
Is This Conversation on Track?

Paul Carpenter, Chun Jin, Daniel Wilson,
Rong Zhang, Dan Bohus, Alexander Rudnicky

School of Computer Science, Carnegie Mellon University
Pittsburgh, Pennsylvania USA

fcarpep+, cjin+, dwilson+, rongz+, dbohus+, air+g@cs.cmu.edu

Abstract
Confidence annotation allows a spoken dialog system to

accurately assess the likelihood of misunderstanding at the ut-
terance level and to avoid breakdowns in interaction. We de-
scribe experiments that assess the utility of features from the
decoder, parser and dialog levels of processing. We also investi-
gate the effectiveness of various classifiers, including Bayesian
Networks, Neural Networks, SVMs, Decision Trees, AdaBoost
and Naive Bayes, to combine this information into an utterance-
level confidence metric. We found that a combination of a
subset of the features considered produced promising results
with several of the classification algorithms considered, e.g.,
our Bayesian Network classifier produced a 45.7% relative re-
duction in confidence assessment error and a 29.6% reduction
relative to a handcrafted rule.

1. Introduction. Related work
The CMU Communicator system is a telephone-based dialog
system that handles multiple travel tasks, including flight ar-
rangement and hotel and car reservation [1]. The system is im-
plemented as a distributed architecture, consisting of a series
of parallel modules, such as speech recognition, parsing, dialog
management, natural language generation, and speech synthe-
sis. As the control point of the entire system, the dialog man-
ager is responsible for analyzing the inputs from various mod-
ules, understanding their meaning, keeping track of interaction
with the user, and determining the next operation (i.e. response)
necessary to complete the task.

Unfortunately, machine recognition of speech is imperfect
at best. Even small changes in the environment, telephone
line quality, and the user’s pronunciation may seriously impair
recognition performance. The parsing module can also cause
trouble by providing an incorrect result or failing to eliminate
ambiguity. In many cases the system not only misunderstands
the user, but it takes this misunderstanding as fact and continues
to act using invalid information. When this happens a simple
parsing error can grow until the entire interaction is ruined. The
system is unaware of the problem because it has no means to
judge how well the conversation is proceeding.

To avoid such situations, the CMU Communicator currently
employs a model based on information about recognizer confi-
dence and parse goodness. It also incorporates simple heuristics
that monitor other dialog characteristics that are symptomatic
of breakdown. We would like a more accurate confidence an-
notation scheme that integrates information from the decoding,
parsing and dialog level into a single framework. The model
should assign a confidence score as a continuous variable de-
scribing the probability that a certain utterance was correctly
perceived by the system.

The confidence metric problem has been investigated previ-
ously [2, 3, 4, 5]. Most of this work has focused on how to detect
the decoding errors made by the speech recognizer, and thus the
proposed schemes work mainly at the frame, phoneme, or word
level. For instance, word-level confidence annotation assigns
a reliability tag to each word token in the decoder hypothesis.
Typically a two-class annotation scheme is used, which marks
the word instance correct or incorrect. However, this type of
model is not always sufficient for dialog systems.

More recently, attempts have been made to use features
from the other levels of the dialog system in deriving confidence
metrics. For example [6] reports a study using decoder, lan-
guage model and parsing features with a neural network classi-
fier. Others [7] have used confidence metrics in the upper levels
of language understanding and dialog management in order to
achieve more flexible dialog and clarification strategies. Our
work considers additional high-level features derived from the
dialog manager and systematically compares several different
classifiers.

We considered several machine learning techniques (e.g.,
Bayesian networks, boosting, decision trees, neural networks,
support vector machines and naive Bayes classification) and
tried to establish which of these is best suited for the task at
hand. In Section 2 we describe the data and features that were
used in training the classifiers. Section 3 starts with a prelimi-
nary analysis of the training set, and then describes in detail the
experiments we performed and the results obtained. Section 4
does a comparative analysis of the results obtained by the differ-
ent classifiers, and Section 5 concludes the paper and describes
several directions for future work.

