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15-826: Multimedia Databases

and Data Mining

Approximate Counting
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Outline

Goal: ‘Find similar / interesting things’

• Intro to DB

• Indexing - similarity search

• Data Mining
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Data Mining - Detailed outline

• Statistics

• AI - decision trees

• DB

– data warehouses; data cubes; OLAP

– classifiers

– association rules

– misc. topics: 

• ...

• approximate counting
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Outline

• Flajolet-Martin (and Cohen) –

vocabulary size (Problem #1)

• Application: Approximate Neighborhood 

function (ANF)

• other, powerful approximate counting tools 

(Problem #2, #3)
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Problem #1

• Given a multiset (eg., words in a document)

• find the vocabulary size (#, after dup. 

elimination)

15-826 C. Faloutsos (2007) 6

CMU SCS

Thanks to

• Chris Palmer (Vivisimo)
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Problem #2

• Given a multiset

• compute approximate high-end histogram = 

hot-list query = (k most common words, and 

their counts)
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Problem #3

• Given two documents

• compute quickly their similarity (#common 

words/ #total-words) == Jaccard coefficient
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Problem #1

• Given a multiset (eg., words in a document)

• find the vocabulary size V (#, after dup. 

elimination)

• using space O(V), or O(log(V))

(Q1: Applications?)

(Q2: How would you solve it?)
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Basic idea (Cohen)

large bit string, initially all zeros

A

A

C

15-826 C. Faloutsos (2007) 11

CMU SCS

Basic idea (Cohen)

large bit string, initially all zeros

A

A

C

hash!
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Basic idea (Cohen)

large bit string

A

A

C
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Basic idea (Cohen)

large bit string

A

A

C
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Basic idea (Cohen)

large bit string

A

A

C

the rightmost position depends on the 

vocabulary size

(and so does the left-most)

Repeat, with several hashing 

functions, and merge the estimates
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Basic idea (Cohen)

large bit string

A

A

C

the rightmost position depends on the 

vocabulary size

(and so does the left-most)

Can we do it in less space?? 
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Basic idea (Cohen)

large bit string

A

A

C

the rightmost position depends on the 

vocabulary size

(and so does the left-most)

Can we do it in less space??

YES
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How?
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Basic idea (Flajolet-Martin)

O(log(V)) bit string (V: voc. size)

A

A

C

first bit: with prob. ½

second: with prob. ¼

...

i-th: with prob. ½**i
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Basic idea (Flajolet-Martin)

O(log(V)) bit string (V: voc. size)

A

A

C

again, the rightmost bit

‘reveals’ the vocabulary size
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Basic idea (Flajolet-Martin)

O(log(V)) bit string (V: voc. size)

A

A

C

again, the rightmost bit

‘reveals’ the vocabulary size

Eg.: V=4, will probably set 

the 2nd bit, etc
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Flajolet-Martin

• Hash multiple values of X to same signature

– Hash each x to a bit, using exponential distr.

– ½ map to bit 0, ¼ map to bit 1, …

• Do several different mappings and average

– Gives better accuracy

– Estimate is:    2b / .77351 / BIAS

• b ~ rightmost ‘1’, and actually:
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Flajolet-Martin

• Hash multiple values of X to same signature

– Hash each x to a bit, using exponential distr.

– ½ map to bit 0, ¼ map to bit 1, …

• Do several different mappings and average

– Gives better accuracy

– Estimate is:    2b / .77351 / BIAS

• b : average least zero bit in the bitmask

• bias : 1+.31/k for k different mappings

• Flajolet & Martin prove this works
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FM Approx. Counting Alg.

• How many bits?  log V + small constant

• What hash functions?

Assume X = { 0, 1, …, V-1 }

FOR i = 1 to k DO bitmask[i] = 0000…00

Create k random hash functions, hashi

FOR each element x of M DO

FOR i = 1 to k DO

h = hashi(x)

bitmask[i] = bitmask[i] LOR h

Estimate: b = average least zero bit in bitmask[i]

2b/.77351/(1+.31/k)
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Random Hash Functions

• Can use linear hash functions.  Pick random 
(ai,, bi) and then the hash function is:

– lhashi(x) = ai * x + bi

• Gives uniform distribution over the bits

• To make this exponential, define

– hashi(x) = least zero bit in lhashi(x)

• Hash functions easy to create and fast to use
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Conclusions

• Want to measure # of distinct elements

• Approach #1: (Flajolet-Martin)

– Map elements to random bits

– Keep bitmask of bits

– Estimate is O(2b) for least zero-bit b

• Approach #2: (Cohen)

– Create random permutation of elements

– Keep least element seen

– Estimate is: O(1/le) for least rank le
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Approximate counting

• Flajolet-Martin (and Cohen) – vocabulary 

size

• Application: Approximate Neighborhood 

function (ANF)

• other, powerful approximate counting tools

CMU SCS

Christopher R. Palmer

Phillip B. Gibbons

Christos Faloutsos

KDD 2001

Fast Approximation of the 

“neighborhood” Function for Massive 

Graphs
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Motivation

• What is the diameter of the Web?

