
Carnegie Mellon University
Department of Computer Science
15-415/615 - Database Applications

C. Faloutsos & A. Pavlo, Spring 2014

Homework 3

IMPORTANT
• Hand in your answers in class at 1:30pm on Thursday, 2/20/2014 and submit

online the appropriate tar file of your solution, that is:
– Hard copy: Your answers to all questions, as well as any new or modified code

in the directory
– Online: a tar of your code such that running make load compiles it and runs

the code as if it were a first run.
• Platform: We shall run your program on the andrew machines.
• Test your code for as many corner cases as you can imagine - we will grade it by

running diff on its output against our answers, on a set of ‘secret’ test cases we have
created (like an empty tree, a tree with a single entry, etc etc).

REMINDERS: As we said earlier:
• Plagiarism: Homework may be discussed with other students, but all homework is to

be completed individually.
• Typeset all of your answers whenever possible. Illegible handwriting may get no

points, at the discretion of the graders.
• Late homeworks: If you are turning your homework in late, please email it

– to all TAs
– with the subject line exactly 15-415 Homework Submission (HW 3)

– and the count of slip-days you are using.
Revision : 2014/03/06 10:50

1

15-415/615 Homework 3, Page 2 of 10 due: 2/20/2014, 1:30pm

1 Preliminaries - Our B+ Tree Implementation

The goals of this assignment are two-fold: (a) to make you more familiar with the B+ Tree
data structure, and (b) to illustrate that it can lead to significantly faster responses, for
appropriate queries.

Specifically, you are given a basic B+ Tree implementation and you are asked to extend
it by implementing some new operation/functions, that we list later.

The specifications of the basic implementation are:

1. It creates an “inverted index” in alphabetical order in the form of a B+ tree over a
given corpus of text documents (explained in detail later).

2. It supports the following operations: insert, scan, search and print.
3. No duplicate keys are allowed in the tree. FYI: It uses a variation of “Alternative 3”

and stores a postings list for each word that appears many times.
4. It does not support deletions.
5. The tree is stored on disk.

1.1 Where to Find Makefiles, Code, etc.

The file is available at http://www.cs.cmu.edu/~christos/courses/dbms.S14/hws/HW3/

btree.tar or through AFS (/afs/cs.cmu.edu/user/christos/www/courses/dbms.S14/
hws/HW3/btree.tar).

• Untar the file.
• Type make load to compile everything and load the data files
• Type ./main to start the program and feel free to search with commands like S alex

and S vagelis

make load inserts the entire dictionary (split into thousands of files) and then you can search
for the keys “alex” and “vagelis” and shows the contents of the documents containing the
key.

1.2 Description of the provided B+ tree package

The directory structure and contents are as follows:

• DOC: contains a very useful documentation of the code.
• SRC: the source code.
• Datafiles: sample data to add to the tree.
• Tests: some sample tests and their solutions.
• Some other useful files, e.g., README, makefile etc.
• IMPORTANT: Files B-TREE FILE, POSTINGSFILE, TEXTFILE, parms are created

by our B+ tree implementation, when a tree is created (recall that the implementation
is disk-resident). To allow main to access this tree (across multiple executions), make
sure that these files are not deleted and are present in the same directory as main.
Conversely, delete these files if you want to create a new tree.

Homework 3 continues. . .

http://www.cs.cmu.edu/~christos/courses/dbms.S14/hws/HW3/btree.tar
http://www.cs.cmu.edu/~christos/courses/dbms.S14/hws/HW3/btree.tar
/afs/cs.cmu.edu/user/christos/www/courses/dbms.S14/hws/HW3/btree.tar
/afs/cs.cmu.edu/user/christos/www/courses/dbms.S14/hws/HW3/btree.tar

15-415/615 Homework 3, Page 3 of 10 due: 2/20/2014, 1:30pm

In more detail, the main program file is called “main.c.” It waits for the user to enter
commands and responds to them as shown in Table 1.

