

Approximate Counting
C. Faloutsos

Outline

- Flajolet-Martin (and Cohen) vocabulary size (Problem #1)
- Application: Approximate Neighborhood function (ANF)
- other, powerful approximate counting tools (Problem #2, #3)

15-826

C. Faloutsos (2007)

Problem #1

- Given a multiset (eg., words in a document)
- find the vocabulary size (#, after dup. elimination)

15-826

C. Faloutsos (2007)

Thanks to

• Chris Palmer (Vivisimo)

15-826

C. Faloutsos (2007)

Problem #2

- Given a multiset
- compute approximate high-end histogram = hot-list query = (*k* most common words, and their counts)

15-826

C. Faloutsos (2007)

Problem #3

- Given two documents
- compute quickly their similarity (#common words/ #total-words) == Jaccard coefficient

15-826

C. Faloutsos (2007)

Problem #1

- Given a multiset (eg., words in a document)
- find the vocabulary size V (#, after dup. elimination)
- using space O(V), or O(log(V))

(Q1: Applications?)

(Q2: How would you solve it?)

15-826

C. Faloutsos (2007)

Conclusions

- Want to measure # of distinct elements
- Approach #1: (Flajolet-Martin)
 - Map elements to random bits
 - Keep bitmask of bits
 - Estimate is $O(2^b)$ for least zero-bit b
- Approach #2: (Cohen)
 - Create random permutation of elements
 - Keep least element seen
 - Estimate is: O(1/le) for least rank le

15-826

C. Faloutsos (2007)

25

CMU SCS

Approximate counting

- Flajolet-Martin (and Cohen) vocabulary size
- Application: Approximate Neighborhood function (ANF)
- other, powerful approximate counting tools

15-826

C. Faloutsos (2007)

26

CMU SCS

Fast Approximation of the "neighborhood" Function for Massive Graphs

Christopher R. Palmer Phillip B. Gibbons Christos Faloutsos

KDD 2001

Motivation

- What is the diameter of the Web?
- What is the effective diameter of the Web?
- Are the telephone caller-callee graphs for the U.S. similar to the ones in Europe?
- Is the citation graph for physics different from the one for computer science?
- Are users in India further away from the core of the Internet than those in the U.S.?

15-826

C. Faloutsos (2007)

28

CMU SCS

Proposed Tool: neighborhood

Given graph G=(V,E) N(h) = # pairs within h hops or less = **neighborhood function**

15-826

C. Faloutsos (2007)

29

30

CMU SCS

Proposed Tool: neighborhood

Given graph G=(V,E)

N(h) = # pairs within h hops or less

= neighborhood function

N(u,h) =# neighbors of node u, within h hops or less

15-826

C. Faloutsos (2007)

Require	ments (for massive	graphs)
• Error g	uarantees	
• <i>Fast</i> : (a	nd must scale linearly with g	graph)
• Low sto	rage requirements: massive	graphs!
Adapts	to available memory	
• Sequent	tial scans of the edges	
	timates <i>individual neighborh</i> <i>is</i> S(u,h)	ood
- These	are actually quite useful for min	ing
15-826	C. Faloutsos (2007)	33

C. Faloutsos (2007)

Intuition

• Guess what we'll use?

- Approximate Counting!

• Use very simple algorithm:

FOR each node u DO $S(u,0) = \{(u,u)\}$ FOR h = 1 to diameter of G DO

FOR each node u DO S(u,h) = S(u,h-1)and add one more step $S(u,h) = S(u,h) \ U \ \{(u,v'): (v,v') \in S(v,h-1)\}$

Experiments – What are the Qs?

- What scheme gives the best results?
 - Us? A Cohen based scheme? Sampling?
- How big a value of k do we need?
 - Will try 32, 64 and 128
- Are the results sensitive to *r*?
- How fast is our approximation?
- How well does this performance scale?

