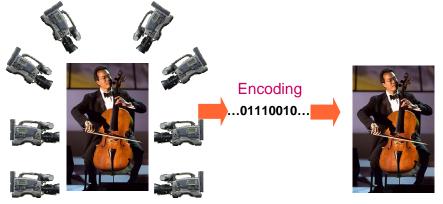


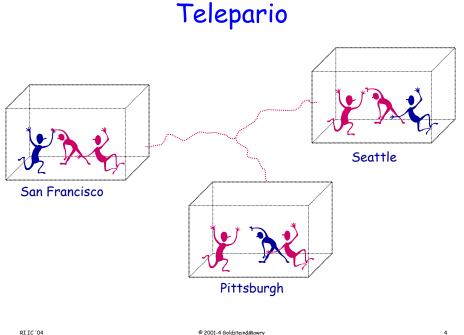
#### Claytronics, Synthetic Reality, And Robotics

Seth Goldstein & Todd Mowry

Carnegie Mellon University 8/30/04 Robotics IC

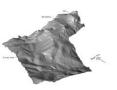
www.cs.cmu.edu/~claytronics


Joint work with Sitti, Hoburg, Lee, Aldrich, Seshan, Pfenning, Veloso, Sukthankar, Baker, Kirby, Rister, Reshko, Bowers


RI IC '04



## pario


Latin: to bear, bring forth, produce; create, make, get













parioconferencing





RI IC '04



pariopresence



© 2001-4 Goldstein&Mowry

#### Science fiction?



RI IC '04

© 2001-4 Goldstein&Mowry

#### Science fiction?



Flynn/SRI

RI IC '04

Amorphous Computing/ **Emergent Behavior** Modular Robots

Veloso/CML

ing/MIT



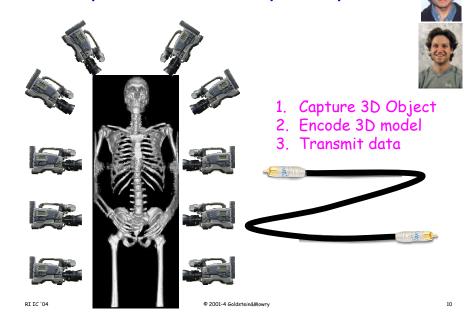
Multi-Robot Teams



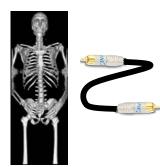


## Programmable matter

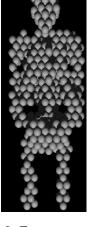
- An ensemble of material that contains sufficient
  - local computation
  - actuation
  - storage
  - energy
  - sensing & communication
- Which can be programmed to form interesting dynamic shapes and configurations.

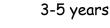

RI IC '04

#### Claytronics


- Bring matter under computer control i.e., programmable matter
- Path to the future
  - 1 micron cubed catom
  - Creation of useful artifacts
- Create a enticing system that explores ALL the computer science issues of programmable matter
- Basis for Synthetic Reality/Future Robots

