
C. Faloutsos 15-826

1

CMU SCS

15-826: Multimedia Databases

and Data Mining

Approximate Counting

C. Faloutsos

15-826 C. Faloutsos (2007) 2

CMU SCS

Outline

Goal: ‘Find similar / interesting things’

• Intro to DB

• Indexing - similarity search

• Data Mining

15-826 C. Faloutsos (2007) 3

CMU SCS

Data Mining - Detailed outline

• Statistics

• AI - decision trees

• DB

– data warehouses; data cubes; OLAP

– classifiers

– association rules

– misc. topics:

• ...

• approximate counting

C. Faloutsos 15-826

2

15-826 C. Faloutsos (2007) 4

CMU SCS

Outline

• Flajolet-Martin (and Cohen) –

vocabulary size (Problem #1)

• Application: Approximate Neighborhood

function (ANF)

• other, powerful approximate counting tools

(Problem #2, #3)

15-826 C. Faloutsos (2007) 5

CMU SCS

Problem #1

• Given a multiset (eg., words in a document)

• find the vocabulary size (#, after dup.

elimination)

15-826 C. Faloutsos (2007) 6

CMU SCS

Thanks to

• Chris Palmer (Vivisimo)

C. Faloutsos 15-826

3

15-826 C. Faloutsos (2007) 7

CMU SCS

Problem #2

• Given a multiset

• compute approximate high-end histogram =

hot-list query = (k most common words, and

their counts)

15-826 C. Faloutsos (2007) 8

CMU SCS

Problem #3

• Given two documents

• compute quickly their similarity (#common

words/ #total-words) == Jaccard coefficient

15-826 C. Faloutsos (2007) 9

CMU SCS

Problem #1

• Given a multiset (eg., words in a document)

• find the vocabulary size V (#, after dup.

elimination)

• using space O(V), or O(log(V))

(Q1: Applications?)

(Q2: How would you solve it?)

C. Faloutsos 15-826

4

15-826 C. Faloutsos (2007) 10

CMU SCS

Basic idea (Cohen)

large bit string, initially all zeros

A

A

C

15-826 C. Faloutsos (2007) 11

CMU SCS

Basic idea (Cohen)

large bit string, initially all zeros

A

A

C

hash!

15-826 C. Faloutsos (2007) 12

CMU SCS

Basic idea (Cohen)

large bit string

A

A

C

C. Faloutsos 15-826

5

15-826 C. Faloutsos (2007) 13

CMU SCS

Basic idea (Cohen)

large bit string

A

A

C

15-826 C. Faloutsos (2007) 14

CMU SCS

Basic idea (Cohen)

large bit string

A

A

C

the rightmost position depends on the

vocabulary size

(and so does the left-most)

Repeat, with several hashing

functions, and merge the estimates

15-826 C. Faloutsos (2007) 15

CMU SCS

Basic idea (Cohen)

large bit string

A

A

C

the rightmost position depends on the

vocabulary size

(and so does the left-most)

Can we do it in less space??

C. Faloutsos 15-826

6

15-826 C. Faloutsos (2007) 16

CMU SCS

Basic idea (Cohen)

large bit string

A

A

C

the rightmost position depends on the

vocabulary size

(and so does the left-most)

Can we do it in less space??

YES

15-826 C. Faloutsos (2007) 17

CMU SCS

How?

15-826 C. Faloutsos (2007) 18

CMU SCS

Basic idea (Flajolet-Martin)

O(log(V)) bit string (V: voc. size)

A

A

C

first bit: with prob. ½

second: with prob. ¼

...

i-th: with prob. ½**i

C. Faloutsos 15-826

7

15-826 C. Faloutsos (2007) 19

CMU SCS

Basic idea (Flajolet-Martin)

O(log(V)) bit string (V: voc. size)

A

A

C

again, the rightmost bit

‘reveals’ the vocabulary size

15-826 C. Faloutsos (2007) 20

CMU SCS

Basic idea (Flajolet-Martin)

O(log(V)) bit string (V: voc. size)

A

A

C

again, the rightmost bit

‘reveals’ the vocabulary size

Eg.: V=4, will probably set

the 2nd bit, etc

15-826 C. Faloutsos (2007) 21

CMU SCS

Flajolet-Martin

• Hash multiple values of X to same signature

– Hash each x to a bit, using exponential distr.

