Carnegie Mellon University
 Department of Computer Science
 15-415/615- Database Applications
 C. Faloutsos \& A. Pavlo, Spring 2014
 Prepared by Alex Beutel
 DUE DATE: Tue, 3/25/2014, 1:30pm

Homework 6

IMPORTANT

- Deposit hard copy of your answers in class at $1: 30 \mathrm{pm}$ on Tue, 3/25/2014.
- Separate answers, as usually, i.e., please solve each of the 4 questions on a separate page, and type the usual, full information, on each page: your name, Andrew ID, course \#, Homework \#, and Question \# .

Reminders

- Plagiarism: Homework may be discussed with other students, but all homework is to be completed individually.
- Typeset all of your answers whenever possible. Illegible handwriting may get no points, at the discretion of the graders.
- Late homeworks: please email late homeworks
- to all TAs
- with the subject line exactly 15-415 Homework Submission (HW 6)
- and the count of slip-days you are using.

For your information:

- Graded out of $\mathbf{1 0 0}$ points; $\mathbf{4}$ questions total
- Rough time estimate: ≈ 6 hours (1-2 hours for each question)

Revision : 2014/05/05 16:59

Question	Points	Score
Query Optimization	30	
Functional Dependencies	20	
Decompositions	20	
Normal Forms	30	
Total:	100	
Tyy		

Question 1: Query Optimization
 Submit on separate page
 Course: 15-415/615; HW: ; Q:
 Name:
 \qquad ; andrew-id:
 \qquad ; late days:

For this problem we consider a database with following three tables:

1. Movies(title, year)
2. Actors (actorID, name)
3. Acted_in(actorID, title, year)

For these tables we know the following statistics:

- Movies consists of $N_{1}=50,000$ tuples
$-\mathrm{V}($ title, Movies $)=30,000$ distinct movie titles
- V(year, Movies) $=90$ distinct years (1925-2015)
- Actors consists of $N_{2}=200,000$ tuples
- V(actorID, Actors) $=200,000$ distinct actor ID's
$-\mathrm{V}($ name, Actors $)=160,000$ distinct names
- Acted_in consists of $N_{3}=1,000,000$ tuples
- V(actorID, Acted_in $)=180,000$ distinct actor ID's
- V(title, Acted_in $)=29,000$ distinct movie titles
- V(year, Acted_in) $=90$ distinct years (1925-2015)
(a) Yes/No questions:
i. [3 points] Ignoring semantics, and given the above statistics, could title be a candidate key for Movies?

Yes ■ No

ii. [3 points] Again, ignoring semantics, could actorID be a candidate key for Actors?

- Yes \square No
iii. [3 points] Could actorID be a candidate key for Acted_in?

Yes \quad No
(b) Selectivity estimations. Give fourth significant digit accuracy. No partial credit will be given.
i. [3 points] Estimate the number of resulting tuples for the query:

SELECT * FROM Movies WHERE year = 1995;
i. 555.5555

Solution: (Optional) justification: $N_{1} / 90$
ii. [4 points] Estimate the number of resulting tuples for the query:

SELECT * FROM Movies
WHERE year = 2000 AND title = "Dude, Where's my Car?";
ii. $\quad 0.018518$

Solution: (Optional) justification: $N_{1} / 90 / 30,000$
iii. [4 points] Estimate the number of resulting tuples for the query:

SELECT * FROM Movies WHERE year > 1960;

$$
\text { iii. } \quad 30000
$$

Solution: (Optional) justification: $N_{1} \frac{54}{90}$
Because not well specified, will also accept $30555.5555=N_{1} \frac{55}{90}$
iv. [5 points] Estimate the number of resulting tuples for the query:

SELECT *

FROM Actors JOIN Acted_in AS Ai
ON Actors.actorID = Ai.actorID;
iv. 1000000

Solution: (Optional) justification: actorID is a primary key in Actors and a foreign key in Acted_in. Therefore, $N_{2} \cdot N_{3} / 200000$
v. [5 points] Estimate the number of resulting tuples for the query:

SELECT *

FROM Movies JOIN Acted_in AS Ai
ON Movies.year $=$ Ai. year AND Movies.title $=$ Ai.title;
v. 18518.5185 or $1,000,000$

Solution: (Optional) justification: There are two ways to view this question. If you assume that (title,year) is the primary key of Movies and are foreign keys in Actedin then the answer is $1,000,000$. However, we do not explicitly make these assumptions so the estimated number of tuples could be calculated as $N_{1} \cdot N_{3} \cdot \frac{1}{90} \cdot \frac{1}{30000}$.