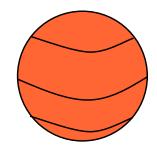
© 2001-4 Goldstein&Mowry


#### Synthetic Reality - Capture

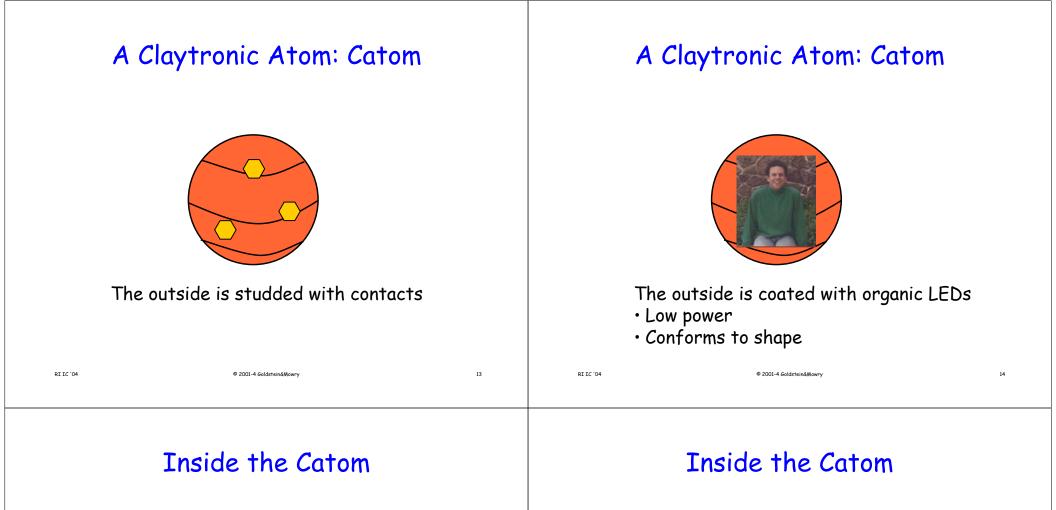



#### Synthetic Reality - Reproduce



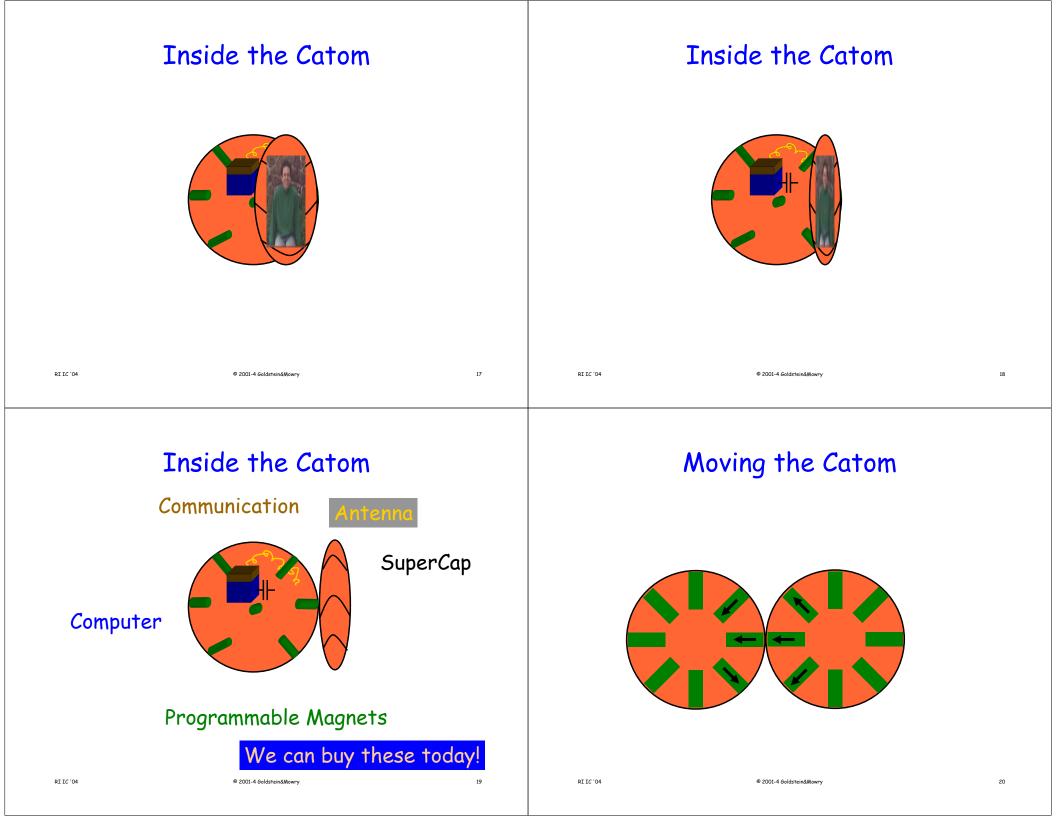

RI IC '04





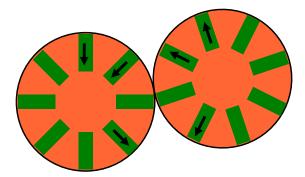

5+ years

#### A Claytronic Atom: Catom

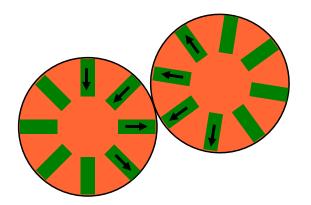



RI IC '04

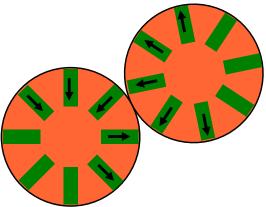


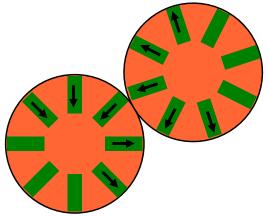





|          | Moving the Catom         |    |                   | Moving the Catom         |    |
|----------|--------------------------|----|-------------------|--------------------------|----|
|          |                          |    |                   |                          |    |
| RI IC'04 | © 2001-4 GoldsteinåMowry | 21 | RI I <i>C</i> '04 | © 2001-4 GoldsteinåMowry | 22 |
|          |                          |    |                   |                          |    |


