Carnegie Mellon University Department of Computer Science 15-415/615- Database Applications C. Faloutsos & A. Pavlo, Spring 2014 Prepared by Alex Beutel

DUE DATE: Tue, 3/25/2014, 1:30pm

Homework 6

IMPORTANT

- Deposit hard copy of your answers in class at 1:30pm on Tue, 3/25/2014.
- Separate answers, as usually, i.e., please solve each of the 4 questions on a **separate** page, and type the usual, full information, on each page: your **name**, **Andrew ID**, **course** # , **Homework** # , and **Question** # .

Reminders

- **Plagiarism**: Homework may be discussed with other students, but all homework is to be completed **individually**.
- **Typeset** all of your answers whenever possible. Illegible handwriting may get no points, at the discretion of the graders.
- Late homeworks: please email late homeworks
 - to all TAs
 - with the subject line exactly 15-415 Homework Submission (HW 6)
 - and the count of slip-days you are using.

For your information:

- Graded out of 100 points; 4 questions total
- Rough time estimate: ≈ 6 hours (1-2 hours for each question)

Revision: 2014/03/17 09:52

Question	Points	Score
Query Optimization	30	
Functional Dependencies	20	
Decompositions	20	
Normal Forms	30	
Total:	100	

Submit on separa Course: 15-415/6		
	e consider a database with following t	
1. Movies(title 2. Actors(actor	, year)	
For these tables we	know the following statistics:	
- V(title, - V(year, N • Actors consist - V(actorII - V(name, N • Acted_in consi - V(actorII - V(title,	s of $N_1 = 50,000$ tuples Movies) = 30,000 distinct movie title Movies) = 90 distinct years (1925-201) s of $N_2 = 200,000$ tuples D, Actors) = 200,000 distinct actor in Actors) = 160,000 distinct names ists of $N_3 = 1,000,000$ tuples D, Acted_in) = 180,000 distinct actor Acted_in) = 29,000 distinct movie the Acted_in) = 90 distinct years (1925-200)	ID's or ID's itles
(a) Yes/No question		,
i. [3 points] a candidat	Ignoring semantics, and given the a e key for Movies? No	above statistics, could title be
Actors?	Again, ignoring semantics, could a No	ctorID be a candidate key for
iii. [3 points] □ Yes □	Could actorID be a candidate key No	for Acted_in?
(b) Selectivity estimates be given.	mations. Give fourth significant digit	accuracy. No partial credit will
i. [3 points]	Estimate the number of resulting t	uples for the query:
SELECT	* $FROM$ Movies $WHERE$ year =	= 1995;
		i
SELECT	Estimate the number of resulting to * FROM Movies RE year = 2000 AND title = "Due	uples for the query:
		ii
iii. [4 points]	Estimate the number of resulting to	uples for the query:

SELECT * FROM Movies WHERE year > 1960;

iii

iv. [5 points] Estimate the number of resulting tuples for the query:

SELECT *

FROM Actors JOIN Acted_in AS Ai ON Actors.actorID = Ai.actorID;

iv. _____

v. [5 points] Estimate the number of resulting tuples for the query:

SELECT *

 $FROM \ Movies \ JOIN \ Acted_in \ AS \ Ai \ ON \ Movies.year = Ai.year \ AND \ Movies.title = Ai.title;$

V. _____

	rse: 15-415/615; HW: ne:;	; Q: andrew-id: $_$; late days:
2.1			6 in the textbook.) For the first α of a relational schema β with
		S A B C 1 a X 4 a Y 5 b X	
	Table 1: Legal in	stance of schema S for q	uestion 2.1
	(a) Which of the following ble 1?	dependencies are viola	ted by the instance of S in Ta-
		\square No : $A \to B$ is vio	olated.
	ii. $[1 point] \square Yes$	\square No : $B \to A$ is vio	olated.
		\square No : $BC \to A$ is	
	iv. $[1 point] \square Yes$	\square No : $B \to C$ is views	olated.
		\square No : $C \to AB$ is ∇	
	· /	serving the instance of encies that hold on scher	S in Table 1, can you identify na S ?
2.2	For the next set of questions and the set of functional de		chema $r = \{P, Q, R, S, T, U, V\}$
		$P \rightarrow S$	(1)
		$PQ \rightarrow ST$	(2)
		$S \rightarrow RU$	(3)
		$RU \rightarrow S$	(4)
		$PT \rightarrow V$	(5)
	(c) $\{P \to R; P \to U; R \in P \}$	minimum cover. $PQ \to S; S \to R; S \to U$ $PQ \to T; PT \to V$	$U; PT \to V; RU \to S$
		$S \to R; S \to U; PT \to V$	$V; RU \to S$
	(e) none of the above		
	(b) Yes/No: Which of the	following functional depo onal dependencies (Eq.	endencies can be deduced, from