ARGUMENT EFFECT
C Prints all the keys that are present in the tree, in ascending lexicographical

order.
i arg The program parses the text in arg which is a text file, and inserts the

uncommon words (i.e., words not present in “comwords.h”) into the B+
tree. More specifically, the uncommon words of arg make the “keys” of the
B+ tree, and the value for all these keys is set to arg. Since this tree enables
us to find which words are present in which documents, it is known as the
inverted index.

p arg Prints the keys in a particular page of the B+ tree where arg is the page
number. It also prints some statistics about the page such as the number of
bytes occcupied, the number of keys in the page, etc.

s <key> searches the tree for <key> (which is a single word). If the key is found, the
program prints “Found the key!”. If not, it prints “Key not found!”.

S <key> Searches the tree for <key>. If the key is found, the program prints the
documents in which the key is present, also known as the posting list of
<key>. If not, it prints “Key not found!”.

T preTty-prints the tree. If the tree is empty, it prints “Tree empty!” instead.
x exit

Table 1: Existing interface

Homework 3 continues. . .

15-415/615 Homework 3, Page 4 of 10 due: 2/20/2014, 1:30pm

Question 1: Prefix and Substring Search in a B+ Tree[100 points]

1. For each command record the number of pages (from disk) the B+ Tree reads and
output it whenever a command is completed.

2. For the command P <key> search for any word in the B+ Tree where the string
<key> is a prefix to that word. The B+ Tree should return a list of all words
for which the given key is a prefix as well as the total number of such words. Of
course, implement this intelligently so that the number of pages read from disk is
minimized.

3. For the command M <key> search for any word in the B+ Tree where the string
<key> is found anywhere in that word, including in the middle. The B+ Tree should
return a list of all words for which the given key is a substring as well as the total
number of such words. Of course, implement this intelligently so that the number
of pages read from disk is minimized.

An example of the correct response for such commands after the appropriate modifi-
cations can be seen in Table 2. In the source code you have downloaded, there are a
number of shell files which will be useful for you to implement this functionality. We
suggest you work off of those.

Once implemented please answer the following questions so we can appropriately grade
your implementation:

(a) For the key data answer the following questions:

i. [1 point] Does the word exist in the document (using the command s <key>)?

ii. [1 point] How many pages need are read to see if the word is used in the
document?

iii. [3 points] How many words have the key as a prefix?

iv. [3 points] What are the words that have the key as a prefix?

v. [3 points] How many pages are read in finding the words that have the key
as a prefix?

vi. [3 points] How many words have the key as a substring?

vii. [3 points] What are the words that have the key as a substring?

viii. [3 points] How many pages are read in finding the words that have the key
as a substring?

(b) For the key andy answer the following questions:

i. [1 point] Does the word exist in the document (using the command s <key>)?

ii. [1 point] How many pages need are read to see if the word is used in the
document?

iii. [3 points] How many words have the key as a prefix?

iv. [3 points] What are the words that have the key as a prefix?

Question 1 continues. . .

15-415/615 Homework 3, Page 5 of 10 due: 2/20/2014, 1:30pm

v. [3 points] How many pages are read in finding the words that have the key
as a prefix?

vi. [3 points] How many words have the key as a substring?

vii. [3 points] What are the words that have the key as a substring?

viii. [3 points] How many pages are read in finding the words that have the key
as a substring?

(c) For the key christos answer the following questions:

i. [1 point] Does the word exist in the document (using the command s <key>)?

ii. [1 point] How many pages need are read to see if the word is used in the
document?

iii. [3 points] How many words have the key as a prefix?

iv. [3 points] What are the words that have the key as a prefix?

v. [3 points] How many pages are read in finding the words that have the key
as a prefix?

vi. [3 points] How many words have the key as a substring?

vii. [3 points] What are the words that have the key as a substring?

viii. [3 points] How many pages are read in finding the words that have the key
as a substring?

(d) [40 points] We will run your implementation on the three keys above as well as a
variety of other test cases and assign points for the remaining points proportionally.
Make sure you test for corner cases.

Question 1 continues. . .