#### Moving the Catom




#### Moving the Catom



| Moving the Catom |                          |    | Moving the Catom |                          |    |
|------------------|--------------------------|----|------------------|--------------------------|----|
|                  |                          |    |                  |                          |    |
| RIIC'04          | © 2001-4 Goldstein&Mowry | 25 | RI IC '04        | © 2001-4 Goldstein&Mowry | 26 |
|                  | Moving the Catom         |    |                  | Moving the Catom         |    |
|                  |                          |    |                  |                          |    |







#### **Claytronics** Today

- · 2D system
- Modular design

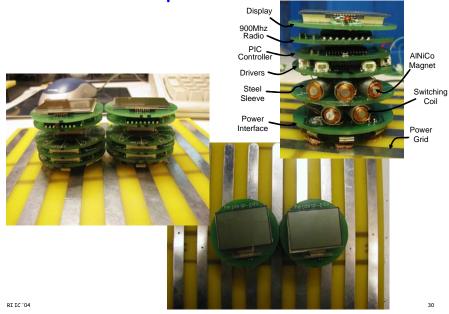












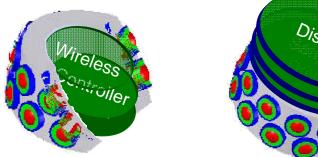

RI IC '04

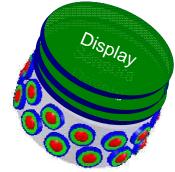
© 2001-4 Goldstein&Mowry

29

#### Complete Catoms




#### Magnets For Locomotion

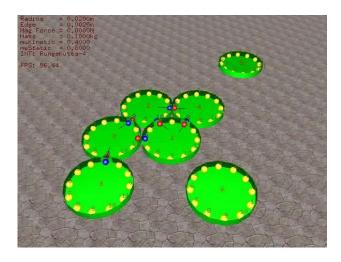







#### Next Generation 2D catom

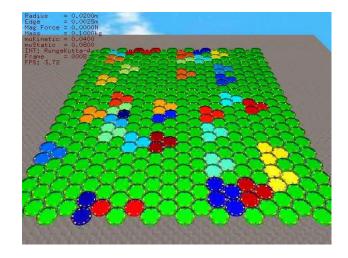





ETA: November 15, 2004

© 2001-4 Goldstein&Mowry

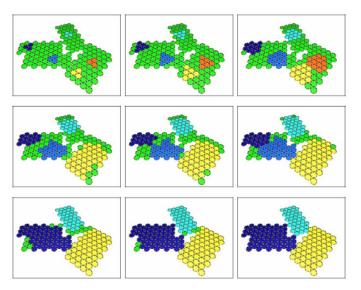
RI IC '04


#### First Step, Find and localize



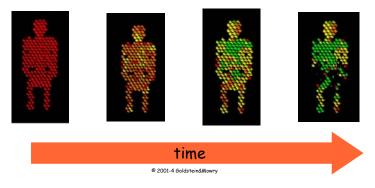


| © 2001-4 GoldsteindMowry | 33 |
|--------------------------|----|
|                          |    |


#### **Distributed Localization**

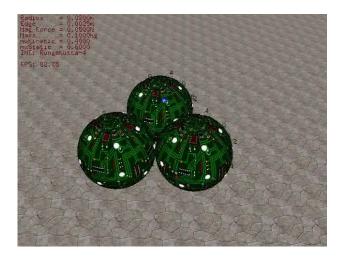


RI IC '04

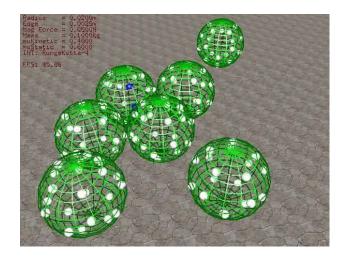

© 2001-4 Goldstein&Mowry

#### Handling Grain Boundaries




#### Next Step, Create Network

- Use simple local rules to form hierarchy
- 10 line program does this!
- Local only decisions  $\rightarrow$  Global effect




30

#### Simulation of Future Catoms



#### And Localization



| RI IC '04 | © 2001-4 GoldsteináMowry | 37 | RI IC '04 | © 2001-4 Goldstein&Mowry |
|-----------|--------------------------|----|-----------|--------------------------|
|           |                          |    |           |                          |



#### Multiple Networks



Unlike current systems, we can only create a single electrical contact between devices, so cooperation is needed to form circuits

An external source provides  $V_{dd}$ and ground lines, and separate pathways are formed through the object to power each catom



We have developed an algorithm that keeps basic static shapes powered.