– ½ map to bit 0, ¼ map to bit 1, …

• Do several different mappings and average

– Gives better accuracy

– Estimate is: 2b / .77351 / BIAS

• b ~ rightmost ‘1’, and actually:

C. Faloutsos 15-826

8

15-826 C. Faloutsos (2007) 22

CMU SCS

Flajolet-Martin

• Hash multiple values of X to same signature

– Hash each x to a bit, using exponential distr.

– ½ map to bit 0, ¼ map to bit 1, …

• Do several different mappings and average

– Gives better accuracy

– Estimate is: 2b / .77351 / BIAS

• b : average least zero bit in the bitmask

• bias : 1+.31/k for k different mappings

• Flajolet & Martin prove this works

15-826 C. Faloutsos (2007) 23

CMU SCS

FM Approx. Counting Alg.

• How many bits? log V + small constant

• What hash functions?

Assume X = { 0, 1, …, V-1 }

FOR i = 1 to k DO bitmask[i] = 0000…00

Create k random hash functions, hashi

FOR each element x of M DO

FOR i = 1 to k DO

h = hashi(x)

bitmask[i] = bitmask[i] LOR h

Estimate: b = average least zero bit in bitmask[i]

2b/.77351/(1+.31/k)

15-826 C. Faloutsos (2007) 24

CMU SCS

Random Hash Functions

• Can use linear hash functions. Pick random
(ai,, bi) and then the hash function is:

– lhashi(x) = ai * x + bi

• Gives uniform distribution over the bits

• To make this exponential, define

– hashi(x) = least zero bit in lhashi(x)

• Hash functions easy to create and fast to use

C. Faloutsos 15-826

9

15-826 C. Faloutsos (2007) 25

CMU SCS

Conclusions

• Want to measure # of distinct elements

• Approach #1: (Flajolet-Martin)

– Map elements to random bits

– Keep bitmask of bits

– Estimate is O(2b) for least zero-bit b

• Approach #2: (Cohen)

– Create random permutation of elements

– Keep least element seen

– Estimate is: O(1/le) for least rank le

15-826 C. Faloutsos (2007) 26

CMU SCS

Approximate counting

• Flajolet-Martin (and Cohen) – vocabulary

size

• Application: Approximate Neighborhood

function (ANF)

• other, powerful approximate counting tools

CMU SCS

Christopher R. Palmer

Phillip B. Gibbons

Christos Faloutsos

KDD 2001

Fast Approximation of the

“neighborhood” Function for Massive

Graphs

C. Faloutsos 15-826

10

15-826 C. Faloutsos (2007) 28

CMU SCS

Motivation

• What is the diameter of the Web?

• What is the effective diameter of the Web?

• Are the telephone caller-callee graphs for
the U.S. similar to the ones in Europe?

• Is the citation graph for physics different
from the one for computer science?

• Are users in India further away from the
core of the Internet than those in the U.S.?

15-826 C. Faloutsos (2007) 29

CMU SCS

Proposed Tool: neighborhood

Given graph G=(V,E)

N(h) = # pairs within h hops or less

= neighborhood function

15-826 C. Faloutsos (2007) 30

CMU SCS

Proposed Tool: neighborhood

Given graph G=(V,E)

N(h) = # pairs within h hops or less

= neighborhood function

N(u,h) = # neighbors of node u, within h

hops or less

C. Faloutsos 15-826

11

15-826 C. Faloutsos (2007) 31

CMU SCS

Example of neighborhood

15-826 C. Faloutsos (2007) 32

CMU SCS

Example of neighborhood

~diameter of graph

15-826 C. Faloutsos (2007) 33

CMU SCS

Requirements (for massive graphs)

• Error guarantees

• Fast: (and must scale linearly with graph)

• Low storage requirements: massive graphs!

• Adapts to available memory

• Sequential scans of the edges

• Also estimates individual neighborhood
functions |S(u,h)|

– These are actually quite useful for mining

C. Faloutsos 15-826

12

15-826 C. Faloutsos (2007) 34

CMU SCS

How would you compute it?

• Repeated matrix multiply

– Too slow O(n2.38) at the very least

– Too much memory O(n2)

• Breadth-first search
FOR each node u DO

bf-search to compute S(u,h) for each h

– Best known exact solution!