Question 2: Functional Dependencies................... . [20 points]
 Submit on separate page
 Course: 15-415/615; HW: ; Q:
 Name:
 \qquad ; andrew-id:
 \qquad ; late days:

2.1 (This question is a modified version of exercise 19.6 in the textbook.) For the first set of questions consider the following legal instance of a relational schema S with attributes $A B C$:

S | A | B | C |
| :---: | :---: | :---: |
| 1 | a | X |
| 4 | a | Y |
| 5 | b | X |

Table 1: Legal instance of schema S for question 2.1
(a) Which of the following dependencies are violated by the instance of S in Table 1?
i. [1 point] \square Yes \square No $: A \rightarrow B$ is violated.
ii. [1 point] Yes \square No : $B \rightarrow A$ is violated.
iii. [1 point] \square Yes \square No $: B C \rightarrow A$ is violated.
iv. [1 point] Yes \square No : $B \rightarrow C$ is violated.
v. [1 point] \square Yes \square No : $C \rightarrow A B$ is violated.
(b) [1 point] By only observing the instance of S in Table 1, can you identify the functional dependencies that hold on schema S ?
\square Yes \quad No
Solution: No, because we can only see an instance.
2.2 For the next set of questions consider the relational schema $r=\{P, Q, R, S, T, U, V\}$ and the set of functional dependencies FD:

$$
\begin{align*}
P & \rightarrow S \tag{1}\\
P Q & \rightarrow S T \tag{2}\\
S & \rightarrow R U \tag{3}\\
R U & \rightarrow S \tag{4}\\
P T & \rightarrow V \tag{5}
\end{align*}
$$

(a) [3 points] Which of the following is a minimum cover of the FD?
(a) The given FD is a minimum cover.
(b) $\{P \rightarrow S ; P Q \rightarrow T ; P Q \rightarrow S ; S \rightarrow R ; S \rightarrow U ; P T \rightarrow V ; R U \rightarrow S\}$
(c) $\{P \rightarrow R ; P \rightarrow U ; P Q \rightarrow T ; P T \rightarrow V\}$
(d) $\{P \rightarrow S ; P Q \rightarrow T ; S \rightarrow R ; S \rightarrow U ; P T \rightarrow V ; R U \rightarrow S\}$
(e) none of the above - the cover is \qquad

Solution: (d)

(b) Yes/No: Which of the following functional dependencies can be deduced, from the above set of functional dependencies (Eq. (1)-(5))?
i. [1 point] \square Yes \square No $: P \rightarrow U$
ii. [2 points] पes \square No $: P T \rightarrow S V$
iii. [1 point] \square Yes \square No $: S Q \rightarrow V$
iv. [1 point] \square Yes \square No $: P S \rightarrow R V$
v. [1 point] \square Yes \square No : $P Q \rightarrow V$
vi. [1 point] \square Yes \square No : $P S R U \rightarrow Q T$
(c) [2 points] True or False: The attribute closure $\{P\}^{+}$is $\{R, S, U\}$. True \quad False

Solution: It should include P, ie., $\{P, R, S, U\}$.
(d) [2 points] True or False: The attribute closure $\{P Q\}^{+}$is $\{P, Q, R, S, T, U, V\}$. - TrueFalse

Question 3: Decompositions

Submit on separate page

Course: 15-415/615; HW: ; Q:
Name: \qquad ; andrew-id: \qquad ; late days:

For this set of questions consider the following relational schema $S=\{A, B, C, D, E, F, G\}$:

$$
\begin{aligned}
A & \rightarrow D \\
A B & \rightarrow E \\
D & \rightarrow C \\
D & \rightarrow F \\
A E & \rightarrow G \\
C F & \rightarrow D
\end{aligned}
$$

Optional, but strong hint: derive the cover of the above functional dependencies.
(a) [3 points] Is the decomposition $\{A C F, A B E G, A D\}$ lossless?