Future work includes leveraging the hierarchy and powering dynamic structures.

#### Getting There From Here

 Goal: Robust ensemble of millions of catoms

© 2001-4 Goldstein&Mowry

- Claytronics Design Principles
  - No Moving Parts
  - Local Control
  - No Static Power



# Moore's Law Нарру B'Day RI IC '04 © 2001-4 Goldstein&Mowry

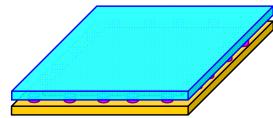
#### Where are we in 50 years?

|            | 1949                | 2003              | 2050                                      |
|------------|---------------------|-------------------|-------------------------------------------|
|            | Eniac               | greeting<br>card  | Programmable<br>matter                    |
| Cost       | 5M-23M<br>(2002 \$) | 1\$               | 1 millicent                               |
| Weight     | 30 tons             | 1 oz              | 20 µg                                     |
| Volume     | 450 M <sup>3</sup>  | 1 cm <sup>3</sup> | 1 nm <sup>3</sup> ?? (1 μm <sup>3</sup> ) |
| Power      | 200KW               | 20mW              | 2 attowatts                               |
| Cycle time | >200µs              | 25ns              | 2 picosec                                 |
| Storage    | <800B               | 4KB               | 16KB                                      |