15-415/615 Homework 3, Page 6 of 10 due: 2/20/2014, 1:30pm

S alex P alex M alex

*** Searching for word alex *** Searching for prefix alex *** Searching for substring alex

found in alex Prefix found in alex Substring found in alex

-------document #1----- Prefix found in alexander Substring found in alexander

rembrandtism Prefix found in alexanders Substring found in alexanders

sinomenine Prefix found in alexandra Substring found in alexandra

inductorium Prefix found in alexandreid Substring found in alexandreid

alex Prefix found in alexandrian Substring found in alexandrian

resoothe Prefix found in alexandrianism Substring found in alexandrianism

usuary Prefix found in alexandrina Substring found in alexandrina

sulphatase Prefix found in alexandrine Substring found in alexandrine

eurythmical Prefix found in alexandrite Substring found in alexandrite

buffont Prefix found in alexas Substring found in alexas

ridgepoled Prefix found in alexia Substring found in alexia

salvadoraceous Prefix found in alexian Substring found in alexian

cytopathologic Prefix found in alexic Substring found in alexic

nonbursting Prefix found in alexin Substring found in alexin

clapping Prefix found in alexinic Substring found in alexinic

batholith Prefix found in alexipharmacon Substring found in alexipharmacon

octachord Prefix found in alexipharmacum Substring found in alexipharmacum

tautometric Prefix found in alexipharmic Substring found in alexipharmic

clockroom Prefix found in alexipharmical Substring found in alexipharmical

eta Prefix found in alexipyretic Substring found in alexipyretic

ensate Prefix found in alexis Substring found in alexis

spiropentane Prefix found in alexiteric Substring found in alexiteric

renomination Prefix found in alexiterical Substring found in alexiterical

unsentimentalist Prefix found in alexius Substring found in alexius

schemeful "alex" is the prefix of 25 words Substring found in antialexin

remissly 18 pages read Substring found in catalexis

Substring found in dicatalexis

10 pages read Substring found in hypercatalexis

Substring found in malexecution

Substring found in paralexia

Substring found in paralexic

"alex" is in 32 words

74552 pages read

Table 2: Example response: ’S’ for ’search for word’; ’P’ for ’prefix search’, and ’M’ for
’middle-search’ = substring search.

Question 1 continues. . .

15-415/615 Homework 3, Page 7 of 10 due: 2/20/2014, 1:30pm

Clarifications/Hints

• We have provided the following empty files:

– prefix search.c

– prefix searchLeaf.c

– prefix treesearch.c

– ss search.c

– ss searchLeaf.c

– ss treesearch.c

– FindPrefixPosition.c

– CheckSubstring.c

– CheckPrefix.c

We suggest you use them for filling in your implementation.

• Your implementation should not be case sensitive. All keys are inserted after converting
them to lower case.

• Make sure all searches are only for alphanumeric strings.

• For your convenience, we have provided you with sample tests and their corresponding
outputs in Tests. To see if your implementation runs correctly on the test files, type

– make test prefix

– make test substring

test prefix and test substring test your implementation for the P and M com-
mands, respectively. If diff is empty for both test prefix and test substring,
then your implementation passes the provided tests! However, we will use several
other (unpublished) test files during grading, so please also make sure to test your
implementation on other test files of your own on the andrew machines.

• Note, there are two valid ways to perform prefix and substring search. We will allow
either but the number of pages read must match one of the two methods.

• See def.h for important data structure information.

2 Testing Mechanism

We will test your submission for correctness using scripts, and also look through your code.

• Correctness. An easy test is to run your code against the sample test files provided
with the assignment. For each test file, the output from your program should be exactly
the same as the solution output (i.e., diff is empty). Make sure you test your code
on additional datasets of your own. Also, consider corner cases (e.g., invalid inputs,
non-existent words etc.). Note: We will use extra (unpublished) test cases to grade.

Question 1 continues. . .

15-415/615 Homework 3, Page 8 of 10 due: 2/20/2014, 1:30pm

• Format. We will use scripts to test the output of your code. Therefore, please make
sure your output follows the same format as the sample test file solutions. That is, the
result of diff between your output and the provided outputs, should be empty.

• Code. We will check the functions that you modified in order to support the required
operations (see below what to hand-in).

3 What to hand-in

As we said in the front page, we want both a hard copy of the changed functions; and a
tar-file with everything we need to run our tests.

1. Online: Create a tar file of your complete source code including all and only
the necessary files, as well as the makefile (i.e., exclude *.o *.out etc files); sub-
mit your tar file via blackboard, under Assignments / Homework 3. Use the name
[your-andrew-id]-HW3.tar.