15-826

C. Faloutsos (2007)

43

What is the data? #nodes Max. Eff. Orient. Real? Name #edges Avg. degree degree 844 1,647 8 Dir. Y cornell 131 1.95 450 Undir. cycle 1,000 1,000 2 2.00 N 10,000 19,800 4 3.96 89 Undir. N grid 65,378 199,996 20 6.12 Undir. N uniform 127,083 330,198 457 2.60 28 Dir. Y 80-20 449,832 5.39 8 Undir. N 284,805 430,342 10 Undir. Y 1,978 3.15 router 15-826 C. Faloutsos (2007)

C. Faloutsos 15-826

46

We are much faster than BF

Data	BF (Exact)	ANF	Speedup
Uniform	92	0.5	184x
Cora	6	1.5	4x
80-20	680	1.5	453x
Router	1,200	2.75	436x

15-826 C. Faloutsos (2007)

Conclusions

- Very accurate
- less than 10% error for k=64
- · Orders of magnitude faster
 - up to 450x (on our experiments)
- Low storage requirements
- Only O(n) additional memory needed
- · Adapts to available memory
- see paper
- May be parallelized
- very few synchronization points are needed
 Employs sequential scans
- - May run on graphs larger than memory
- Estimates Individual neighborhood functions

C. Faloutsos (2007)

Outline

- Flajolet-Martin (and Cohen) vocabulary
- Application: Approximate Neighborhood function (ANF)
 - putting ANF to work
- other, powerful approximate counting tools

15-826

C. Faloutsos (2007)

The Connectivity and Fault-Tolerance of the Internet Topology

Christopher R. Palmer

Georgos Siganos (UC Riverside) Michalis Faloutsos (UC Riverside) Phillip B. Gibbons (Bell-Labs) Christos Faloutsos

NRDM 2001

CMU SC

Conclusions

- Approximate counting (ANF / Martin-Flajolet) take minutes, instead of hours
- and discover internet facts quickly

15-826

C. Faloutsos (2007)

CMU SCS

Outline

- Flajolet-Martin (and Cohen) vocabulary size (Problem #1)
- Application: Approximate Neighborhood function (ANF)
- other, powerful approximate counting tools (**Problem #2**, #3)

15-826

C. Faloutsos (2007)

55

CMU SCS

Problem #2

- Given a multiset
- compute approximate high-end histogram = hot-list query = (*k* most common words, and their counts)

15-826

C. Faloutsos (2007)

57

Outline

- Flajolet-Martin (and Cohen) vocabulary size (Problem #1)
- Application: Approximate Neighborhood function (ANF)
- other, powerful approximate counting tools (**Problem** #2, #3)

15-826

C. Faloutsos (2007)

Problem #3

- Given two documents
- compute quickly their similarity (#common words/ #total-words) == Jaccard coefficient

15-826

C. Faloutsos (2007)

71

72

70

Problem #3'

- Given a query document q
- and many other documents
- compute quickly the *k* nearest neighbors of *q*, using the Jaccard coefficient

15-826

C. Faloutsos (2007)

CMU SCS

Applications?

- Set comparisons eg.,
 snail-mail address (set of trigrams)
- search engines 'similar pages'
- social networks: people with many joint friends

15-826

C. Faloutsos (2007)

74

Problem #3'

- Given a query document q
- and many other documents
- compute quickly the *k* nearest neighbors of *q*, using the Jaccard coefficient
- Q: how to extract a fixed set of numerical features, to index on?

15-826

C. Faloutsos (2007)

75

15-826

85

CMU SCS

References

E. Cohen. Size-estimation framework with applications to transitive closure and reachability. *Journal of Computer and System Sciences*, 55(3):441-453, December 1997. http://www.research.att.com/~edith/Papers/tcest.ps.Z

Phillip B. Gibbons, Yossi Matias, New sampling-based summary statistics for improving approximate query answers, ACM SIGMOD, 1998 Seattle, Washington, pp 331 - 342

15-826

C. Faloutsos (2007)

CMU SCS

References (cont'd)

Aristides Gionis, Dimitrios Gunopulos, Nikos Koudas, Efficient and Tunable Similar Set Retrieval, ACM SIGMOD 2001, Santa Barbara, California

M. Faloutsos, P. Faloutsos, and C. Faloutsos. *On power-law relationships for the internet topology*. SIGCOMM, 1999.

15-826

C. Faloutsos (2007)

References (cont'd)

- P. Flajolet and G. N. Martin. Probabilistic counting algorithms for data base applications. *Journal of Computer and System Sciences*, 31:182-209, 1985.
- C. R. Palmer and C. Faloutsos. *Density biased sampling: an improved method for data mining and cluster*. In SIGMOD, 2000.
- C. R. Palmer, P. B. Gibbons and C. Faloutsos. Fast approximation of the "neighborhood" function for massive graphs. KDD 2002

15-826

C. Faloutsos (2007)

87