Cogent arguments for both sooner and later exist © 2001-4 Goldstein&Mowr

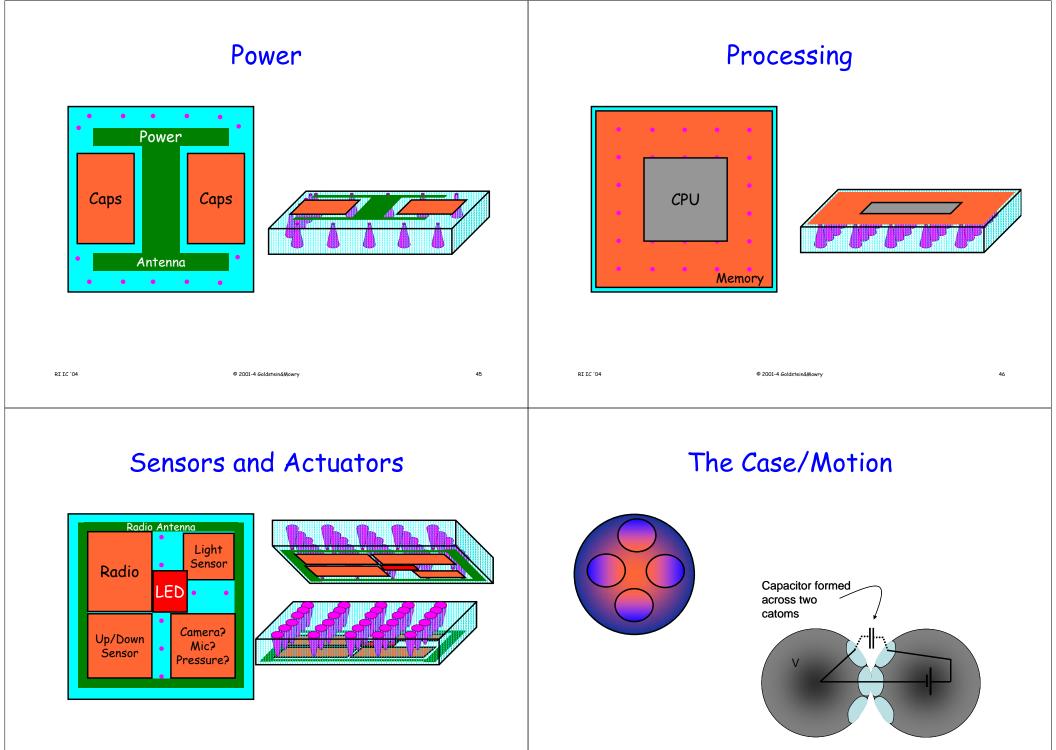
#### Scaling of Claytronics

|                          | Macro                                         | Micro                                            | Nano                                                        |
|--------------------------|-----------------------------------------------|--------------------------------------------------|-------------------------------------------------------------|
| Dimensions               | >1 cm                                         | >1 mm                                            | <10 microns                                                 |
| Weight                   | 10's gr                                       | 100's mg                                         | <1 mg                                                       |
| power                    | <2 Watts                                      | 10's mW                                          | 10's nW                                                     |
| Locomotive<br>mechanism  | Programmable<br>magnets<br>Electromagnets     | Electrostatics                                   | Aerosol                                                     |
| Adhesion<br>mechanism    | Nanofiber<br>adhesives<br>Magnets             | Programmable<br>nanofiber<br>adhesives           | Molecular surface<br>adhesion and<br>covalent bonds         |
| Manufacturing<br>methods | Conventional<br>manufacturing and<br>assembly | Micro/Nano-<br>fabrication and<br>micro-assembly | Chemically<br>directed self-<br>assembly and<br>fabrication |
| Resolution               | Low                                           | High                                             | High                                                        |
| Cost                     | \$\$\$/catom                                  | \$/catom                                         | Millicents/catom                                            |


#### **3D Catom Proposal**

• Three die

RI IC '04


RI IC '04

- Compute die
- Sense/actuate die
- Power die
- Connect back-to-back use through die vias



43

41



#### What about the software?

- Distributed Planning
- Programming Models
- Networking

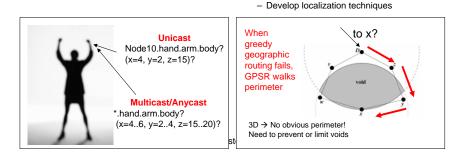
...

RI IC '04

#### Networking: Naming & Routing

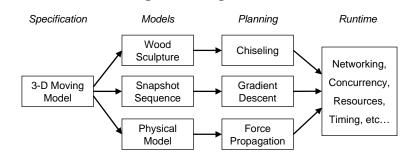


#### Routing


#### How to identify path to destination catoms

- Traditional ad hoc routing (DSR, AODV, etc.)
  - Relies on flooding → not scalable to Claytronic network sizes
- Geographic (GPSR)

   Requires planar network interconnect → cannot support arbitrary 3d structures


 Use programs to control 3d structure such that GPSR-like routing is possible

Our approach



#### Programming Language/Software Engineering Research

© 2001-4 Goldstein&Mowry





51

49

#### Claytronics & Pario

- Open up an entire new application space
  - Entertainment (interactive clay)
  - Training (live-fire exercises)
  - Design

Naming

How will programs address catoms?

Identity: Geographic, based on shape (e.g.

Support multiple naming schemes (at

higher cost) until application needs are

· Granularity: Individual, multicast, anycast

- Driven by application needs

arm catoms)

clear

Our approach

- Interaction (telepario)
- Rescue
- (paramedic on demand)

(100x protein model)

- Metal Man (fault tolerant robotics)
- Vehicle for studying CS problem of the future:

How do you design, program, maintain, and use a billion component system?

RI IC '04

#### Claytronics & Pario

- Open up an entire new application space
- Vehicle for studying CS problem of the future:

How do you design, program, maintain, and use a billion component system?

• Vehicle for creating robot of the future How to design and program a collection of micro/nanorobots to create a useful macroscale robot?

#### Claytronics & Pario

- Open up an entire new application space
- Vehicle for studying CS problem of the future.
- Vehicle for creating robot of the future How to design and program a collection of micro/nanorobots to create a useful macroscale robot?

#### Claytronics & Pario

© 2001-4 Goldstein&Mowry

- Open up an entire new application space
- Vehicle for studying CS problem of the future.
- Vehicle for creating robot of the future How to design and program a collection of micro/nanorobots to create a useful macroscale robot?
- Our Approach:

RI IC '04

- Make scaling work for us
- Exploit scale invariance
- Design for scalability in both number & size

## Software Systems

© 2001-4 Goldstein&Mowry

- Distributed Computing
  - how to write a program for 1M+ machines? what is the programming model?
- · Robot planning, distributed robotics
  - how to plan the coordinated movement, communication and sensing?
- Networking and sensor nets
  - how to geolocate, communicate?
- Emergent Behavior
  - how to self-organize and operate in uncertain environments with unreliable components?
- Many others...

RT TC '04

RI IC '04

53

## Hardware Systems

| •<br>•    | Microrobots, modular robots<br>- what is the design of the elements?<br>MEMS/nanotech materials<br>- how to achieve small scale economically?<br>Magnetics and other actuation<br>- how to do locomotion, actuation?<br>High voltage silicon processing<br>- how to achieve manufacturing economies of<br>scale?<br>Power systems<br>- how to distribute power?<br> |    |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| RI IC '04 | © 2001-4 Goldstein&Mowry                                                                                                                                                                                                                                                                                                                                            | 57 |