– We will use this as a reference

• Approximations? Only 1 that we know of which
we will discuss when we evaluate it.

15-826 C. Faloutsos (2007) 35

CMU SCS

• Guess what we’ll use?

– Approximate Counting!

• Use very simple algorithm:
FOR each node u DO S(u,0) = { (u,u) }

FOR h = 1 to diameter of G DO

FOR each node u DO S(u,h) = S(u,h-1)

FOR each edge (u,v) in G DO

S(u,h) = S(u,h) U { (u,v’) : (v,v’) ∈ S(v,h-1) }

Intuition

initialize to self-only

can reach same things

and add one more step

15-826 C. Faloutsos (2007) 36

CMU SCS

• Guess what we’ll use?

– Approximate Counting!

• Use very simple algorithm:
FOR each node u DO S(u,0) = { (u,u) }

FOR h = 1 to diameter of G DO

FOR each node u DO S(u,h) = S(u,h-1)

FOR each edge (u,v) in G DO

S(u,h) = S(u,h) U { (u,v’) : (v,v’) ∈ S(v,h-1) }

Intuition

initialize to self-only

can reach same things

and add one more step

(distinct) neighbors of u,

within h hops

C. Faloutsos 15-826

13

15-826 C. Faloutsos (2007) 37

CMU SCS

• Guess what we’ll use?

– Approximate Counting!

• Use very simple algorithm:
FOR each node u DO S(u,0) = { (u,u) }

FOR h = 1 to diameter of G DO

FOR each node u DO S(u,h) = S(u,h-1)

FOR each edge (u,v) in G DO

S(u,h) = S(u,h) U { (u,v’) : (v,v’) ∈ S(v,h-1) }

• Too slow and requires too much memory

• Replace expensive set ops with bit ops

Intuition

initialize to self-only

can reach same things

and add one more step

(distinct) neighbors of u,

within h hops

15-826 C. Faloutsos (2007) 38

CMU SCS

ANF Algorithm #1

FOR each node, u, DO
M(u,0) = concatenation of k bitmasks of length log n + r

each bitmask has 1 bit set (exp. distribution)
DONE

FOR h = 1 to diameter of G DO
FOR each node, u, DO M(u,h) = M(u,h-1)
FOR each edge (u,v) in G DO

M(u,h) = (M(u,h) OR M(v,h-1))

Estimate N(h) = Sum(N(u,h)) = Sum 2b(u) / .77351 /
(1+.31/k)

where b(u) = average least zero bit in M(u,it)
DONE

15-826 C. Faloutsos (2007) 39

CMU SCS

ANF Algorithm #1

FOR each node, u, DO
M(u,0) = concatenation of k bitmasks of length log n + r

each bitmask has 1 bit set (exp. distribution)
DONE

FOR h = 1 to diameter of G DO
FOR each node, u, DO M(u,h) = M(u,h-1)
FOR each edge (u,v) in G DO

M(u,h) = (M(u,h) OR M(v,h-1))

Estimate N(h) = Sum(N(u,h)) = Sum 2b(u) / .77351 /
(1+.31/k)

where b(u) = average least zero bit in M(u,it)
DONE

C. Faloutsos 15-826

14

15-826 C. Faloutsos (2007) 40

CMU SCS

ANF Algorithm #1

FOR each node, u, DO
M(u,0) = concatenation of k bitmasks of length log n + r

each bitmask has 1 bit set (exp. distribution)
DONE

FOR h = 1 to diameter of G DO
FOR each node, u, DO M(u,h) = M(u,h-1)
FOR each edge (u,v) in G DO

M(u,h) = (M(u,h) OR M(v,h-1))

Estimate N(h) = ∑u 2
b(u) / .77351 / (1+.31/k)

where b(u) = average least zero bit in M(u,it)
DONE

whatever u can reach

with h hops

plus whatever v can reach

with h-1 hops

Duplicates: automatically

eliminated!

u v

15-826 C. Faloutsos (2007) 41

CMU SCS

Properties

• Has error guarantees: (from F&M)

• Is fast: O((n+m)d) for n nodes, m edges, diameter
d (which is typically small)

• Has low storage requirements: O(n)

• Easily parallelizable: Partition nodes among
processors, communicate after full iteration

• Does sequential scans of edges.