2. Hard copy: Submit in class your answers to the questions listed, and all the changes
that you made to the source code for each operation that you are asked to implement.
To save trees, please include in the hard copy only the functions that you changed.

Solution:

Test cases:

1. “data” - This is very normal string to search for (normal search, prefix, and substring).

(a) “data” found with search after reading 10 pages.

(b) “data” is the prefix of 6 words, requiring 11 page reads.

(c) “data” is the substring of 22 words, requiring 74552 page reads.

2. “andy” - This is very normal string to search for (normal search, prefix, and substring).

(a) “andy” found with search after reading 10 pages.

(b) “andy” is the prefix of 1 word, requiring 10 page reads.

(c) “andy” is the substring of 46 words, requiring 74552 page reads.

3. “christos” - This is very normal string to search for (normal search, prefix, and sub-
string).

(a) “christos” found with search after reading 10 pages.

(b) “christos” is the prefix of 1 word, requiring 11 page reads.

(c) “christos” is the substring of 1 words, requiring 74552 page reads.

Question 1 continues. . .

15-415/615 Homework 3, Page 9 of 10 due: 2/20/2014, 1:30pm

4. “aa” - This string is at the very beginning of the alphabet so it tests that side of the
tree

(a) “aa” found with search after reading 10 pages.

(b) “aa” is the prefix of 13 words, requiring 13 page reads.

(c) “aa” is the substring of 130 words, requiring 74552 page reads.

5. “zyz” - This string is very rare and occurs at the very end of the dictionary such that
we make sure it goes all the way to the end

(a) “zyz” is not found with search after reading 10 pages.

(b) “zyz” is the prefix of 2 words, requiring 10 page reads.

(c) “zyz” is the substring of 2 words, requiring 74552 page reads.

6. “alskj” - In the original dictionary this string does not exist (even substring). This is
to make sure they can appropriately return that nothing was found.

(a) “alskj” is not found with search after reading 10 pages.

(b) “alskj” is the prefix of 0 words, requiring 10 page reads.

(c) “alskj” is the substring of 0 words, requiring 74552 page reads.

7. “alskj” - We then insert a new document that contains this word and this string as
a substring of many different words. We then re-run the tests to make sure that the
BTree uses these newly inserted words.

(a) “alskj” is found with search after reading 10 pages.

(b) “alskj” is the prefix of 3 words, requiring 10 page reads.

(c) “alskj” is the substring of 4 words, requiring 74554 page reads.

You can see the full solution at http://www.cs.cmu.edu/~christos/courses/dbms.S14/
hws/HW3/sols.tar and the code at http://www.cs.cmu.edu/~christos/courses/dbms.
S14/hws/HW3/btree_sol.tar

A summary of how we graded the assignments:

• There are 4 additional test cases provided. Each is graded with the same distribution
as for the three given but divide all point values in half for these additional queries.

• -3 if the tar file was submitted incorrectly (without makefiles, data files, etc.)

• -2 for small compilation errors

• -3 if corrupted directory to the point that we can’t compile and had to email the
student.

Question 1 continues. . .

http://www.cs.cmu.edu/~christos/courses/dbms.S14/hws/HW3/sols.tar
http://www.cs.cmu.edu/~christos/courses/dbms.S14/hws/HW3/sols.tar
http://www.cs.cmu.edu/~christos/courses/dbms.S14/hws/HW3/btree_sol.tar
http://www.cs.cmu.edu/~christos/courses/dbms.S14/hws/HW3/btree_sol.tar

15-415/615 Homework 3, Page 10 of 10 due: 2/20/2014, 1:30pm

• -2 if they dont print the number of pages read for an unsuccessful ‘S’ command

• -0.5 for every error such as FetchPage: Pagenum -3 out of range (1,100704) FetchPage:
corrupted Page -3 OR segmentation fault

• -5 if they dont count the number of pages for each of the two search methods.

• -4 for not printing out the number of pages for S (but having the right number in the
printed document for the 3 given cases)

End of Homework 3

	Preliminaries - Our B+ Tree Implementation
	Where to Find Makefiles, Code, etc.
	Description of the provided B+ tree package

	Testing Mechanism
	What to hand-in

