
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

C. Faloutsos

\qquad

C. Faloutsos

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

$43^{\text {cnuscs }}$	FM Approx. Counting Al
	Assume $X=\{0,1, \ldots, V-1\}$ FOR $i=1$ to k DO bitmask $[i]=0000 \ldots 00$ Create k random hash functions, hash h_{i} FOR each element x of M DO $\begin{gathered} \text { FOR } i=1 \text { to } k \text { DO } \\ h=\operatorname{hash}_{i}(x) \end{gathered}$ bitmask[i] = bitmask[i] LOR h Estimate: $\mathrm{b}=$ average least zero bit in bitmask[i] $2^{b} / .77351 /(1+.31 / k)$

\qquad
Assume $X=\{0,1, \ldots, V-1\}$
FOR $i=1$ to k DO bitmask $[i]=0000 \ldots 00$
\qquad
Create k random hash functions, hash $_{i}$
$\mathrm{FOR} i=1$ to $k \mathrm{DO}$
$h=\operatorname{hash}_{i}(x)$
bitmask $[i]=$ bitmask $[i]$ LOR h
\qquad

How many bits? $\log V+$ small constant

- What hash functions? \qquad
15-826
C. Faloutsos (2007)

23

$\int^{\text {Random Hash Functions }}$

- Can use linear hash functions. Pick random $\left(a_{i}, b_{i}\right)$ and then the hash function is:
$-\operatorname{lhash}_{i}(x)=a_{i} * x+b_{i}$
- Gives uniform distribution over the bits \qquad
- To make this exponential, define
- $\operatorname{hash}_{i}(x)=$ least zero bit in $\operatorname{Lhash}_{i}(x)$ \qquad
- Hash functions easy to create and fast to use \qquad
15-826 C. Faloutsos (2007) 24 24

C. Faloutsos

Conclusions

- Want to measure \# of distinct elements
- Approach \#1: (Flajolet-Martin)
\qquad
\qquad
- Map elements to random bits
- Keep bitmask of bits
- Estimate is $O\left(2^{b}\right)$ for least zero-bit b
- Approach \#2: (Cohen)
- Create random permutation of elements
- Keep least element seen
- Estimate is: $O(1 / l e)$ for least rank $l e$

${ }^{\text {s. }}$ Approximate counting

- Flajolet-Martin (and Cohen) - vocabulary size \qquad
- Application: Approximate Neighborhood function (ANF)
- other, powerful approximate counting tools \qquad
\qquad
15-826
C. Faloutsos (2007)

26

C. Faloutsos

\qquad
\qquad
\qquad

Given graph $G=(V, E)$
$N(h)=$ \# pairs within h hops or less $=$ neighborhood function

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Requirements (for massive graphs)

\qquad

- Error guarantees
- Fast: (and must scale linearly with graph)
\qquad
- Low storage requirements: massive graphs!
- Adapts to available memory
\qquad
- Sequential scans of the edges
- Also estimates individual neighborhood functions $|\mathrm{S}(\mathrm{u}, \mathrm{h})|$
- These are actually quite useful for mining

15-826
C. Faloutsos (2007)

33

How would you compute it?

- Repeated matrix multiply
- Too slow $O\left(n^{2.38}\right)$ at the very least
- Too much memory $O\left(n^{2}\right)$
- Breadth-first search

FOR each node u DO
bf-search to compute $S(u, h)$ for each h

- Best known exact solution!
- We will use this as a reference
- Approximations? Only 1 that we know of which we will discuss when we evaluate it.

15-826
C. Faloutsos (2007)

\qquad
\qquad

${\sqrt{ }{ }^{\text {cnuscs }}}$ Properties

- Has error guarantees: (from F\&M)
- Is fast: $O((n+m) d)$ for n nodes, m edges, diameter \qquad d (which is typically small)
- Has low storage requirements: $O(n)$
- Easily parallelizable: Partition nodes among
\qquad processors, communicate after full iteration
- Does sequential scans of edges. \qquad
- Estimates individual neighborhood functions
- DOES NOT work with limited memory \qquad

15-826
C. Faloutsos (2007)

41

${ }^{3}$ Experiments - What are the Qs?

- What scheme gives the best results? - Us? A Cohen based scheme? Sampling?
- How big a value of \boldsymbol{k} do we need?
- Will try 32, 64 and 128
- Are the results sensitive to \boldsymbol{r} ?
- How fast is our approximation?
- How well does this performance scale?

cmuscs							
Name	\#nodes	\#edges	Max. degree	Avg. degree	Eff. Diam.	Orient.	Real?
cornell	844	1,647	131	1.95	8	Dir.	Y
cycle	1,000	1,000	2	2.00	450	Undir.	N
grid	10,000	19,800	4	3.96	89	Undir.	N
uniform	65,378	199,996	20	6.12	7	Undir.	N
cora	127,083	330,198	457	2.60	28	Dir.	Y
80-20	166,946	449,832	723	5.39	8	Undir.	N
router	284,805	430,342	1,978	3.15	10	Undir.	Y
15-826		C. Faloutsos (2007)					44

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

C. Faloutsos

C. Faloutsos

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Hot-list queries

-Given a stream of product ids (with duplicates) -Compute
-the k most frequent products, -and their counts
-with a SINGLE PASS and $\mathrm{O}(k)$ memory

\qquad
\qquad
\qquad
\qquad
\qquad

- Keep the (approx.) k best so far, plus counts
- for a new item, if it is in the hot list
- increment its count
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
- Keep the (approx.) k best so far, plus counts
- for a new item, if it is in the hot list
- increment its count
- else TOSS a coin, and possibly displace weakest
A ABACABCAADEACA \uparrow

15-826

.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

C. Faloutsos

C. Faloutsos

\qquad
\qquad

C. Faloutsos

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$3^{\text {3 }}$ civscs	
Applications?	
- Set comparisons eg., - snail-mail address (set of trigrams) - search engines - 'similar pages' - social networks: people with many joint friends	
	${ }^{7}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

C. Faloutsos

C. Faloutsos 15-826
References (cont'd)

C. R. Palmer, G. Siganos, M. Faloutsos, P. B. Gibbons and C.
Faloutsos. The connectivity and fault-tolerance of the
internet topology. NRDM 2001.

${ }^{15-826}$
c. Faloutsos (2007)