• Estimates individual neighborhood functions

• DOES NOT work with limited memory

15-826 C. Faloutsos (2007) 42

CMU SCS

Using limited memory

• Idea

– edges determine access into 2 large tables

– partition edges to determine order of accesses

• Use prefetching/async writing to hide I/O costs

• Details in the paper

SKIP

C. Faloutsos 15-826

15

15-826 C. Faloutsos (2007) 43

CMU SCS

Experiments – What are the

Qs?

• What scheme gives the best results?

– Us? A Cohen based scheme? Sampling?

• How big a value of k do we need?

– Will try 32, 64 and 128

• Are the results sensitive to r?

• How fast is our approximation?

• How well does this performance scale?

15-826 C. Faloutsos (2007) 44

CMU SCS

What is the data?

YUndir.103.151,978430,342284,805router

NUndir.85.39723449,832166,94680-20

YDir.282.60457330,198127,083cora

NUndir.76.1220199,99665,378uniform

NUndir.893.96419,80010,000grid

NUndir.4502.0021,0001,000cycle

YDir.81.951311,647844cornell

Real?Orient.Eff.

Diam.

Avg.

degree

Max.

degree

#edges#nodesName

15-826 C. Faloutsos (2007) 45

CMU SCS

Scalability of ANF!

ANF-C

ANF

Sampling (0.15%)

RI

ANF-0

Millions of edges

Running time (mins)

C. Faloutsos 15-826

16

15-826 C. Faloutsos (2007) 46

CMU SCS

We are much faster than BF

436x2.751,200Router

453x1.568080-20

4x1.56Cora

184x0.592Uniform

SpeedupANFBF

(Exact)

Data

15-826 C. Faloutsos (2007) 47

CMU SCS

Conclusions
• Very accurate

– less than 10% error for k=64

• Orders of magnitude faster
– up to 450x (on our experiments)

• Low storage requirements
– Only O(n) additional memory needed

• Adapts to available memory
– see paper

• May be parallelized
– very few synchronization points are needed

• Employs sequential scans
– May run on graphs larger than memory

• Estimates Individual neighborhood functions

15-826 C. Faloutsos (2007) 48

CMU SCS

Outline

• Flajolet-Martin (and Cohen) – vocabulary

size

• Application: Approximate Neighborhood

function (ANF)

– putting ANF to work

• other, powerful approximate counting tools

C. Faloutsos 15-826

17

CMU SCS

Christopher R. Palmer

Georgos Siganos (UC Riverside)

Michalis Faloutsos (UC Riverside)

Phillip B. Gibbons (Bell-Labs)

Christos Faloutsos

NRDM 2001

The Connectivity and Fault-

Tolerance of the Internet Topology

15-826 C. Faloutsos (2007) 50

CMU SCS

Understanding the Internet

• Large (285K nodes, 430K edges)

– Hard to process using existing tools

• Yet, Internet very important in daily life

• We want to

– Identify interesting nodes (routers)

– Want to understand network failures

– Identify errors / suspicious routers

15-826 C. Faloutsos (2007) 51

CMU SCS

Link Failures

>25K deletions for

big change

Experiment: Pick an edge at random, delete it

and measure network disruption.

reachable

pairs
???

edges deleted

C. Faloutsos 15-826

18

15-826 C. Faloutsos (2007) 52

CMU SCS

Link Failures

>25K deletions for

big change

Internet very resilient to link failures

Experiment: Pick an edge at random, delete it

and measure network disruption.

reachable

pairs

15-826 C. Faloutsos (2007) 53

CMU SCS

Effect of node deletions
• Random failures

• Targeted failures

Disconnection is
relatively slow for
random failures.

Faster for
hop exponent
and degree.

reachable

pairs

???

15-826 C. Faloutsos (2007) 54

CMU SCS

Effect of node deletions
• Robust to random failures, focussed failures are a

problem

• ALL these runs would take >100x times longer
without ANF!

Disconnection is
relatively slow for
random failures.