	i. $[1 point] \square Yes$	\square No : $P \to U$
	ii. $[2 points] \square Yes$	\square No : $PT \to SV$
	iii. $[1 point] \square Yes$	\square No : $SQ \to V$
	iv. $[1 point] \square Yes$	\square No : $PS \to RV$
	v. $[1 point] \square Yes$	\square No : $PQ \to V$
	vi. $[1 point] \square Yes$	\square No : $PSRU \rightarrow QT$
(c)	[2 points] True or False	se: The attribute closure $\{P\}^+$ is $\{R, S, U\}$.
(d)	[2 points] True or Fals	e: The attribute closure $\{PQ\}^+$ is $\{P,Q,R,S,T,U,V\}$

uestion 3: Decompos	sitions	[20 points]
Submit on separate pag Course: 15-415/615; HV Name:		; late days:
For this set of questions con	sider the following relational sch	ema $S = \{A, B, C, D, E, F, G\}$
	A o D	
	$AB \to E$	
	$D \to C$	
	$D \to F$	
	$AE \to G$	
	$CF \to D$	
(a) [3 points] Is the dec	derive the <i>cover</i> of the above function $\{ACF, ABEG, AD\}$	} lossless?
(b) [4 points] Is the dec	composition $\{DCF, ABEG, AD\}$	} lossless?
(c) $[4 \text{ points}]$ Is the dec	composition $\{ABDE, BEG, AD\}$	OCF lossless?
(d) $[3 \text{ points}]$ Is the dec	composition $\{ACF, ABEG, AD\}$	} dependency preserving?
(e) [3 points] Is the dec	composition $\{DCF, ABEG, AD\}$	dependency preserving?
(f) [3 points] Is the dec	omposition $\{ABDE, BEG, AD\}$	CF dependency preserving

	al Forms	[30 points]
Submit on separate Course: 15-415/615	1 0	
	; andrew-id:	; late days:
	schema $r = \{P, Q, R, S, T, U, V\}$	
	$PR \to S$	
	$P \to T$	
	$PT \to R$	
	$S \to U$	
	$ST \to V$	
	$TV \to S$	
	$QT \to V$	
	$V \to Q$	
Consider the relations	ıl schemas:	
• $r_1 = \{P, R, S, T\}$		
$\bullet \ r_2 = \{Q, T, V\}$		
$\bullet \ r_3 = \{S, T, U, V\}$		
(a) [2 points] Wha	t is the projection of the FDs on	r_1 ?
· / • - •	cate <i>all</i> the candidate $key(s)$ for r	71:
$\square \{P\}$		
$\Box \{PR\}$		
$\Box \{PRT\}$ $\Box \{PR\} \in \{PR\}$		
(c) [3 points] Is r_1		
(d) [3 points] Is r_1		
() [] -	at is the projection of the FDs on	r_{2} ?
` /	cate all the candidate key(s) for r	
\square {Q} an	• ()	2.
$\Box \{QT\}$	- (-)	
$\Box \{TV\}$		
$\Box \{QT\}$ 8	and $\{TV\}$	
$\Box \{QT\}$ a	and $\{QV\}$	
\Box Other:		
(g) [3 points] Is r_2	$3NF? \square Yes \square No$	

(h)	[3 points]	Is r_2 BCNF. \square Yes \square No
(i)	[2 points]	What is the projection of the FDs on r_3 ?
(j)	[2 points]	Is r_3 3NF? \square Yes \square No
(k)	[2 points]	Is r_3 BCNF? \square Yes \square No
(l)		Decompose r_3 to two relational schemas $r_{3,1}$ and $r_{3,2}$ so that they are d the decomposition is lossless and dependency preserving. Give those chemas.
		(1)
(m)		Yes/No: is it possible to decompose r_3 into two <u>BCNF</u> schemas $r'_{3,1}$ and lossless and dependency-preserving decomposition? No