• What is the effective diameter of the Web?

• Are the telephone caller-callee graphs for 
the U.S. similar to the ones in Europe?

• Is the citation graph for physics different 
from the one for computer science?

• Are users in India further away from the 
core of the Internet than those in the U.S.?
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Proposed Tool: neighborhood

Given graph G=(V,E)

N(h) = # pairs within h hops or less

= neighborhood function
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Proposed Tool: neighborhood

Given graph G=(V,E)

N(h) = # pairs within h hops or less

= neighborhood function

N(u,h) = # neighbors of node u, within h

hops or less
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Example of neighborhood

15-826 C. Faloutsos (2007) 32

CMU SCS

Example of neighborhood

~diameter of graph
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Requirements (for massive graphs)

• Error guarantees

• Fast: (and must scale linearly with graph)

• Low storage requirements: massive graphs!

• Adapts to available memory

• Sequential scans of the edges

• Also estimates individual neighborhood 
functions |S(u,h)|

– These are actually quite useful for mining
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How would you compute it?

• Repeated matrix multiply

– Too slow O(n2.38) at the very least

– Too much memory O(n2)

• Breadth-first search
FOR each node u DO

bf-search to compute S(u,h) for each h

– Best known exact solution!

– We will use this as a reference

• Approximations?  Only 1 that we know of which 
we will discuss when we evaluate it.
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• Guess what we’ll use?

– Approximate Counting!

• Use very simple algorithm:
FOR each node u DO S(u,0) = { (u,u) }

FOR h = 1 to diameter of G DO

FOR each node u DO S(u,h) = S(u,h-1)

FOR each edge (u,v) in G DO

S(u,h) = S(u,h) U { (u,v’) : (v,v’) ∈ S(v,h-1) }

Intuition

initialize to self-only

can reach same things

and add one more step
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• Guess what we’ll use?

– Approximate Counting!

• Use very simple algorithm:
FOR each node u DO S(u,0) = { (u,u) }

FOR h = 1 to diameter of G DO

FOR each node u DO S(u,h) = S(u,h-1)

FOR each edge (u,v) in G DO

S(u,h) = S(u,h) U { (u,v’) : (v,v’) ∈ S(v,h-1) }

Intuition

initialize to self-only

can reach same things

and add one more step

# (distinct) neighbors of u, 

within h hops
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• Guess what we’ll use?

– Approximate Counting!

• Use very simple algorithm:
FOR each node u DO S(u,0) = { (u,u) }

FOR h = 1 to diameter of G DO

FOR each node u DO S(u,h) = S(u,h-1)

FOR each edge (u,v) in G DO

S(u,h) = S(u,h) U { (u,v’) : (v,v’) ∈ S(v,h-1) }

• Too slow and requires too much memory

• Replace expensive set ops with bit ops

Intuition

initialize to self-only

can reach same things

and add one more step

# (distinct) neighbors of u, 

within h hops
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ANF Algorithm #1

FOR each node, u, DO
M(u,0) = concatenation of k bitmasks of length log n + r

each bitmask has 1 bit set (exp. distribution)
DONE

FOR h = 1 to diameter of G DO
FOR each node, u, DO M(u,h) = M(u,h-1)
FOR each edge (u,v) in G DO

M(u,h) = (M(u,h) OR M(v,h-1))

Estimate N(h) = Sum(N(u,h)) = Sum 2b(u) / .77351 / 
(1+.31/k)

where b(u) = average least zero bit in M(u,it)
DONE
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ANF Algorithm #1

FOR each node, u, DO
M(u,0) = concatenation of k bitmasks of length log n + r

each bitmask has 1 bit set (exp. distribution)
DONE

FOR h = 1 to diameter of G DO
FOR each node, u, DO M(u,h) = M(u,h-1)
FOR each edge (u,v) in G DO

M(u,h) = (M(u,h) OR M(v,h-1))

Estimate N(h) = Sum(N(u,h)) = Sum 2b(u) / .77351 / 
(1+.31/k)

where b(u) = average least zero bit in M(u,it)
DONE



C. Faloutsos 15-826

14

15-826 C. Faloutsos (2007) 40

CMU SCS

ANF Algorithm #1

FOR each node, u, DO
M(u,0) = concatenation of k bitmasks of length log n + r

each bitmask has 1 bit set (exp. distribution)
DONE

FOR h = 1 to diameter of G DO
FOR each node, u, DO M(u,h) = M(u,h-1)
FOR each edge (u,v) in G DO