Yes
No
Solution: Optional Justification: A is the candidate key in $A D$ and $A C F$
(b) [4 points] Is the decomposition $\{D C F, A B E G, A D\}$ lossless?

- Yes

No
Solution: Yes: D is a candidate key in $D C F$, for the join $A D$ and $D C F$; and then A is the candidate key in $A D C F$, for the join with $A B E G$
(c) [4 points] Is the decomposition $\{A B D E, B E G, A D C F\}$ lossless?

Yes ■ No
Solution: No: while $A D C F$ and $A B D E$ can be joined on A which is a candidate key for $A D C F$, the joining attributes $B E$ are not a candidate key in either $B E G$, nor $A B D C F E$
(d) [3 points] Is the decomposition $\{A C F, A B E G, A D\}$ dependency preserving? Yes ■ No

Solution: We lost both $C F \rightarrow D$, as well as $D \rightarrow C F$
(e) [3 points] Is the decomposition $\{D C F, A B E G, A D\}$ dependency preserving?

- Yes

No
(f) [3 points] Is the decomposition $\{A B D E, B E G, A D C F\}$ dependency preserving? Yes ■ No

Solution: We lost $A E \rightarrow G$

Question 4: Normal Forms
 Submit on separate page
 Course: 15-415/615; HW: ; Q:
 Name: __ ; andrew-id: __ late days:

Consider the relation schema $r=\{P, Q, R, S, T, U, V\}$ and the functional dependencies FD:

$$
\begin{aligned}
P R & \rightarrow S \\
P & \rightarrow T \\
P T & \rightarrow R \\
S & \rightarrow U \\
S T & \rightarrow V \\
T V & \rightarrow S \\
Q T & \rightarrow V \\
V & \rightarrow Q
\end{aligned}
$$

Consider the relational schemas:

- $r_{1}=\{P, R, S, T\}$
- $r_{2}=\{Q, T, V\}$
- $r_{3}=\{S, T, U, V\}$
(a) [2 points] What is the projection of the FDs on r_{1} ?

Solution: $\{P R \rightarrow S, P \rightarrow T, P T \rightarrow R\}$
(b) [2 points] Indicate all the candidate key(s) for r_{1} :

■ $\{P\}$
$\square\{P R\}$
$\square\{P R T\}$
$\square\{P R\}$ and $\{P T\}$
\square Other: \qquad
(c) [3 points] Is $r_{1} 3 \mathrm{NF}$? ■ Yes \square No
(d) [3 points] Is r_{1} BCNF? ■ Yes \square No
(e) [2 points] What is the projection of the FDs on r_{2} ?

Solution: $\{Q T \rightarrow V, V \rightarrow Q\}$
(f) [2 points] Indicate all the candidate key(s) for r_{2} :
$\square\{Q\}$ and $\{T\}$
$\square\{Q T\}$
$\square\{T V\}$

■ $\{Q T\}$ and $\{T V\}$
$\square\{Q T\}$ and $\{Q V\}$Other: \qquad
(g) [3 points] Is $r_{2} 3 N F ? ~ \square Y e s ~ \square$ No
(h) [3 points] Is r_{2} BCNF. \square Yes ■ No
(i) [2 points] What is the projection of the FDs on r_{3} ?

Solution: $\{S \rightarrow U, S T \rightarrow V, T V \rightarrow S\}$
(j) [2 points] Is $r_{3} 3 \mathrm{NF}$? \square Yes \square No
(k) [2 points] Is r_{3} BCNF? \square Yes ■ No
(l) [3 points] Decompose r_{3} to two relational schemas $r_{3,1}$ and $r_{3,2}$ so that they are in 3NF, and the decomposition is lossless and dependency preserving. Give those relational schemas.
(1) $\{S, U\},\{S, T, V\}$
(m) [1 point] Yes/No: is it possible to decompose r_{3} into two BCNF schemas $r^{\prime}{ }_{3,1}$ and $r_{3,2}^{\prime}$, with a lossless and dependency-preserving decomposition?

- YesNo

Solution: The earlier answer, SU and STV, are all in BCNF