2. Data collection and feature extraction
2.1. Data collection and cleanup

We selected 2 successive months of CMU Communicator dialog
data (logs and transcriptions) to work with. This information is
logged automatically during telephone conversations hosted by
the Communicator system. Each utterance in this dataset was
hand-labeled as either OK or BAD. The OK label was assigned
only to utterances free of all errors (e.g., parsing, recognition,
etc.); otherwise the turn was labeled BAD.

Not all data were used, as a significant number of dialogs
in this corpus were not well-formed. These were usually short
conversations with no meaningful conclusion (e.g., hang-up
calls, wrong numbers, etc.) We therefore established a criterion
which required dialogs to have a minimum of 5 turns; the others
were discarded. Of the remaining data approximately 6% was
further discarded because they contained a mix of OK and BAD
labels. The cleaning process yielded a total of 4550 transcribed

and labeled utterances.

2.2. Feature extraction

Choosing good features is paramount for the success of a clas-
sifier. From the multitude of features logged by the system we
identified 12 that seemed most relevant for the task at hand.
Generally speaking, these features can be grouped into 3 cate-
gories: decoding, parsing and dialog. To illustrate each feature
clearly, we first present a sample extracted from the log file.
The system prompt and user response are presented below, fol-
lowed by the automatically generated hypothesis of the user’s
utterance and the parsing result.

System: traveling to San Francisco International...
and departing Pittsburgh on what day ?

User: no I want to fly to Africa
Hypothesis: NO I WANT A FLIGHT .?TO.?

.?AFTER?. COME HOME
Parsing: Respond [no] (NO) Reserve Flight

[list] (I WANT A FLIGHT)

Sphinx, the Communicator speech recognition component,
provides word-level confidence annotation for each word. This
is denoted by the markers .? and ?. indicating that the tagged
word is likely a misrecognition. The best hypothesis is then
passed to the Phoenix parser [8] which produces a sequence of
slots containing the concepts extracted from the utterance.

Decoding Features

1. Word number (word num): The number of words in an
utterance.

2. Unconfident Percentage (unconf): The percentage of
the words tagged with the low confidence marker. The
intuition is that a high unconfident percentage is often
an indication of unreliable input. In the above example,
”TO” and ”AFTER” are tagged as unconfident words, so
unconf = 2/9.

Parsing Features

1. Uncovered Percentage (uncov): The percentage of un-
covered (or unparsed) words in a sentence. Similar to
unconfident percentage, high uncovered percentage of-
ten means an unreliable input. In the above sample, the
words ”TO”, ”AFTER”, ”COME” and ”HOME” are re-
jected by the parser, therefore uncov = 4/9.

2. Fragment Transitions (frag num): The number of tran-
sitions between parsed fragments and unparsed frag-
ments in a sentence. This feature describes the fragmen-
tation degree of the parsing result. Frag num is 1 for the
sample sentence since there is one transition from the
parsed fragment ”NO I WANT A FLIGHT” to the un-
parsed fragment ”TO AFTER COME HOME”.

3. Gap Number (gap num): The number of unparsed frag-
ments in a sentence. In the sample sentence the second
half part, ”TO AFTER COME HOME”, makes up a gap.

4. Slot Number (slot num): The number of slots in the
parsing result. There are two slots in the sample sentence
above ([no] and [list]).

5. Slot Bigram (bigram): The bigram score for the se-
quence of slots is computed from a bigram language
model built for the parsing result considering the slots.

Intuitively, an utterance with a high language model
score is more likely to be a correctly decoded and parsed
result.

6. Garble (garble): An input utterance is labeled as ”[Gar-
ble]” by a post-parsing module if it has low coverage
and high fragmentation (this is the current utterance level
confidence metric used in the system).

Dialog Features

1. Dialog State (state): The current state of the dia-
log manager. The state for the sample sentence is
query depart date.

2. State Duration (stay here): The number of consecutive
turns that the system remains in the same state. High
values for this feature are also a good indicator of mis-
understanding.

3. Turn Number (turn): The number of turns from the start
of the conversation. Under normal conditions (no misun-
derstanding), there should be a correlation between the
dialog state and turn number.