M(u,h) = (M(u,h) OR M(v,h-1))

Estimate N(h) = ∑u 2
b(u) / .77351 / (1+.31/k)

where b(u) = average least zero bit in M(u,it)
DONE

whatever u can reach

with h hops

plus whatever v can reach

with h-1 hops

Duplicates: automatically

eliminated!

u v
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Properties

• Has error guarantees: (from F&M)

• Is fast: O((n+m)d) for n nodes, m edges, diameter 
d (which is typically small)

• Has low storage requirements: O(n)

• Easily parallelizable: Partition nodes among 
processors, communicate after full iteration

• Does sequential scans of edges.

• Estimates individual neighborhood functions

• DOES NOT work with limited memory
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Using limited memory

• Idea

– edges determine access into 2 large tables

– partition edges to determine order of accesses

• Use prefetching/async writing to hide I/O costs

• Details in the paper

SKIP
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Experiments – What are the 

Qs?

• What scheme gives the best results?

– Us?  A Cohen based scheme?  Sampling?

• How big a value of k do we need?

– Will try 32, 64 and 128

• Are the results sensitive to r?

• How fast is our approximation?

• How well does this performance scale?
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What is the data?

YUndir.103.151,978430,342284,805router

NUndir.85.39723449,832166,94680-20

YDir.282.60457330,198127,083cora

NUndir.76.1220199,99665,378uniform

NUndir.893.96419,80010,000grid

NUndir.4502.0021,0001,000cycle

YDir.81.951311,647844cornell

Real?Orient.Eff. 

Diam.

Avg. 

degree

Max. 

degree

#edges#nodesName
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Scalability of ANF!

ANF-C

ANF

Sampling (0.15%)

RI

ANF-0

Millions of edges

Running time (mins)
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We are much faster than BF

436x2.751,200Router

453x1.568080-20

4x1.56Cora

184x0.592Uniform

SpeedupANFBF 

(Exact)

Data
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Conclusions
• Very accurate

– less than 10% error for k=64

• Orders of magnitude faster
– up to 450x (on our experiments)

• Low storage requirements
– Only O(n) additional memory needed

• Adapts to available memory
– see paper

• May be parallelized
– very few synchronization points are needed

• Employs sequential scans
– May run on graphs larger than memory

• Estimates Individual neighborhood functions
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Outline

• Flajolet-Martin (and Cohen) – vocabulary 

size

• Application: Approximate Neighborhood 

function (ANF)

– putting ANF to work

• other, powerful approximate counting tools
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Christopher R. Palmer

Georgos Siganos (UC Riverside)

Michalis Faloutsos (UC Riverside)

Phillip B. Gibbons (Bell-Labs)

Christos Faloutsos

NRDM 2001

The Connectivity and Fault-

Tolerance of the Internet Topology
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Understanding the Internet

• Large (285K nodes, 430K edges)

– Hard to process using existing tools

• Yet, Internet very important in daily life

• We want to

– Identify interesting nodes (routers)

– Want to understand network failures

– Identify errors / suspicious routers
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Link Failures

>25K deletions for 

big change

Experiment: Pick an edge at random, delete it 

and measure network disruption.

# reachable

pairs
???

# edges deleted
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Link Failures

>25K deletions for 

big change

Internet very resilient to link failures

Experiment: Pick an edge at random, delete it 

and measure network disruption.

# reachable

pairs
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Effect of node deletions
• Random failures

• Targeted failures

Disconnection is 
relatively slow for 
random failures.

Faster for 
hop exponent 
and degree.

# reachable

pairs

???
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Effect of node deletions
• Robust to random failures, focussed failures are a 

problem

• ALL these runs would take >100x times longer 
without ANF!

Disconnection is 
relatively slow for 
random failures.

Faster for 
hop exponent 
and degree.

# reachable

pairs
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Conclusions

• Approximate counting (ANF / Martin-

Flajolet) take minutes, instead of hours

• and discover internet facts quickly

15-826 C. Faloutsos (2007) 56

CMU SCS

Outline

• Flajolet-Martin (and Cohen) – vocabulary 

size (Problem #1)

• Application: Approximate Neighborhood 

function (ANF)

• other, powerful approximate counting tools 

(Problem #2, #3)
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Problem #2

• Given a multiset

• compute approximate high-end histogram = 

hot-list query = (k most common words, and 

their counts)
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Hot-list queries

A  A B A C A B C A A D E A  C A

•Given a stream of  product ids (with duplicates)

•Compute 

•the k most frequent products, 

•and their counts

•with a SINGLE PASS and O(k) memory

k=2 A C

8 3
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Applications?
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Applications?

