17-708 SOFTWARE PRODUCT LINES:
CONCEPTS AND IMPLEMENTATION

FEATURE INTERACTIONS

CHRISTIAN KAESTNER
CARNEGIE MELLON UNIVERSITY
INSTITUTE FOR SOFTWARE RESEARCH

READING
ASSIGNMENT NOV 16

tbd

LEARNING GOALS

Understand the nature of feature interactions and the optional
feature problem; disentangle the different meanings of the terms

Identify common sources of feature interactions

Use appropriate strategies to avoid, mitigate, or detect feature
interactions

Select and apply implementation strategies for the optional feature
problem

Burglar
Sensors e
~ -
.- ~.
’
— - - ; Record \
Security Surveillance [—— Intruder i
Feature Camera v Images 4
s
N -
~ ~ e -
. -
-
DVD-R |

Fig. 2a Problem Diagram of Security Feature.

Entertainment
Feature

Clack .
.
~.
TV T “
TV Tuner == I*’ Record TV v
" Programme . '
"JL‘-I‘- o e = -
DVD-R F'y

Fig. 2b Problem Diagram of Entertainment Feature.

Burglar
Sensors

Security

Surveillance

Feature

Camera

Entertainment
Feature

I |

!
LY

rd

Ed
DVD-R k
~

~
-

TV Tuner

»
- =

\ Clock

Record]
Intruder
Images ’

- -

-
Record TV A

Programme

Fig. 2¢c Composition of Security and Entertainment Fea-

tures.

Nhlabatsi, Armstrong, Robin Laney, and Bashar Nuseibeh.
"Feature interaction: the security threat from within software
systems." Progress in Informatics 5 (2008): 75-89.

[:weather:]

PRESS

) 8-);-) ...

)

&
-
&
U

@OO®
O OX*L
QLY
QLY
QOO0

Today's weather: [:weath<©

Hands-free entry
Night lock
Electronic operation
Intruder defense

Example from P. Zav

Feature Interactions

Features designed in isolation
(divide and conquer)

Interact in intended and unintended ways
when composed

(Failure of compositionality
due to hidden underlying domain)

(t

Security and Alarm |

[Remote Contrc()\lj

hphysical world has no compoitionality."

M. Jackson, FI Dagstuhl 2014

SOURCES

Overlapping preconditions (nondeterminism)
Requirements inconsistency

Conflicting goals

Violations of assumptions

Resource contention

Nhlabatsi, Armstrong, Robin Laney, and Bashar Nuseibeh.
"Feature interaction: the security threat from within software
systems." Progress in Informatics 5 (2008): 75-89.

INTERACTION TYPES

Nondeterminism

Dependence

Override (same precondition)
Negative impact (same precondition)
Override (linked trigger events)
Negative impact (linked trigger events)
Order

Bypass

Infinite loop

Nhlabatsi, Armstrong, Robin Laney, and Bashar Nuseibeh.
"Feature interaction: the security threat from within software
systems." Progress in Informatics 5 (2008): 75-89.

off-line on-line

avoidance

detection

resolution

Figure 2: Categorization of approaches to addressing feature interactions |

Keck, Dirk O., and Paul J. Kuehn. "The feature and service
interaction problem in telecommunications systems: A survey."
Software Engineering, IEEE Transactions on 24, no. 10 (1998):
779-796.

Handling Inte s

00Se music

Composition mechan
resolution

(telecommunication,
home automation)

Handling Interactions

|SO|atIOn y nOﬂ | ﬂte rfe renCe (to some degree)

(Android, Kernel drivers, browser plugins)

Handling Interactions

Detection in requirements or

Implementations

¥

public void timeshift() {
if (Cenfiguration.overloaded) {
if (areDoorsOpen() & weight > maximumieight) {
blocked = true;
if (Cenfiguration.verbose) {
System.out.println("Elevator blocked due to overloading (weight:" + w

H

return;
} else

blocked = false;
}

if (stopRequestedAtCurrentFloor()) {
doors = DoorState.open;
/{ iterate over a copy of the original list, avoids concurrent
// modification exception
for (Person p : persons) {
if (p.getDestination() == currentFloorID) {
leaveElevater(p);

env.getFloor (currentFloorID).processhaitingPersons(this);
resetFloorButton(currentFloorID);
} else {
if (doors == DoorState.open) {
doors = DoorState.close;

if (stopRequestedInDirection(currentheading, true, true)) {
// continue
continueInDirection(currenteading);
} else if (stopRequestedInDirection(currentteading.reverse(), true, true)) {
// revert direction
continueInDirection(currentheading.reverse());
} else {
/ idle
continueInDirection(currentheading);
}
H

#include <stdio.h>

#ifdef WORLD

char * msg = "Hello_World\r®:
#endif
#ifdef BYE
char * msg
#endif

"Bye bye!\n";

true -> (WORLD v BYE

main() {

= printf(msqg);

DETECTION

Formal methods
Model checking

Detecting overlapping preconditions

Requirements

Identifying shared resources

e At the requirements level, a typical strategy is to systematically search for shared
resources. Two features that share resources may potentially interact over this
resource. For example, the features FireControl and FloodControl from Example 9.2
both affect the resource water supply. A typical strategy is to model all resources
relevant for each feature and subsequently investigate manually all pairs of features
that share a resource.

e The strategy applied to resources can be used also for events (and preconditions
of operations). Two features that react to the same event (or that have overlapping
preconditions) are potential candidates for feature interactions. For example, the
features CallForwarding and CallWaiting from Example 9.1 both react to the same
event (that is. an incoming call on a busy line). Again, modeling events allows us
to manually investigate all pairs of features reacting to the same event.