4. Expected Slots (expected slot): This indicates whether
or not the slots in the parsing result correspond to the
current expectation of the dialog manager. For example,
when the system is in the state query depart date, its ex-
pected slots are [date] or [time] .

3. Experiments
Deriving an utterance level confidence metric is essentially a
classification task: given a set of features which characterize
an utterance and its context, predict whether this utterance (as
perceived by the system) is free of errors or not.

We explored several machine learning techniques and clas-
sifiers. The focus was on analyzing the capacity of these classi-
fiers to correctly predict the binary target value of OK/BAD for
each utterance. Most of the classifiers are nevertheless able to
provide a continuous score, which is more fit for a true confi-
dence metric (see Section 5 for future work).

As we wanted to be able to compare the performance of the
classifiers, all the experiments described below were performed
under the same conditions, on the same dataset, using 10-fold
cross-validation. The dataset consisted of 4550 instances, each
characterized by the 12 features described previously. 67.16%
of these instances were labeled OK, thus giving a baseline er-
ror rate of 32.84% (when always considering the utterance as
correct.)

The performance of each classifier is characterized by the
mean and variance of the error rates in the cross-validation pro-
cess. Another important factor is the correct detection rate
(CDR), i.e., the proportion of BAD utterances that are correctly
identified. This number can be computed in terms of the false
positives rate of each classifier, or in terms of the fallout, as the
formula below illustrates (NBAD represents the total number of
BAD utterances):

CDR = 1� Fallout = 1 �
FP

NBAD
(1)

Note that there is a tradeoff between the correct detection
rate and the number of false negatives (false alarms). A high
correct detection rate can be achieved at the cost of introducing
more false negatives. Therefore, to build the complete picture
of the performance of the classifiers and their usefulness for
confidence annotation, we also report the false positive and false

negative rates. Correct use of this information further requires
the specification of a model that accurately captures the relative
cost (to dialog efficiency) of false positives and false negatives.
This cost will vary depending on the specific design of a dialog
system. For example, the relative cost of a false positive in a
system that requires an explicit backtrack or undo is higher than
for a system that provides an over-write feature. A discussion
of cost modeling is beyond the scope of the current paper.

3.1. Evaluation of individual features

We began by evaluating how well each individual feature is able
to predict the target labels. The results are shown in Table 1,
sorted with the best predictors on top.

Table 1: Single Feature Prediction.
Feature Mean Var. F/P F/N

Err.Rate Rate Rate
Baseline 0.3284 - - -

uncov 0.1993 0.0012 0.1760 0.0233
expected slot 0.2097 0.0006 0.1224 0.0873
gap num 0.2301 0.0014 0.1451 0.0851
bigram 0.2314 0.0017 0.1580 0.0734
garble 0.2532 0.0021 0.2530 0.0002
slot num 0.2569 0.0020 0.2552 0.0018
unconf 0.2734 0.0014 0.2618 0.0116
state 0.3127 0.0009 0.2462 0.0666
word num 0.3233 0.0020 0.3207 0.0026
frag num 0.3273 0.0015 0.2778 0.0495
stay here 0.3284 0.0022 0.3202 0.0081
turn 0.3314 0.0021 0.3240 0.0075

As the table above illustrates, the features that best pre-
dict the target labels are uncov, expected slot and gap num,
while the worst are word num, frag num, stay here and turn.
garble is a handcrafted rule incorporating unconf, uncov and
frag num information and is clearly inferior to some of the sin-
gle features, including one of its components, in overall error
rate. It does however provide by far the best false negative rate.
Since this is the current confidence metric used in the Commu-
nicator system, we will consider the classification performance
of garble (25.32%) as the baseline for the subsequent experi-
ments.

3.2. Bayesian network classifier

Bayesian networks provide a probabilistic approach to infer-
ence. Bayesian reasoning assumes that our variables are de-
scribable by probability distributions, and that optimal deci-
sions can be made by reasoning about these probabilities com-
bined with observed data. This technique fits well with our
problem because it provides a quantitative approach to judging
the evidence supporting several hypotheses.