Faster for
hop exponent
and degree.

reachable

pairs

C. Faloutsos 15-826

19

15-826 C. Faloutsos (2007) 55

CMU SCS

Conclusions

• Approximate counting (ANF / Martin-

Flajolet) take minutes, instead of hours

• and discover internet facts quickly

15-826 C. Faloutsos (2007) 56

CMU SCS

Outline

• Flajolet-Martin (and Cohen) – vocabulary

size (Problem #1)

• Application: Approximate Neighborhood

function (ANF)

• other, powerful approximate counting tools

(Problem #2, #3)

15-826 C. Faloutsos (2007) 57

CMU SCS

Problem #2

• Given a multiset

• compute approximate high-end histogram =

hot-list query = (k most common words, and

their counts)

C. Faloutsos 15-826

20

15-826 C. Faloutsos (2007) 58

CMU SCS

Hot-list queries

A A B A C A B C A A D E A C A

•Given a stream of product ids (with duplicates)

•Compute

•the k most frequent products,

•and their counts

•with a SINGLE PASS and O(k) memory

k=2 A C

8 3

15-826 C. Faloutsos (2007) 59

CMU SCS

Applications?

15-826 C. Faloutsos (2007) 60

CMU SCS

Applications?

• Best selling products

• most common words

• most busy IP destinations/sources (DoS

attacks)

• summarization / synopses of datasets

• high-end histograms for DBMS query

optimization

C. Faloutsos 15-826

21

15-826 C. Faloutsos (2007) 61

CMU SCS

Hot-list queries

A A B A C A B C A A D E A C A

•Given a stream of product ids (with duplicates)

•Compute

•the k most frequent products,

•and their counts

•with a SINGLE PASS and O(k) memory

k=2 A C

8 3

Exact: impossible

Thus: approximate

15-826 C. Faloutsos (2007) 62

CMU SCS

Hot-list queries - idea

• Keep the (approx.) k best so far, plus counts

• for a new item, if it is in the hot list

– increment its count

A A B A C A B C A A D E A C A

k=2 A B

2 1

15-826 C. Faloutsos (2007) 63

CMU SCS

Hot-list queries - idea

• Keep the (approx.) k best so far, plus counts

• for a new item, if it is in the hot list

– increment its count

A A B A C A B C A A D E A C A

k=2 A B

2 1

3

C. Faloutsos 15-826

22

15-826 C. Faloutsos (2007) 64

CMU SCS

Hot-list queries - idea

• Keep the (approx.) k best so far, plus counts

• for a new item, if it is in the hot list

– increment its count

– else ??

A A B A C A B C A A D E A C A

k=2 A B

1
3

15-826 C. Faloutsos (2007) 65

CMU SCS

Hot-list queries - idea

• Keep the (approx.) k best so far, plus counts

• for a new item, if it is in the hot list

– increment its count

– else TOSS a coin, and possibly displace weakest

A A B A C A B C A A D E A C A

k=2 A B

1
3

15-826 C. Faloutsos (2007) 66

CMU SCS

Hot-list queries - idea

• Biased coin - what are the Head/Tail prob.?

A A B A C A B C A A D E A C A

k=2 A B

2

6

C. Faloutsos 15-826

23

15-826 C. Faloutsos (2007) 67

CMU SCS

Hot-list queries - idea

• Biased coin - what are the Head/Tail prob.?

• A: depends on count(weakest)

A A B A C A B C A A D E A C A

k=2 A B

2

6

15-826 C. Faloutsos (2007) 68

CMU SCS

Hot-list queries - idea

• Biased coin - what are the Head/Tail prob.?

• A: depends on count(weakest)

• and the new item (‘D’), if it wins, it gets the

count of the item it displaced.

15-826 C. Faloutsos (2007) 69

CMU SCS

Hot-list queries - idea

• See [Gibbons+Matias 98] for proofs

C. Faloutsos 15-826

24

15-826 C. Faloutsos (2007) 70

CMU SCS

Outline

• Flajolet-Martin (and Cohen) – vocabulary

size (Problem #1)

• Application: Approximate Neighborhood

function (ANF)

• other, powerful approximate counting tools

(Problem #2, #3)

15-826 C. Faloutsos (2007) 71

CMU SCS

Problem #3

• Given two documents

• compute quickly their similarity (#common

words/ #total-words) == Jaccard coefficient

15-826 C. Faloutsos (2007) 72

CMU SCS

Problem #3’

• Given a query document q

• and many other documents

• compute quickly the k nearest neighbors of

q, using the Jaccard coefficient

C. Faloutsos 15-826

25

15-826 C. Faloutsos (2007) 73

CMU SCS

Applications?

