� ��
Hence f �s�v���� 
 s�v��� �
v�v� � s�v��� � 
 s�v�����
Since f �� 
v�v� ��� v�� by Parametricity there ex�
ists v�� such that f �s�v���� 
 s�v��� �
v�v� ��� v��

and v� �� v��� By Subject Reduction� �s v�� �
s�v���� 
 s�v����� By Corollary 	
� v�� � v� or
v�� � v�� Hence v� �� v� or v� �� v�� �

� Stack Preservation

The original motivation for this work was to prove the
stack preservation property discussed in Section 	� Be�
cause state a�ecting operations are a fundamental part
of assembly language� proving stack preservation using
an analog of Reynolds�s theorem is prohibitively di��
cult� However� the result easily succumbs to the tech�
nique presented in this paper�

�
� STAL Overview

The static and dynamic semantics of STAL are long
and somewhat complicated� and I will not reproduce
them here� Instead� I will reprise the syntax and discuss
the semantics at an intuitive level� Full formal details
appear in Morrisett et al� ��
� Readers familiar with
STAL can skip immediately to Section ����

The main syntactic constructs of STAL are given in Fig�
ure �� A machine state �or� program� in the STAL ab�
stract machine is a triple� consisting of a heap� a register
�le� and a sequence of instructions� A register �le is a
�nite mapping of register names to word�sized values�
such as integers and pointers� A heap is a �nite map�
ping of labels �
� to larger�than�word values� that is�
executable code �discussed below� and tuples� A third
sort of value� a small value� is either a register name
or a word value� this distinction is drawn because a
register�s contents cannot be a register name� Also� in
addition to mapping registers to word values� a register
�le also maps a special distinguished register� the stack
pointer �sp�� to the current machine stack� which is a
nil�terminated list of word values�

The STAL type system contains several notions of type�
Ordinary data �word� heap� and small value� are given
ordinary types �� �� such as type variables ���� int� or
code types ����
��� discussed below�� Stacks are given
stack types ���� such as stack type variables� ���� the
empty stack type nil �which speci�es an empty stack��
or cons types � ��� �which specify a stack w��S where w
has type � and S has type ��� Finally� heaps and register
�les each have a notion of type� heap types assign a type
to every label� and register �le types assign a stack type
to the stack pointer and an ordinary type to each other
register� I will often write MfX�Eg or MfX �� Eg as
notion for map update�

Code blocks� written code��
��I� are sequences of in�
structions I� that abstract a set of type and stack type

�The importance of stack type variables is made clear shortly�

variables ���� and provide a type ��� for the incom�
ing register �le� The code�s register �le type serves as
a precondition that must hold of the register �le before
the code block may be called� Accordingly� the type of a
code block ����
��� indicates its type and stack type ar�
guments and its register �le precondition� When a code
block abstracts no variables� we often omit the pre�x
�� 
 in its type� A code type does not specify any sort of
postcondition because code blocks do not return per se

rather� they transfer control by calling some other code
�often given by a return address argument� and satisfy
that code�s precondition�

For example� code having the type discussed in Sec�
tion 	�

���
�fsp � �� ra � fsp��� r��intgg

can be called� after instantiation � with some �� when
the stack has type � and when ra contains a return
address that itself may be called when the stack has
type � and r� contains an integer� This type does not
guarantee that the code will transfer control back to
the address in ra� or even that it will terminate at all�
but the precondition fsp��� r��intg will be satis�ed if it
does�

Semantics The dynamic semantics of STAL is given
by a small�step evaluation relation �written P �� P ��
that maps a machine state �H�R� I� to a new machine
state in a manner determined by the �rst instruction of
I� The static semantics is given by several judgements�
All of them are certainly relevant to the Subject Reduc�
tion proof� but we need be directly concerned with only
a few of them here�

Judgement Meaning
� P Program P is a well�formed�
� H � � Heap H has type ��
� � R � � Register �le R has type ��
� � S � � Stack S has type ��
� � h � � hval Heap value h has type � �
��� � w � � wval Word value w has type � �
���� � � v � � Small value v has type � �
���� � � I Instruction sequence I

is well�formed�
� � � type Type � is well�formed�
� � � stype Stack type � is well�formed�

Where� as appropriate� � is the type of the heap�
� speci�es free type variables� and � is the type
of the register �le�

A few relevant inference rules are given in Figure ��

Polymorphism The mechanism for abstracting code
to take type �and stack type� arguments was discussed
above� Type application is performed by instantiating a
value with a type� written �for example� w�� 
� This op�
eration attaches type arguments to a code label� �Types
are erased at run time� so no action need be taken at
run time to do this�� When control is transferred to
instantiated code� the type arguments are substituted

�



programs P ��� �H�R� I�
heaps H ��� f
� �� h�� � � � � 
n �� hng
register �les R ��� fsp �� S� r� �� w�� � � � � rn �� wng
stacks S ��� nil j w��S
instruction sequences I ��� add rd� rs� v� I j ld rd� rs�i�� I j mov rd� v� I j � � �

registers r ��� r� j r� j � � �
word values w ��� 
 j i j w�� 
 j w��
 j � � �
heap values h ��� code��
��I j hw�� � � � � wni
small values v ��� r j w j v�� 
 j v��
 j � � �

types � ��� � j int j ���
�� j � � �
stack types � ��� � j nil j � ��� j � � �
heap types � ��� f
����� � � � � 
n��ng
register �le types � ��� fsp��� r����� � � � � rn��ng
contexts � ��� � j �� � j �� �

Figure �� STAL Syntax �Abridged�

� H � � � � R � � �� �� � � I

� �H�R� I�

� � S � � �� � � wi � �i wval

� � fsp �� S� r� �� w�� � � � � rn �� wng � fsp��� r����� � � � � rn��ng

� � nil � nil

�� � � w � � wval � � S � �

� � w��S � � ���

� � nil stype

� � � type � � � stype

� � � ��� stype

���� � � v � fsp��� r����� � � � � rn��ng � � fsp��� r����� � � � � rm��mg

���� � � jmp v
�n � m�

Figure �� STAL Static Semantics �Abridged�

for the formal arguments in the corresponding code� for
example�

�H�R� jmp r���
� �� �H�R� I����
�
when
R�r�� � 

H�
� � code��
��I

�
� Stack Preservation Proof

As before� we begin by augmenting the language� in this
case with singleton stack types� We will again write
judgements in the augmented language with the sym�
bol �s� Two rules govern the usage of singleton stack

types��

� �s s�S� stype � �s S � s�S�

Again� the primary burden is to prove that this is a
sound extension�

Lemma �� �Augmented Subject Reduction�

�In contrast to the singleton types of Section �� these sin�
gleton stack types do not constrain the stack in question to be
well�formed� This simpli�es the argument slightly� the stack
formation judgement is relative to a heap type� so constraining
singleton stack types to be well�formed would require the stack
type formation judgement to be relative to a heap type as well�
Since� in that case� the judgement forms of � and �s would be
di�erent� a nontrivial argument would be required to show that
augmentation preserves derivability� Not constraining the stacks
in question to be well�formed removes the need for such an ar�
gument� and poses no other problems�

�



If �s P and P �� P � then �s P
��

The proof is rather involved� but not much more so than
the proof for the unaugmented language� which closely
follows the proof in Morrisett et al� ��
� We may also
easily show Canonical Forms and Parametricity lemmas
analogous to Lemmas � and ��

Lemma �� �Canonical Singleton Forms� If � �
S � s�S�� then S � S��

De	nition �� Two expressions E and E� are identi�
cal modulo type annotations �written E �� E

�� if they
di	er only in their component type expressions�

Lemma �� �Parametricity� If P� �� P� then�

�� If P� ��
� P �

� then there exists P �

� such that P� ��
�

P �

� and P �

� �� P
�

��

�� If P� ��
� P �

� and P� ��
� P �

� then P �

� �� P
�

��

The last thing we must do before we can prove the stack
preservation property is to de�ne what is meant by re�
turn from a function� The naive idea is that a function
has returned when control enters the code block pointed
to be the return address� This naive idea does not work
because control might return to the return code other
than through the interface provided� such as by a global
jump� by a recursive jump to the caller� or by some other
indirect means� We need the de�nition to identify as
a return only invocations of the return code that pass
through the particular interface provided� This is done
by constructing a clone of the return address that is not
accessible in any other way and running the program
until the clone is used� Then the clone is deleted to en�
sure that a return state is a state actually reached by
computation �Proposition 	���

De	nition �
 The state of �H�� R�� I�� on return
through register r is �H�� R�� I�� if�

� R��r� � 
���
 � � � ��n
 �where each �i is either a
type or a stack type�� and

� 
� is fresh� and

� �H�f

� �� H��
�g� R�fr �� 
����
 � � � ��n
g� I�� ��

�

�H �� R�� I ��� and

� the next evaluation step of �H �� R�� I �� is to
call 
����
 � � � ��n
 �that is� I � begins with either
a jump or a successful conditional branch to

����
 � � � ��n
�� and

� H� � �H � n 
���
�
�
 and R� � R��
�
�
 and I� �
I ��
�
�
�

Proposition �� If the state of P on return through
any register is P �� then P ��� P ��

Theorem �� �Stack Preservation� Suppose � H� �
� and � � R� � � and ��sp� � �� If �� �� � �
v � ���
�fsp � �� ra � fsp��� r��intgg and the state of
�H�� R�� jmp v��
� on return through ra is �H�� R�� I���
then R��sp� �� R��sp��

Proof

Let H �� R�� I �� 
� 
� and �i be de�ned according
to De�nition 	�� Let H �

� � H�f

� �� H��
�g and

let R�

� � R�fra �� 
����
 � � � ��n
g� By de�nition�
�H �

�� R
�

�� jmp v��
� ��� �H �� R�� I �� and the next eval�
uation step of �H �� R�� I �� is to call 
����
 � � � ��n
�

Using Parametricity� we will construct another com�
putation P ��� P �� where P �� �H �

�� R
�

�� jmp v��
��
where P � �� �H �� R�� I ��� and where the next evalua�
tion step of P � is also to call 
����
 � � � ��n
� However�
the type of 
� in P and P � will use a singleton stack
type to constrain the stack to be the desired stack�
R��sp�� Since P

� will immediately call 
�� and since
P � will be well�formed� it will follow that the stack of
P � is R��sp�� and therefore that R��sp� �� R��sp��

Let S � R��sp� and let h� � H��
�� The typing
assumptions ensure that h� must be a code value�
since the current instruction is a jump to v��
 and
the precondition of v��
 says that the contents of ra
�that is� 
���
 � � � ��n
� are a function� Thus� let h� �
code���
���I�� At the start of our new computation�
instead of binding 
� to h� �as in H �

��� we will bind
it to a variant of h� that demands a singleton stack
type�

Let h�

� � code���
���fsp�s�S�g��I�� Let H ��

� �
H�f


� �� h�

�g� Observe that H �

� �� H ��

� and
jmp v��
 �� jmp v�s�S�
� Therefore �H �

�� R
�

�� jmp
v��
� �� �H ��

� � R
�

�� jmp v�s�S�
�� Let P be the lat�
ter� By Parametricity� P ��� P � for some P � such
that P � � �H ��� R��� I ���� H � �� H ��� R� �� R�� and
I � �� I ��� There exist no transitions in the opera�
tional semantics that alter a code value in the heap�
so H ���
�� � H ��

� �

�� � h�

��

Since augmentation preserves derivability� all the as�
sumed judgements are derivable in the augmented
language� where we also have � �s s�S� stype and
� �s S � s�S�� It is then easy to show that
�s �H ��

� � R
�

�� jmp v�s�S�
�� Therefore� by Subject Re�
duction� �s �H ��� R��� I ���� By inspection of the typ�
ing rules� �s H

�� � �� and �� �s R
�� � ��� for some ��

and ���

Recall the next evaluation step of �H �� R�� I ��
is to call 
����
 � � � ��n
� Since �H �� R�� I �� ��

�H ��� R��� I ���� the latter�s next evaluation step must
be to call 
����

�
 � � � ��
�

n
� for some ��

i �� �i�
Therefore� �� must match the precondition on


����

�
 � � � ��
�

n
� which is ���fsp�s�S�g��
���
� In par�

ticular� ���sp� � s�S��
���
� Since S has no free
variables �recall it typechecks in an empty context��
���sp� � s�S�� Since �� �s R

�� � ��� we conclude by
Lemma 	� that R���sp� � S�

Now recall that R� �� R��� so R��sp� �� S� The
label 
� was fresh� so it could not appear in S
and thus S�
�
�
 � S� Consequently� R��sp� �
�R��sp���
�
�
 �� S�
�


�
 � S� �

�



� Conclusions

Syntactic proof techniques� where applicable� have often
been found to be simpler than semantic proof techniques
for similar results� This has been particularly true in
setting that include computational e�ects� where non�
syntactic techniques have often been prohibitively chal�
lenging� In this paper I propose a syntactic approach
to proving certain parametricity results� This technique
is e�ective for results in which a function�s output �or�
more generally� an expression�s result� is shown to be a
simple variant of one of its inputs�

The technique reveals no fundamental new insights into
parametricity� but rather frames the standard observa�
tions in a particularly direct way� It is that directness
that leads to the technique�s simplicity� but also that
limits its applicability� To see the directness of connec�
tion� recall the intuitive parametricity arguments from
Section 	� In each argument� a conclusion was drawn
regarding the behavior of general instances of a poly�
morphic function by analogy with a particular instance�
in one case the unit instance� and in the other case the
nil instance� The common property of each of these
types is that they are singleton types� Each contained
only one member and therefore fully speci�ed its func�
tion�s results� In this paper I lift such arguments to
nontrivial types by adding singleton subtypes of other
types�

The primary proof obligation of this technique is to
demonstrate Subject Reduction in the presence of sin�
gleton types� Subject Reduction arguments are usually
not hampered severely by computational e�ects� mak�
ing it tractable to generalize this technique to e�ectful
settings� This is illustrated by the main new result of
this paper� a proof of the Stack Preservation property
for STAL� This property provides an important security
guarantee for STAL programs� that their stacks are pro�
tected from corruption during calls to untrusted code�

References

�	
 Luca Cardelli� Simone Martini� John C� Mitchell�
and Andre Scedrov� An extension of system F with
subtyping� In Theoretical Aspects of Computer
Software ����� volume ��� of Lecture Notes in
Computer Science� pages ��
 ��
� Sendai� Japan�
	��	� Springer�Verlag�

��
 Andrew J� Kennedy� Relational parametricity and
units of measure� In Twenty
Fourth ACM Sym

posium on Principles of Programming Languages�
pages ��� ���� Paris� January 	����

��
 QingMing Ma� Parametricity as subtyping� In
Nineteenth ACM Symposium on Principles of
Programming Languages� pages ��	 ���� Albu�
querque� New Mexico� January 	����

��
 QingMing Ma and John C� Reynolds� Types� ab�
straction� and parametric polymorphism� part ��

In Seventh Mathematical Foundations of Program

ming Semantics� volume ��� of Lecture Notes in
Computer Science� pages 	 �
� Pittsburgh� Penn�
sylvania� March 	��	� Springer�Verlag�

��
 Greg Morrisett� Karl Crary� Neal Glew� and David
Walker� Stack�based typed assembly language� In
Second Workshop on Types in Compilation� vol�
ume 	��� of Lecture Notes in Computer Science�
Springer�Verlag� March 	���� Extended version
published as CMU technical report CMU�CS����
	���

��
 Greg Morrisett� David Walker� Karl Crary� and
Neal Glew� From System F to typed assembly lan�
guage� ACM Transactions on Programming Lan

guages and Systems� 	���� To appear� An earlier
version appeared in the 	��� Symposium on Prin�
ciples of Programming Languages�

��
 Peter W� O�Hearn and Robert D� Tennent� Para�
metricity and local variables� Journal of the ACM�
��������� �
�� May 	����

��
 Gordon Plotkin and Mart!"n Abadi� A logic for
parametric polymorphism� In International Con

ference on Typed Lambda Calculi and Applications�
pages ��	 ���� 	����

��
 Gordon Plotkin� Mart!"n Abadi� and Luca Cardelli�
Subtyping and parametricity� In Ninth IEEE Sym

posium on Logic in Computer Science� pages �	
 
�	�� July 	����

�	

 John C� Reynolds� Types� abstraction and para�
metric polymorphism� In Information Processing
���� pages �	� ���� North�Holland� 	���� Proceed�
ings of the IFIP �th World Computer Congress�

�		
 Chistopher Strachey� Fundamental concepts in
programming languages� Lecture Notes� Interna�
tional Summer School in Computer Programming�
Copenhagen� August 	����

�	�
 Philip Wadler� Theorems for free# In Fourth Con

ference on Functional Programming Languages and
Computer Architecture� London� September 	����

�	�
 Andrew K� Wright and Matthias Felleisen� A syn�
tactic approach to type soundness� Information
and Computation� 		���� ��� 	����

�


