A Simple Proof Technique for Certain Parametricity Results*

Karl Crary

Carnegie Mellon University

Abstract

Many properties of parametric, polymorphic functions
can be determined simply by inspection of their types.
Such results are usually proven using Reynolds’s para-
metricity theorem. However, Reynolds’s theorem can
be difficult to show in some settings, particularly ones
involving computational effects. I present an alternative
technique for proving some parametricity results. This
technique is considerably simpler and easily generalizes
to effectful settings. It works by instantiating polymor-
phic functions with singleton types that fully specify the
behavior of the functions. Using this technique, I show
that callers’ stacks are protected from corruption during
function calls in Typed Assembly Language programs.

1 Introduction

A polymorphic function can be termed parametric [11]
if it always uses the same algorithm, regardless of the
type at which it is applied. In particular, a parametric,
polymorphic function can neither branch on nor other-
wise analyze its type argument. In many type theories
(such as the polymorphic lambda calculus) all polymor-
phic functions must be parametric.

It has long been recognized [10, 12, 8, 3] that in type
theories in which all polymorphism is parametric, many
properties of polymorphic functions can be determined
solely by inspection of their types. For instance, in the
polymorphic lambda calculus, any function having the
type Ya.a — a must be the identity function. In an

*This research was sponsored by the Advanced Research
Projects Agency CSTO under the title “The Fox Project: Ad-
vanced Languages for Systems Software”, ARPA Order No.
C533, issued by ESC/ENS under Contract No. F19628-95-C-
0050. The views and conclusions contained in this document are
those of the authors and should not be interpreted as represent-
ing official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the U.S. Government.

To appear in 1999 International Conference on Func-
tional Programming, Paris, France, September 1999.

extension of the polymorphic lambda calculus with a
uniquely inhabited unit type,! a simple intuitive argu-
ment for this fact can be made by appealing to para-
metricity:

We write the application of a polymorphic
function f to a type argument 7 as f[r]. Sup-
pose f has type Va.a — «. Then f[unit]()
has type unit and is therefore equal to ().
Consequently, f[unit] is either the constant
() function or the identity function. By para-
metricity, at any type f must be either the
constant () function or the identity function.
The former is ill-typed, so f must be the iden-
tity function.

Results such as this can be of practical importance.
For example, Typed Assembly Language with stacks
(STAL) [6, 5], contains a notion of stack types, and al-
lows polymorphism over stack types as well as ordinary
types. In STAL, a function returning an integer would
be seen to have type Vp.{sp : p,ra : {sp:p,rl:int}}.
This type is read, “For any stack type p, the function
may be called so long as the stack has type p, and the
register ra contains a return address that can be called
when the stack has type p and r1 contains an integer.”
The type indicates that the function returns the stack
with the same type (p) as it received it. This property is
certainly necessary for proper functioning of the caller,
but a stronger property is also desirable: that the callee
returns not only a stack with the same shape, but the
ezact same stack, without meddling with it in any way.

This property is exactly the sort of abstraction prop-
erty that Reynolds envisioned in his seminal paper on
parametricity [10]. Polymorphism in STAL is paramet-
ric, so we can give an intuitive argument similar to the
previous one:

We write the empty stack and its type as
nil. Suppose g has type Vp.{sp : p,ra :
{sp:p,rl:int}}. Suppose further that the

"Without a primitive unit type, although the result is still
true, this simple argument is circular, as it requires identifying
some type with a unique element, for which the usual candidate
is the type in question, Va. a — «.

stack is empty and h is a continuation func-
tion accepting an empty stack and an integer
in r1. Then g[nil] can be called after moving
a pointer to h into ra. If and when g trans-
fers control back to the continuation h, the
stack must be empty. Consequently, g[nil

transfers control back to its return address

with either an empty stack or the same stack.
By parametricity, at any stack type, g returns
with either an empty stack or the same stack.
The former possibility is barred by the type,
S0 g must always return the same stack.

These sorts of results are usually formalized using
Reynolds’s parametricity theorem [10] (he called it
the abstraction theorem). The parametricity theorem
states (in part) that when given related arguments, a
function returns related results. The identity function
result is then shown, for any prospective argument, by
choosing the relation to be the one-point relation that
only relates the prospective argument to itself. That
relation obviously relates the argument to itself, so it
also relates the result to itself. Hence, by choice of the
relation, the argument and result are equal.

This sort of result only scratches the surface of the
power of the parametricity theorem. The theorem is ca-
pable of concluding far-ranging results about the behav-
ior of expressions from no information other than their
types [12]. This is a pleasant situation, provided that
one is working in a context for which the theorem has
been proved. There has been considerable work in the
direction of extending the parametricity theorem past
the polymorphic lambda calculus into more expressive
type theories [12, 1, 4, 9, 2].

Unfortunately, the parametricity theorem has been pro-
hibitively difficult to prove for some type theories, par-
ticularly those with computational effects.> Conse-
quently, many appealing parametricity conjectures re-
main unproven. For instance, STAL certainly sup-
ports computational effects, so the intuitive argument
for stack preservation has heretofore been unsubstanti-
ated by formal proof.

An Alternative In this paper I present an alterna-
tive proof technique for certain parametricity results.
This technique is limited in scope; it suffices for con-
siderably fewer results than the parametricity theorem.
However, for those results to which it does apply, it has
the advantage that it is very simple and easily extends
to richer type systems, including those with computa-
tional effects.

The essence of the technique is to show that the type
theory in question may be soundly extended with a no-
tion of singleton types (types containing only a single

2This assumes that g has no other access to h and ignores
possible variation in behavior resulting from side-effects. A more
careful proof appears in Section 3.

3Although parametricity with effects has been problematic
in lambda-calculus-like languages, it has been successfully used
with computational effects in Algol-like languages [7].

particular term). This extension is done only by adding
new rules, so any judgements derivable in the original
type system are derivable in the extended system. In
the extended system we may instantiate polymorphic
functions at singleton types, and any result value that
consequently belongs to the singleton type has its iden-
tity determined thereby. Finally, since the function is
parametric, we can conclude that the same value is ob-
tained when the function is instantiated at an ordinary
type. In essence, this argument specializes the para-
metricity theorem to a one-point relation, where it is
much easier to prove.

Informally, we use this technique to show the identity
function result as follows:

We write singleton types as §(v:7). Suppose f
has type Va. a— a and v has type 7, and sup-
pose we wish to show that f[r]v = v. In the
extended system, f[§(v:7)] has type §(v:t) —
§(v:7) and v has type §(v:7), so f[§(v:T)]v has
type §(v:T). Therefore f[§(v)]v = v. Since f
is parametric, f[r]v is also equal to v.

In the remainder of this paper, I formalize this tech-
nique for the polymorphic lambda calculus and apply
it to some examples. Then, to show how it general-
izes to richer type systems, I use it to show the stack
preservation property in STAL.

2 The Proof Technique

The treatment of the polymorphic lambda calculus I use
here is standard. For ease of reference, its syntax, and
its static and dynamic semantics are given in Figure 1.
Evaluation is call-by-value and is given by a small-step
relation e — e’. We write the capture-avoiding substi-
tution of E for X in E' as E'[E/X]. As usual, alpha-
equivalent expressions (written E = E') are considered
identical.

The first step in the proof technique is to augment the
original language (in this case the polymorphic lambda
calculus) with singleton types. We will perform this
augmentation only by adding rules, so any judgement
derivable in the original language will also be derivable
in the augmented language. We will write judgements
derivable in the original language with the symbol - and
in the augmented language with the symbol ;. The
rules governing the dynamic semantics will be entirely
unchanged.

We write singleton types as $(v:t). Two rules govern
their usage:

'ksv:T
'k 5(viT) type

Fkswv:r
'k v:S(vir)

There are several important remarks to make about this
formulation of singleton types:

Syntax

types T 1= a|n—on|Var
terms e u= z|AmTel|eier | Aae|e[r]
values v ou= x| ArTe| Aae
conterts I == e|la|T,z:7
Static semantics
'k 71 type T'Fm type I'yak 7 type
— _ (acD) TP TP T
'k a type I'E7 —m type I' FVa.r type
— (2 r
Trzr @7ED)
7 type 7 type D,z:rhe:7 (xgT) F'Fei:7—=7 Thres:T
x
F'FAzire:7—>71 I'Feer: 7
Dake:r F'ke:Va.r TFr type
o oo (@gD) ;
I'F Aae: Va1 I'Felr]:7'[r/a]
Dynamic semantics
e; — el es > eh
eres —> eles ves > veh (Az:T.e)v — e[v/z]
e e
e[r] = €'[7] (Aa.e)[r] — e[r/q]

Figure 1: The Polymorphic Lambda Calculus

1. This formulation is far short of a useful program-
ming language with singleton types. In particular,
no elimination rule for singleton types is provided.
No such rule is required for the proofs we are in-
terested in; instead, elimination will be performed
externally by a canonical forms lemma.

2. The notion of equality inherent in this axiomati-
zation of singleton types is very strong: the type
S(v:t) will contain a value v’ only if v and v’ are
identical, and will only contain a term e only if
e —* v. This strong formulation is by no means
essential to the proof technique (weaker notions
such as observational equivalence would work), but
it provides the strongest possible parametricity re-
sult.

3. In anticipation of our interest in extending this
technique to effectful computation, singleton types
are restricted to values, thereby avoiding the dubi-
ous notion of an effectful type.

4. In the augmented system, types can contain free
occurrences of term variables, and we will find it
necessary to substitute for those variables. Such
substitutions are syntactically well-formed only for
substitutends that are values. Since evaluation is
call-by-value, this will not be problematic.

The main proof burden is to show that the addition of

singleton types is a sound extension. Ordinarily this
requires the proof of Subject Reduction and Progress
lemmas [13], but for our purposes we only require Sub-
ject Reduction:

Lemma 1 (Subject Reduction) Iftse: 7 and e —
e thenbFgse ;7.

As usual, the Subject Reduction lemma is proven by
induction on typing derivations, using substitution lem-
mas for types and values:

Lemma 2 (Type Substitution) IfI'F, 7 type then:

1. IfT,a ks v type then Tk, 7'[7/a] type, and
2. IfT,abse: 7 then T ks elr/a] : 7'[r/al.

Lemma 3 (Value Substitution) IfI'k; v: 7 then:

1. IfT,z:7 b5 7' type then T+, 7'[v/x] type, and
2. If Uzt s e: 7' then T ks efv/z] : 7'[v/x].

With these obligations fulfilled, we can now prove most
of the identity function result: Suppose F f : Va.a — «

and F v : 7. Then F; f[S(v:T)]v : §(v:T). Suppose also
that f[§(v:T)]v —* v'. By Subject Reduction, s v’ :
5(viT).

From k4 v' : §(v:T) we wish to deduce that v = v'. This
is apparent in an inspection of the typing rules, since
the only rules that can assign a value a singleton type
are the singleton introduction rule and the variable rule,
and v’ cannot be a variable since the context is empty.
To summarize formally:

Lemma 4 (Canonical Singleton Forms)
IfT ks v : §(v':7) then either v = v’ or (for some z)
v=x and (x:6(v":7)) € T.

Corollary 5 If s v: S$(v":7) then v = v'.

Thus, from our initial suppositions, we can deduce that
fls(v:T)]v =" o' implies v = v'. To conclude, we invoke
parametricity to show that f[r]v computes to the same
value as f[§(v:7)]v. To do so we use the following defi-
nition and lemma, which together state that terms that
differ only in their types compute in the same manner:

Definition 6 Two termst and t' are identical modulo
type annotations (written t =¢ t') if they differ only
in their component type expressions. Formally, =o s
the least congruence such that (for any e, T and ')
Az:T.e =9 Az:7'.e and e[r] =g e[7'].

Lemma 7 (Parametricity) Ifei; =o ez then:

1. Ife; —* vy then there exists vy such that ex —™ va
and v1 =g v2.

2. If e1 =™ v1 and ex =™ vy then v1 =g V2.

Since f[§(v:T)]v =0 f[r]v and f[§(v:T)]v > v, we may
conclude by Lemma 7 that the result of f[r]v is identical
modulo type annotations to v. The full argument is
summarized as Theorem 8:

Theorem 8 If - f : Va.aa > « and - v :
flrlv =" v then v’ =g v.

T and

Proof

Since augmentation preserves derivability, Fs f :
Va.a — a and k5 v : 7. Therefore k5 v : §(v:T) so
Fs f[S(viT)]v : S(v:iT). Since flr]v —* o', by Para-
metricity there exists v such that f[§(v:r)]v —* v"
and v' =¢ v". By Subject Reduction, s v" : §(v:7).
By Corollary 5, v" = v. Hence v’ =g v. O

Although Theorem 8 used a empty context, we can eas-
ily prove similar results for nonempty contexts analo-
gously. Lemmas 2 and 3 allow working beneath a sub-
stitution, and since an unaugmented context will con-
tain no singleton bindings, we can always be in Lemma
4’s first case.

Similar arguments can show results determining the be-
havior of functions with a variety of different types, such
as:

e Functions with type Va.V3.a — 3 — « must be
extensionally equivalent to the K combinator.

e Functions with type Va. (V8. (a—3) —) =« must
be extensionally equivalent to Aa. Af. fla]id.

e Functions with type Va.V3. (a x 8) = (8 x a) must
be extensionally equivalent to the swap function
(in an extension supporting product types).

2.1 Multiplicate Results

The technique as presented so far suffices to determine
behaviors for a variety of types that imply a single-
valued result, but it does not help in cases where a func-
tion can have multiple possible results. For example, a
function with type Va. @ - a — « always returns one of
its two arguments.

To extend the technique to this sort of problem, we
want to use, instead of singleton types, a more general
type that specifies a fixed finite set of members. We can
build such types from singletons using union types. The
union type 71 V 72 will contain all members of 71 and all
members of 7o:

'k 7m type T'F 7 type

'k 7 V1 type

I'ke:mn Tk m type
'te:mmVm

'kFe:m T'Fmr type
'Fe:mmVm

Again, the primary burden is to show that the addition
of union types is a sound extension. The Subject Re-
duction lemma remains true, and is proven in exactly
the same way, as are the other lemmas, so I will not
repeat them here. The only additional tool necessary is
a canonical forms lemma for union types:

Lemma 9 (Canonical Union Forms) If ' +, v
71 V 72 then either I' b5 v i1 (for i =1 or 2) or (for
some x)v=x and (z:(11 V 12)) € T

Corollary 10 If b4 v : (S(vi:T) V -+ V S(vy:7)) then
v =wv; for some 1l <i < n.

Theorem 11 If + f:Va.a - a—a and k- vy : 7 and
F v 7 and flr]vive —* v then either v’ =¢ v1 or
U’ =0 V2.

Proof

Since augmentation preserves derivability, Fs f :
Va.a—a—a and ks vy : 7 and ks vo : 7. Therefore

Fs v1 0 §(v1:T)VS(v2:7) and b5 v2 : §(v1:7)VE(v2:T).
Hence f[S(vi:T) V 5(va:7)|vrve S(viiT) V S(v2iT).
Since f[r]vive —* v, by Parametricity there ex-
ists v” such that fls (vl 7) V §(v2:7)|v1ve =" v”
and v' =¢ v”. By Subject Reduction, ks v"

S(vi:T) V S(va: T) By Corollary 10, o= v1 or

v" = vy. Hence v/ =¢ v1 or v =¢ va.]

3 Stack Preservation

The original motivation for this work was to prove the
stack preservation property discussed in Section 1. Be-
cause state affecting operations are a fundamental part
of assembly language, proving stack preservation using
an analog of Reynolds’s theorem is prohibitively diffi-
cult. However, the result easily succumbs to the tech-
nique presented in this paper.

3.1 STAL Overview

The static and dynamic semantics of STAL are long
and somewhat complicated, and I will not reproduce
them here. Instead, I will reprise the syntax and discuss
the semantics at an intuitive level. Full formal details
appear in Morrisett et al. [5]. Readers familiar with
STAL can skip immediately to Section 3.2.

The main syntactic constructs of STAL are given in Fig-
ure 2. A machine state (or, program) in the STAL ab-
stract machine is a triple, consisting of a heap, a register
file, and a sequence of instructions. A register file is a
finite mapping of register names to word-sized values,
such as integers and pointers. A heap is a finite map-
ping of labels (¢) to larger-than-word values, that is,
executable code (discussed below) and tuples. A third
sort of value, a small value, is either a register name
or a word value; this distinction is drawn because a
register’s contents cannot be a register name. Also, in
addition to mapping registers to word values, a register
file also maps a special distinguished register, the stack
pointer (sp), to the current machine stack, which is a
nil-terminated list of word values.

The STAL type system contains several notions of type.
Ordinary data (word, heap, and small value) are given
ordinary types (7); such as type variables (a), int, or
code types (V[A].T", discussed below). Stacks are given
stack types (o); such as stack type variables® (p), the
empty stack type nil (which specifies an empty stack),
or cons types 7::0 (which specify a stack w::S where w
has type 7 and S has type o). Finally, heaps and register
files each have a notion of type; heap types assign a type
to every label, and register file types assign a stack type
to the stack pointer and an ordinary type to each other
register. I will often write M{X:E} or M{X — E} as
notion for map update.

Code blocks, written code[A]l'., are sequences of in-
structions I, that abstract a set of type and stack type

4The importance of stack type variables is made clear shortly.

variables (A), and provide a type (I') for the incom-
ing register file. The code’s register file type serves as
a precondition that must hold of the register file before
the code block may be called. Accordingly, the type of a
code block (V[A].T") indicates its type and stack type ar-
guments and its register file precondition. When a code
block abstracts no variables, we often omit the prefix
V[] in its type. A code type does not specify any sort of
postcondition because code blocks do not return per se;
rather, they transfer control by calling some other code
(often given by a return address argument) and satisfy
that code’s precondition.

For example, code having the type discussed in Sec-
tion 1,
V([p].-{sp : p,ra: {sp:p,ri:int}}

can be called, after instantiation p with some o, when
the stack has type o and when ra contains a return
address that itself may be called when the stack has
type o and r1 contains an integer. This type does not
guarantee that the code will transfer control back to
the address in ra, or even that it will terminate at all,
but the precondition {sp:o,ri:int} will be satisfied if it
does.

Semantics The dynamic semantics of STAL is given
by a small-step evaluation relation (written P — P’)
that maps a machine state (H, R,I) to a new machine
state in a manner determined by the first instruction of
I. The static semantics is given by several judgements.
All of them are certainly relevant to the Subject Reduc-
tion proof, but we need be directly concerned with only
a few of them here:

Judgement Meaning

FP Program P is a well-formed.
FH: U Heap H has type V.
UFR:T Register file R has type I'.
UFS:o Stack S has type o.

Uk h:T hval Heap value h has type 7.

U;AFw:7 wval | Word value w has type 7.

L ZWAND RN R Small value v has type 7.
U, AT T Instruction sequence [
is well-formed.
AF 7 type Type 7 is well-formed.
Al o stype Stack type o is well-formed.

Where, as appropriate, ¥ is the type of the heap,
A specifies free type variables, and I is the type
of the register file.

A few relevant inference rules are given in Figure 3.

Polymorphism The mechanism for abstracting code
to take type (and stack type) arguments was discussed
above. Type application is performed by instantiating a
value with a type, written (for example) w[r]. This op-
eration attaches type arguments to a code label. (Types
are erased at run time, so no action need be taken at
run time to do this.) When control is transferred to
instantiated code, the type arguments are substituted

programs P == (H,R,I)

heaps H := {ti—=hi,....0n = hn}

register files R == {sp— Sri—wi,...,rn — wn}
stacks S u= nil|w:S

instruction sequences I == add rq,rs,v;I|1d rq,rs();I|mov rq,v;I|---
registers r o= rl|r2]|---

word values w = L|i|w[r]|wlo]] -

heap values h == code[A]l] | (wi,...,wx)

small values v u= r|w]|o[r]|v[o]]---

types T u= alint|V[A]LL |-

stack types o == pl|nil| 1o |-

heap types U o= {7, T}

register file types ' u= {spio,ri:71,...,"n:Tn}

contexts A == e|AalAp

Figure 2: STAL Syntax (Abridged)

FH: ¢ YFR:T U;gllFHT

H(H,R,T)

UES:o Yeblw :7 wval

\IJI—{SPHS,T'll—)’wl,..

Uk nil : nil

A Fnil stype

U AT F o {spio,ri:7, ..

T Wt spio, riiTL, . TR }
Uiebw:7 woal VFES:o
U+w:S:Tuo
AF T type Al o stype
A& 7::0 stype
SraiTa} D ={spio,ri:71,...,"m:Tm} (n < m)

U, AT jmp v

Figure 3: STAL Static Semantics (Abridged)

for the formal arguments in the corresponding code; for
example:

(}}? R, jmp ri[o]) = (H, R, Ilo/p])
when

R(r1)=¢

H(¢) = code[p]l'.]

3.2 Stack Preservation Proof

As before, we begin by augmenting the language, in this
case with singleton stack types. We will again write
judgements in the augmented language with the sym-
bol 5. Two rules govern the usage of singleton stack

types:®

A s 5(S) stype Uk, S:5(S)

Again, the primary burden is to prove that this is a
sound extension:

Lemma 12 (Augmented Subject Reduction)

5In contrast to the singleton types of Section 2, these sin-
gleton stack types do not constrain the stack in question to be
well-formed. This simplifies the argument slightly: the stack
formation judgement is relative to a heap type, so constraining
singleton stack types to be well-formed would require the stack
type formation judgement to be relative to a heap type as well.
Since, in that case, the judgement forms of - and +,; would be
different, a nontrivial argument would be required to show that
augmentation preserves derivability. Not constraining the stacks
in question to be well-formed removes the need for such an ar-
gument, and poses no other problems.

If 5 P and P~ P' then 5 P'.

The proof is rather involved, but not much more so than
the proof for the unaugmented language, which closely
follows the proof in Morrisett et al. [6]. We may also
easily show Canonical Forms and Parametricity lemmas
analogous to Lemmas 4 and 7:

Lemma 13 (Canonical Singleton Forms) If ¥
S:6(5") then S=5'.

Definition 14 Two ezpressions E and E' are identi-
cal modulo type annotations (written E =¢ E') if they
differ only in their component type expressions.

Lemma 15 (Parametricity) If Py =o P> then:

1. If Py ™ P| then there ezists Py such that P> "
P} and P{ =¢ Ps.

2. If P, —* P| and Py —* Pj then P = P5.

The last thing we must do before we can prove the stack
preservation property is to define what is meant by re-
turn from a function. The naive idea is that a function
has returned when control enters the code block pointed
to be the return address. This naive idea does not work
because control might return to the return code other
than through the interface provided; such as by a global
jump, by a recursive jump to the caller, or by some other
indirect means. We need the definition to identify as
a return only invocations of the return code that pass
through the particular interface provided. This is done
by constructing a clone of the return address that is not
accessible in any other way and running the program
until the clone is used. Then the clone is deleted to en-
sure that a return state is a state actually reached by
computation (Proposition 17).

Definition 16 The state of (Hi,Ri,I1) on return
through register r is (Ha, Ra, I>) if:

e Ri(r) = L[] - [¥n] (where each 1); is either a
type or a stack type), and

o ¢ is fresh, and
o (H{l' = Hi(O)}, Ri{r =] - [hn]}, 1) =7
(H',R,I'), and

e the nert evaluation step of (H',R',I') is to
call U'[i1]---[thn] (that is, I' begins with either
a jump or a successful conditional branch to

U]+ [¢hn]), and

e Hy, = (H'\ 0)[¢/l'] and Ry = R'[£/l'] and I, =
/).

Proposition 17 If the state of P on return through
any register is P', then P —* P'.

Theorem 18 (Stack Preservation) Suppose F Hj :
¥ and ¥ - Ry : T and I'(sp) = o. If ;¢ F
v : V[p].{sp : p,ra : {sp:ip,rl:iint}} and the state of
(H1, Ry, jmp v[o]) on return through ra is (Hz, R, I2),
then Ri(sp) =0 R2(sp).

Proof

Let H', R', I, ¢, ¢ and v; be defined according
to Definition 16. Let H; = H1{¢' = Hi({)} and
let Ry = Ri{ra v £'[¢1]---[n]}. By definition,
(Hi, R, jmp v[o]) =* (H', R',I') and the next eval-
uation step of (H', R',I') is to call £'[¢h1] -+ - [thn].

Using Parametricity, we will construct another com-
putation P —* P’ where P =¢ (Hy, R}, jmp v[o]),
where P’ =g (H', R',I'), and where the next evalua-
tion step of P’ is also to call £'[1)1] - - - [1»]. However,
the type of ¢ in P and P’ will use a singleton stack
type to constrain the stack to be the desired stack,
Ri(sp). Since P’ will immediately call ¢', and since
P’ will be well-formed, it will follow that the stack of
P’ is R1(sp), and therefore that R»(sp) =0 Ri1(sp).

Let S = Ri(sp) and let hy = Hi(¢). The typing
assumptions ensure that h, must be a code value,
since the current instruction is a jump to v[o] and
the precondition of v[o] says that the contents of ra
(that is, £[¢1] - - - [n]) are a function. Thus, let hy =
code[A;]T';.I;. At the start of our new computation,
instead of binding ¢ to h, (as in Hi), we will bind
it to a variant of hy that demands a singleton stack
type.

Let hy = code[A¢](T¢{sp:§(S)}).I;. Let HY =
H.{¢' — hy}. Observe that Hi =o H{ and
jmp v[o] =o jmp v[§(S)]. Therefore (Hi, R}, jmp
v[o]) =0 (HY,Ri,jmp v[§(S)]). Let P be the lat-
ter. By Parametricity, P —* P’ for some P’ such
that P’ = (H",R",1"), H = H", R’ = R and
I' =¢ I'". There exist no transitions in the opera-
tional semantics that alter a code value in the heap,
so H'(¢') = H{'(¢') = h;.

Since augmentation preserves derivability, all the as-
sumed judgements are derivable in the augmented
language, where we also have € s §(S) stype and
¥ ks S @ 5(S5). It is then easy to show that
Fs (HY, R}, jmp v[§(S)]). Therefore, by Subject Re-
duction, s (H'',R",I1"). By inspection of the typ-
ing rules, s H"” : ¥' and ¥’ -, R" : T, for some ¥’
and I,

Recall the next evaluation step of (H',R',I')
is to call ¢'[¢1] - [¢n]. Since (H',R,I') =
(H",R",I'"), the latter’s next evaluation step must
be to call £'[¢p1]---[¢y], for some <, =o ;.
Therefore, ' must match the precondition on
O'[1]- - [¢,), which is (T¢{sp:6(S)})[$/A]. In par-
ticular, I'(sp) = 6(S)[)/A]. Since S has no free
variables (recall it typechecks in an empty context),
I'(sp) = 6(S). Since ¥’ ; R" : ', we conclude by
Lemma 13 that R"(sp) = S.

Now recall that ' =9 R”, so R/(sp) =0 S. The
label ¢ was fresh, so it could not appear in S
and thus S[¢/¢'] = S. Consequently, Rx(sp) =
(R (sp))[¢/¥'] =0 S[£/l'] = S. O

4 Conclusions

Syntactic proof techniques, where applicable, have often
been found to be simpler than semantic proof techniques
for similar results. This has been particularly true in
setting that include computational effects, where non-
syntactic techniques have often been prohibitively chal-
lenging. In this paper I propose a syntactic approach
to proving certain parametricity results. This technique
is effective for results in which a function’s output (or,
more generally, an expression’s result) is shown to be a
simple variant of one of its inputs.

The technique reveals no fundamental new insights into
parametricity, but rather frames the standard observa-
tions in a particularly direct way. It is that directness
that leads to the technique’s simplicity, but also that
limits its applicability. To see the directness of connec-
tion, recall the intuitive parametricity arguments from
Section 1. In each argument, a conclusion was drawn
regarding the behavior of general instances of a poly-
morphic function by analogy with a particular instance;
in one case the unit instance, and in the other case the
nil instance. The common property of each of these
types is that they are singleton types. Each contained
only one member and therefore fully specified its func-
tion’s results. In this paper I lift such arguments to
nontrivial types by adding singleton subtypes of other

types.

The primary proof obligation of this technique is to
demonstrate Subject Reduction in the presence of sin-
gleton types. Subject Reduction arguments are usually
not hampered severely by computational effects, mak-
ing it tractable to generalize this technique to effectful
settings. This is illustrated by the main new result of
this paper, a proof of the Stack Preservation property
for STAL. This property provides an important security
guarantee for STAL programs, that their stacks are pro-
tected from corruption during calls to untrusted code.

References

[1] Luca Cardelli, Simone Martini, John C. Mitchell,
and Andre Scedrov. An extension of system F with
subtyping. In Theoretical Aspects of Computer
Software 1991, volume 526 of Lecture Notes in
Computer Science, pages 750-770, Sendai, Japan,
1991. Springer-Verlag.

[2] Andrew J. Kennedy. Relational parametricity and
units of measure. In Twenty-Fourth ACM Sym-
posium on Principles of Programming Languages,
pages 442-455, Paris, January 1997.

[3] QingMing Ma. Parametricity as subtyping. In
Nineteenth ACM Symposium on Principles of
Programming Languages, pages 281-292, Albu-
querque, New Mexico, January 1992.

[4] QingMing Ma and John C. Reynolds. Types, ab-
straction, and parametric polymorphism, part 2.

(8]

[9]

[10]

[11]

[12]

[13]

In Seventh Mathematical Foundations of Program-
ming Semantics, volume 598 of Lecture Notes in
Computer Science, pages 1-40, Pittsburgh, Penn-
sylvania, March 1991. Springer-Verlag.

Greg Morrisett, Karl Crary, Neal Glew, and David
Walker. Stack-based typed assembly language. In
Second Workshop on Types in Compilation, vol-
ume 1473 of Lecture Notes in Computer Science.
Springer-Verlag, March 1998. Extended version
published as CMU technical report CMU-CS-98-
178.

Greg Morrisett, David Walker, Karl Crary, and
Neal Glew. From System F to typed assembly lan-
guage. ACM Transactions on Programming Lan-
gquages and Systems, 1999. To appear. An earlier
version appeared in the 1998 Symposium on Prin-
ciples of Programming Languages.

Peter W. O’Hearn and Robert D. Tennent. Para-
metricity and local variables. Journal of the ACM,
42(3):658-709, May 1995.

Gordon Plotkin and Martin Abadi. A logic for
parametric polymorphism. In International Con-
ference on Typed Lambda Calculi and Applications,
pages 361-375, 1993.

Gordon Plotkin, Martin Abadi, and Luca Cardelli.
Subtyping and parametricity. In Ninth IEEE Sym-
posium on Logic in Computer Science, pages 310—
319, July 1994.

John C. Reynolds. Types, abstraction and para-
metric polymorphism. In Information Processing
’83, pages 513-523. North-Holland, 1983. Proceed-
ings of the IFIP 9th World Computer Congress.

Chistopher Strachey. Fundamental concepts in
programming languages. Lecture Notes, Interna-
tional Summer School in Computer Programming,
Copenhagen, August 1967.

Philip Wadler. Theorems for free! In Fourth Con-
ference on Functional Programming Languages and
Computer Architecture, London, September 1989.

Andrew K. Wright and Matthias Felleisen. A syn-
tactic approach to type soundness. Information
and Computation, 115:38-94, 1994.