15-826 C. Faloutsos (2007) 74

CMU SCS

Applications?

• Set comparisons eg.,

– snail-mail address (set of trigrams)

• search engines - ‘similar pages’

• social networks: people with many joint

friends

15-826 C. Faloutsos (2007) 75

CMU SCS

Problem #3’

• Given a query document q

• and many other documents

• compute quickly the k nearest neighbors of

q, using the Jaccard coefficient

• Q: how to extract a fixed set of numerical

features, to index on?

C. Faloutsos 15-826

26

15-826 C. Faloutsos (2007) 76

CMU SCS

Answer

• Approximation / hashing - Cohen:

15-826 C. Faloutsos (2007) 77

CMU SCS

Basic idea (Cohen)

large bit string

the

the

cat

For each document

and for a given h.f.

return the position of first ‘1’

Repeat for k h.f. ->

each document becomes k numbers

15-826 C. Faloutsos (2007) 78

CMU SCS

Idea

• Doc1: n1, n2, nk

• Doc2: n1’, n2’, nk’

C. Faloutsos 15-826

27

15-826 C. Faloutsos (2007) 79

CMU SCS

Idea

• Doc1: n1, n2, nk

• Doc2: n1’, n2’, nk’

• say they agree on m values
1 m

15-826 C. Faloutsos (2007) 80

CMU SCS

Idea

• Doc1: n1, n2, nk

• Doc2: n1’, n2’, nk’

• say they agree on m values,

• then

Jaccard(Doc1, Doc2) ~ m/k

15-826 C. Faloutsos (2007) 81

CMU SCS

Intuition behind proof

• Venn diagram

voc. terms of

Doc.#1 voc. terms of

Doc.#2

C. Faloutsos 15-826

28

15-826 C. Faloutsos (2007) 82

CMU SCS

Intuition behind proof

• Venn diagram - let w be the voc. word

with the overal smallest hash value, for

h.f.#1

voc. terms of

Doc.#1 voc. terms of

Doc.#2

w

15-826 C. Faloutsos (2007) 83

CMU SCS

Intuition behind proof

• Prob. that w is smallest on both is

exactly Jaccard: #common / #union

voc. terms of

Doc.#1 voc. terms of

Doc.#2

w

15-826 C. Faloutsos (2007) 84

CMU SCS

Conclusions

• Approximations can achieve the

impossible!

• MF and ANF for neighborhood function

• hot-lists

• Jaccard coeff. / ‘similar pages’

C. Faloutsos 15-826

29

15-826 C. Faloutsos (2007) 85

CMU SCS

References
E. Cohen. Size-estimation framework with applications to transitive

closure and reachability. Journal of Computer and System Sciences,

55(3):441-453, December 1997.

http://www.research.att.com/~edith/Papers/tcest.ps.Z

Phillip B. Gibbons, Yossi Matias, New sampling-based summary

statistics for improving approximate query answers, ACM

SIGMOD, 1998 Seattle, Washington, pp 331 - 342

15-826 C. Faloutsos (2007) 86

CMU SCS

References (cont’d)

Aristides Gionis, Dimitrios Gunopulos, Nikos Koudas,

Efficient and Tunable Similar Set Retrieval, ACM

SIGMOD 2001, Santa Barbara, California

M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law

relationships for the internet topology. SIGCOMM, 1999.

15-826 C. Faloutsos (2007) 87

CMU SCS

References (cont’d)

P. Flajolet and G. N. Martin. Probabilistic counting
algorithms for data base applications. Journal of
Computer and System Sciences, 31:182-209, 1985.

C. R. Palmer and C. Faloutsos. Density biased sampling: an
improved method for data mining and cluster. In
SIGMOD, 2000.

C. R. Palmer, P. B. Gibbons and C. Faloutsos. Fast
approximation of the “neighborhood” function for massive
graphs. KDD 2002

C. Faloutsos 15-826

30

15-826 C. Faloutsos (2007) 88

CMU SCS

References (cont’d)

C. R. Palmer, G. Siganos, M. Faloutsos, P. B. Gibbons and C.

Faloutsos. The connectivity and fault-tolerance of the

internet topology. NRDM 2001.