• Best selling products

• most common words

• most busy IP destinations/sources (DoS

attacks)

• summarization / synopses of datasets

• high-end histograms for DBMS query 

optimization
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Hot-list queries

A  A B A C A B C A A D E A  C A

•Given a stream of  product ids (with duplicates)

•Compute 

•the k most frequent products, 

•and their counts

•with a SINGLE PASS and O(k) memory

k=2 A C

8 3

Exact: impossible 

Thus: approximate
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Hot-list queries - idea

• Keep the (approx.) k best so far, plus counts

• for a new item, if it is in the hot list

– increment its count

A  A B A C A B C A A D E A  C A

k=2 A B

2 1
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Hot-list queries - idea

• Keep the (approx.) k best so far, plus counts

• for a new item, if it is in the hot list

– increment its count

A  A B A C A B C A A D E A  C A

k=2 A B

2 1

3
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Hot-list queries - idea

• Keep the (approx.) k best so far, plus counts

• for a new item, if it is in the hot list

– increment its count

– else ??

A  A B A C A B C A A D E A  C A

k=2 A B

1
3
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Hot-list queries - idea

• Keep the (approx.) k best so far, plus counts

• for a new item, if it is in the hot list

– increment its count

– else TOSS a coin, and possibly displace weakest

A  A B A C A B C A A D E A  C A

k=2 A B

1
3

15-826 C. Faloutsos (2007) 66

CMU SCS

Hot-list queries - idea

• Biased coin - what are the Head/Tail prob.?

A  A B A C A B C A A D E A  C A

k=2 A B

2

6
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Hot-list queries - idea

• Biased coin - what are the Head/Tail prob.?

• A: depends on count(weakest)

A  A B A C A B C A A D E A  C A

k=2 A B

2

6
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Hot-list queries - idea

• Biased coin - what are the Head/Tail prob.?

• A: depends on count(weakest)

• and the new item (‘D’), if it wins, it gets the 

count of the item it displaced.
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Hot-list queries - idea

• See [Gibbons+Matias 98] for proofs
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Outline

• Flajolet-Martin (and Cohen) – vocabulary 

size (Problem #1)

• Application: Approximate Neighborhood 

function (ANF)

• other, powerful approximate counting tools 

(Problem #2, #3)
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Problem #3

• Given two documents

• compute quickly their similarity (#common 

words/ #total-words) == Jaccard coefficient
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Problem #3’

• Given a query document q

• and many other documents

• compute quickly the k nearest neighbors of 

q, using the Jaccard coefficient
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Applications?
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Applications?

• Set comparisons eg.,

– snail-mail address (set of trigrams)

• search engines - ‘similar pages’

• social networks: people with many joint 

friends
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Problem #3’

• Given a query document q

• and many other documents

• compute quickly the k nearest neighbors of 

q, using the Jaccard coefficient

• Q: how to extract a fixed set of numerical 

features, to index on?
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Answer

• Approximation / hashing - Cohen:

15-826 C. Faloutsos (2007) 77

CMU SCS

Basic idea (Cohen)

large bit string

the

the

cat

For each document

and for a given h.f.

return the position of first ‘1’

Repeat for k h.f. -> 

each document becomes k numbers
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Idea

• Doc1:    n1,  n2, .....              nk

• Doc2:    n1’, n2’, ....             nk’
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Idea

• Doc1:    n1,  n2, .....              nk

• Doc2:    n1’, n2’, ....             nk’

• say they agree on m values
1 m
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Idea

• Doc1:    n1,  n2, .....              nk

• Doc2:    n1’, n2’, ....             nk’

• say they agree on m values, 

• then

Jaccard(Doc1, Doc2) ~ m/k

15-826 C. Faloutsos (2007) 81
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Intuition behind proof

• Venn diagram

voc. terms of

Doc.#1 voc. terms of

Doc.#2
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Intuition behind proof

• Venn diagram - let w be the voc. word 

with the overal smallest hash value, for 

h.f.#1

voc. terms of

Doc.#1 voc. terms of

Doc.#2

w
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Intuition behind proof

• Prob. that w is smallest on both is 

exactly Jaccard: #common / #union 

voc. terms of

Doc.#1 voc. terms of

Doc.#2

w
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Conclusions

• Approximations can achieve the 

impossible!

• MF and ANF for neighborhood function

• hot-lists

• Jaccard coeff. / ‘similar pages’
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