We used a very basic network structure in which each fea-
ture related directly to the classification, since we are interested
in how the features affect the classification, not in how they af-
fect each other. From Table 1 we can see that some features are
more predictive than others. Accordingly, we placed the most
predictive features together in the network, but observed results
not much better than with individual features. This is likely be-
cause the features shared a large amount of mutual information.
The trick was to discover which features worked best together

(i.e., which features shared the least mutual information). We
conducted further experiments using various subsets of features
in our networks.

After some experimentation we discovered the combination
of features that worked best: slot bigram, uncovered percentage,
dialog state, garble, and expected slots. Training and testing on
the network revealed an error rate of 17.82%, equivalent with a
29.62% relative reduction in error rate from the garble baseline
(or 45.74% from the original baseline).

Table 2: Performance of different classifiers

Classifier Mean Var. F/P F/N
Err.Rate Rate Rate

Garble (baseline) 0.2532 0.0021 0.2530 0.0002

AdaBoost 0.1710 0.0003 0.1110 0.0600
Decision Tree 0.1732 0.0008 0.1182 0.0549
Bayesian Net. 0.1782 0.0008 0.0941 0.0842
SVM 0.1840 0.0015 0.1501 0.0339
Neural Net. 0.1890 0.0008 0.1508 0.0382
Naive Bayes 0.2402 0.0021 0.2391 0.0011

3.3. AdaBoost classifier

Boosting is a voting technique which combines a set of weak
learners (the performance of each individual learner needs to be
slightly better than random) and iteratively boosts their perfor-
mance by changing the distribution over the training examples
to ”focus” the learners on the hard instances. A more in-depth
description of boosting can be found in [9].

A typical AdaBoost algorithm was employed. We consid-
ered the set of predictors based on each individual features as
the weak learners. The relatively high error rate of each indi-
vidual predictor (see Table 1) reduces the risk of overfitting and
makes them good candidates for weak learners in AdaBoost.

The algorithm was run for 750 boosting stages. The mean
error rate of the combined hypothesis was 17.10% (as illustrated
in Table 2). This is equivalent with a 32.47% relative reduction
of error from our garble baseline (or 47.93% from the original
baseline). The variance was relatively low, indicating that no
significant overfitting had occurred.

3.4. Decision tree classifier

Another widely used classification technique we decided to
explore was decision trees. In this approach classification is
performed by dividing the feature space into many small sub-
spaces, and ultimately identifying each sub-space with a cor-
responding class. The partitioning process is implemented by
iteratively choosing the next best feature based on information
gain.

The average number of nodes in the resulting trees was
around 300. The mean error rate and variance are relatively
low, making decision trees one of the best classifiers in our ex-
periments. We obtained a mean error rate of 17.31%, and thus
a 31.64% reduction in error rate over the garble baseline.

3.5. Neural network classifier

Next, we turned to Artificial neural networks (or multi-layer
perceptrons). This type of classifier is able to learn complex
functions with continuous valued outputs, and is generally ro-
bust to noise in the training set. In our experiments, we used

a typical three-layered feed-forward network architecture (with
50 nodes in the hidden layer). Training was done using the
backpropagation algorithm.

Compared with the other classifiers, the performance of the
neural network is slightly worse. The classification error rate
of 18.90% puts it in fifth place. Moreover, the neural network
exhibits a high false positives rate (15.01%) which makes it un-
suitable for use in confidence annotation, as this translates into
a correct detection rate significantly lower than that of the pre-
vious classifiers.

3.6. Support vector machine classifier

Support vector machines have received a great deal of atten-
tion in recent years. It has been shown that on some domains
the performance of this approach is equivalent to those of tra-
ditional approaches as neural networks and decision trees. For
many problems, it is difficult to find a classification boundary
directly in the feature space. SVMs accomplish this by mapping
the samples to a higher dimensional space using a kernel func-
tion, and then seeking a simple, linear separator in that space
[10].

We examined several kernel functions such as dot, polyno-
mial, radial, neural and anova in our experiments. Some kernel
functions are more sensitive than others to the training samples.
We report the results of the dot function, which had the most sta-
ble performance. Using this kernel function, the SVM achieved
a 18.40% error rate, equivalent with a 27.33% reduction in error
rate. Nevertheless, the false positives rate (and thus the correct
detection rate) of the SVM classifier is similar to that of the
neural network, making it an unlikely candidate for use in con-
fidence annotation.