¢ Inconsistent requirements and conflicting goals of features revealed during domain
engineering can also be an indicator of potential interactions. For example, features
Acceleration to increase the speed of a car and AdaptiveCruiseControl to automati-
cally adjust the distance to other cars by decreasing speed have conflicting goals.
Again, requirements and goals need to be made explicit, for example, by modeling
them.

e Making assumptions (or invariants) of features explicit can help detecting when an
assumption is violated by other features. For example, feature Index in Example 9.3
assumes that the data structure is immutable, an assumption violated by feature
Write.

Apel, Sven, Don Batory, Christian Kastner, and Gunter Saake.
Feature-Oriented Software Product Lines. Berlin: Springer, 2013.

“resource usage®

sefresource » dresource»
B
A
«resource usagey
set resource »
C
«excludes»
_) cannot be used
| <c|r1teT3"|t|{:1naI>} H
turnp off
4 wusage»
reads value
D E
aenvironment induced »
effects
F G
«intgntional» 4 wusage
changes gnvironment » wenvironment» measures envjronme nt

physical environment

Ferber, Stefan, Jirgen Haag, and Juha Savolainen. "Feature
interaction and dependencies: Modeling features for
reengineering a legacy product line." In Software product lines,
pp. 235-256. Springer Berlin Heidelberg, 2002.

gUsagen
reads value »

gintentionals
I srsHates value for
Synchronization
ausagew ausages
reads valpe regads value »
ausages l
Sense converts value Sense Sense
crankshaft engine camshaft
angle speed angle
gintenfionals
i augages aintergtional» sqis { alUpages
reads|value Convert to camghaft reads|value
different angle »
quantization
wUpages - 1 -
readslvalue Limp-home aexcludes» Limp-home
camshaft runtime crankshaft . wukaqe
failure failure A
. . readg value
gintenfionals Tor
erforms b wout of scopes
P Double
Ignition
€lISagen
reads value » wout of scopes
Missfire
detection
xusage:
Crankshaft eads value »
Sensor
diagnostics _
«usagen Ferber, Stefan, Jirgen Haag, and Juha Savolainen. "Feature
reads value interaction and dependencies: Modelirlg featahast f
TEENgIMEEring a legacy proauct Ime. 1

pp. 235-256. Springer Berlin Heidelbe

ONLINE TECHNIQUES

e Feature Manager based approaches. An entity, usually called the feature manager,
1s Introduced mto the network with the capability of observing and controlling the
call processes. Hence, the control of the call 1s located with the feature manager.
So far mainly centralised approaches featuring a single feature manager have been
developed. However, distributed architectures for managers are also possible.

e Negotiation based approaches. Individual features have the capability of communi-
cating their intentions to each other and negotiating an acceptable resolution. Most
approaches advertise a direct communication where the call control resides with the
features. However, if no resolution is possible the conflict can be forwarded to a third
party to resolve.

Calder, Muffy, Mario Kolberg, Evan H. Magill, and Stephan Reiff-
Marganiec. "Feature interaction: a critical review and considered
forecast." Computer Networks 41, no. 1 (2003): 115-141.

OPTIONAL
FEATURE
PROBLEM

OPTIONAL FEATURE
PROBLEM

Code focused view — how to implement coordination code between
two features

Applicable only once interactions identified and detected

+

Coordination

Statistics
(buffer hit ratio,
table size and
cardinality, ...)

Transactions
(locks, commit,
rollback, ...)

Transactions per second

PRODUCTS

DB with statistics and
transactions

DB with statistics without transactions

DB with transactions, without statistics

UNDESIRED
PRODUCTS

DB with transactions without statistics
measuring transactions per second
(larger and slower than necessary)

DB with statistics without transactions
trying to measure transactions
per second(?)

MODULES

Where to implement

-------- ‘ . transactions/sec

How to create product without

transactions but with statistics ga ot
Database
c/\c transactions/sec really a feature?
Statistics Transactions
| A
5 o
Txn-Stats = -----=-="" p— A —

e
........

MULTIPLE IMPL.

Products

Variability Impl. Effort Binary Size & Perf. Code Quality

v 5 v ¥

DOCUMENT
DEPENDENCIES

Products

Varlablllty Impl. Effort Binary Size & Perf. Code Quality

v v v

MOVING SOURCE
CODE

Products

Variability Impl. Effort Binary Size & Perf. Code Quality

v 7

4

CHANGE BEHAVIOR

Products

Variability Impl. Effort Binary Size & Perf. Code Quality

? v ? v

3 3

REPROCESSOR

Products

#ifdef TXN
lock () ;
#ifdef STAT
lockCount++;
#endif
#endif

Variability Impl. Effort Binary Size & Perf. Code Quality

v v v ¥

GLUE CODE MODULES

Products

1ability Impl. Effort Binary Size & Perf. Code Quallty

v f v

OVERVIEW

3 m
: =
g =
>

«

Multiple impl

Dependency

Move source code

Change behavior

Preprocessor

Glue code modules

Q@@Q\Q RIITEREA
RSN

QNG 7

ROy ™

EXPERIENCE
BERKELEY DB

Dependencies?

* Would render important features de-facto mandatory

Change behavior?

* undesired
Glue code module?

* Extracted 76% of statistics code into 9 modules Y%
3]
* = possible but labor intensive

~

Preprocessor

* Faster, easier
* Scattered code

REMINDER: VARIABILITY
MANAGEMENT

see mass customization in automotive

Identify relevant variability

Reduce unnecessary variation to avoid interactions and optional code
problems

FURTHER READING

Calder, Muffy, Mario Kolberg, Evan H. Magill, and Stephan Reiff-
Marganiec. "Feature interaction: a critical review and considered

forecast." Computer Networks 41, no. 1 (2003): 115-141.