3.7. Naive Bayes classifier

Finally, we constructed a Naive Bayes classifier. Its perfor-
mance (24.02%) was significantly worse than that of the pre-
vious classifiers. This is only slightly better than the garble
baseline, and a t-test showed that the difference is not statisti-
cally significant at the 0.05 level of confidence.

4. Results analysis
The results for the various classifiers are shown in Table 2.
When judged by classification error, all the classifiers except
the Naive Bayes perform similarly, achieving error rates around
18%. A t-test showed that there is no statistically significant dif-
ference between the mean error rates of these classifiers at the
0.05 level of confidence. Naive Bayes performs the worst. We
suspect that this is due to the feature independence assumption
made by this classifier. This assumption is clearly violated, as
our experiments with the Bayesian network have indicated.

As mentioned in Section 3, in the context of building a con-
fidence annotator another very important indicator is the cor-
rect detection rate (CDR). From this perspective, the Bayesian
Network classifier has the best result. It gives a 9.41% false
positives rate, which is equivalent with being able to correctly
detect 71.35% of the BAD utterances. This correct detection
rate is achieved in the context of a 8.42% false negative rate.

5. Conclusion
We described the development of an utterance-level confidence
annotator scheme for the CMU Communicator spoken dialog
system. Features from the decoder, parser, and dialog levels

were used together with several classifiers and machine learn-
ing techniques to derive a predictor of the reliability of the input.
In terms of classification error rate, with the notable exception
of Naive Bayes, all the classifiers returned statistically indistin-
guishable results in the 17-19% range. The Bayesian Network
classifier had the best correct detection rate (71.35%). All of
these performed better than a handcrafted rule.

We regard the development of an accurate confidence anno-
tator as an essential step towards a higher-level framework for
confirmation and clarification in dialog systems. With a care-
fully designed scheme, the opportunity exists for selective error
recovery techniques, including reminding, warning, asking the
user to repeat, asking the user to confirm, or launching more
sophisticated clarification sub-dialogs.

6. Acknowledgements
We would like to thank Tina Bennett for her help in labeling
understanding accuracy, and Ananlada Chotimongkol for her
help with constructing the slot bigram model. This research
was sponsored in part by the Space and Naval Warfare Systems
Center, San Diego, under Grant No. N66001-99-1-8905. The
content of the information in this publication does not necessar-
ily reflect the position or the policy of the US Government, and
no official endorsement should be inferred.

7. References
[1] Rudnicky, A., et. al. “Creating natural dialogs in the

Carnegie Mellon Communicator system”, Proceedings of
Eurospeech, 1999.

[2] Bansal, D., and Ravishankar, M. K. “New Features for
Confidence Annotation”, ICSLP-98.

[3] Chase, L. “Error-Responsive Feed back Mechanisms for
Speech Recognizers”, Ph.D. Thesis, CMU. 1997.

[4] Cox S., and Rose R. “Confidence Measures for the
Switchboard Database”, ICASSP-96.

[5] Kemp T., and Schaaf T. “Estimating Confidence Using
Word Lattice”, EuroSpeech-97

[6] San-Segundo, R., Pellom, B., and Ward, W. “Confidence
Measures for Dialogue Management in the CU Commu-
nicator System”, ICASSP-2000.

[7] Hazen, T., Burianek, T., Polifroni, J., Seneff, S. “Integrat-
ing Recognition Confidence Scoring with Language Un-
derstanding and Dialog Modeling”, ICASSP-2000.

[8] Ward W., and Issar S. “Recent Improvements in the CMU
Spoken Language Understanding System”, Proceedings
of the ARPA Human Language Technology Workshop,
March 1994, 213-216.

[9] Schapire E. “A Brief Introduction to Boosting”, In Pro-
ceedings of the Sixteenth International Joint Conference
on Artificial Intelligence, 1999

[10] Burges C., “A Tutorial on Support Vector Machines for
Pattern Recognition”, Data Mining and Knowledge Dis-
covery 2(2), 1998.

