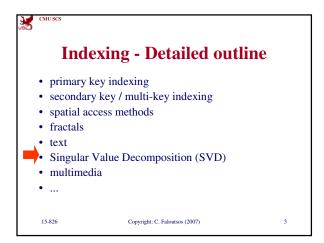
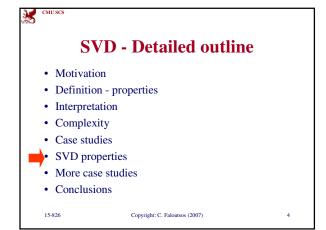


15-826: Multimedia Databases and Data Mining

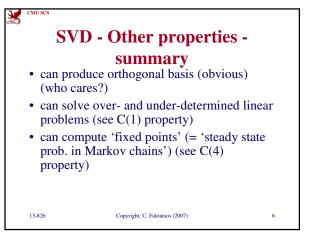
SVD - part III (more case studies)
C. Faloutsos





SVD - detailed outline

....
Case studies
SVD properties
more case studies
- google/Kleinberg algorithms
- query feedbacks
Conclusions



C. Faloutsos 15-826

SVD -outline of properties

- (A): obvious
- (B): less obvious
- (C): least obvious (and most powerful!)

15-826

Copyright: C. Faloutsos (2007)

Properties - by defn.:

$$\mathbf{A}(0) \colon \mathbf{A}_{[n \times m]} = \mathbf{U}_{[n \times r]} \mathbf{\Lambda}_{[r \times r]} \mathbf{V}^{\mathbf{T}}_{[r \times m]}$$

A(1): $\mathbf{U}^{T}_{[r \times n]} \mathbf{U}_{[n \times r]} = \mathbf{I}_{[r \times r]}$ (identity matrix) A(2): $\mathbf{V}^{T}_{[r \times n]} \mathbf{V}_{[n \times r]} = \mathbf{I}_{[r \times r]}$ A(3): $\mathbf{\Lambda}^{k} = \operatorname{diag}(\lambda_{1}^{k}, \lambda_{2}^{k}, \dots \lambda_{r}^{k})$ (k: ANY real number)

 $A(4): \mathbf{A}^{T} = \mathbf{V} \mathbf{\Lambda} \mathbf{U}^{T}$

15-826

Copyright: C. Faloutsos (2007)

Less obvious properties

$$\mathbf{A}(0) \colon \mathbf{A}_{[n \times m]} = \mathbf{U}_{[n \times r]} \mathbf{\Lambda}_{[r \times r]} \mathbf{V}^{\mathbf{T}}_{[r \times m]}$$

B(1):
$$\mathbf{A}_{[n \times m]} (\mathbf{A}^T)_{[m \times n]} = ??$$

15-826

10

11

CMU SO

Less obvious properties

A(0): $\mathbf{A}_{[n \times m]} = \mathbf{U}_{[n \times r]} \mathbf{\Lambda}_{[r \times r]} \mathbf{V}^{T}_{[r \times m]}$ B(1): $\mathbf{A}_{[n \times m]} (\mathbf{A}^{T})_{[m \times n]} = \mathbf{U} \mathbf{\Lambda}^{2} \mathbf{U}^{T}$ symmetric; Intuition?

15-826

Copyright: C. Faloutsos (2007)

CMU SCS

Less obvious properties

$$\begin{split} &A(0) \colon \mathbf{A}_{[n \times m]} = \mathbf{U}_{[n \times r]} \, \mathbf{\Lambda}_{[r \times r]} \, \mathbf{V}^{\mathbf{T}}_{[r \times m]} \\ &B(1) \colon \mathbf{A}_{[n \times m]} \, (\mathbf{A}^{\mathbf{T}})_{[m \times n]} = \mathbf{U} \, \mathbf{\Lambda}^{2} \, \mathbf{U}^{\mathbf{T}} \\ &\text{symmetric; Intuition?} \end{split}$$

'document-to-document' similarity matrix

B(2): symmetrically, for 'V'

 $(\mathbf{A}^{\mathrm{T}})_{[m \times n]} \mathbf{A}_{[n \times m]} = \mathbf{V} \mathbf{\Lambda}^{2} \mathbf{V}^{\mathrm{T}}$ Intuition?

15-826

Copyright: C. Faloutsos (2007)

CMU SCS

Less obvious properties

A: term-to-term similarity matrix

B(3): $((\mathbf{A}^T)_{[m \times n]} \mathbf{A}_{[n \times m]})^k = \mathbf{V} \mathbf{\Lambda}^{2k} \mathbf{V}^T$

B(4): ($\mathbf{A}^{\mathrm{T}} \mathbf{A}$) $^{k} \sim \mathbf{v}_1 \lambda_1^{2k} \mathbf{v}_1^{\mathrm{T}}$ for k >> 1

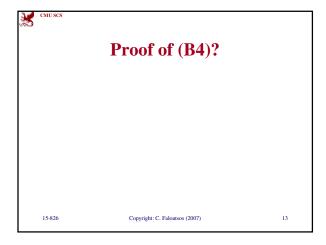
 \mathbf{v}_1 : [m x 1] first column (singular-vector) of \mathbf{V}

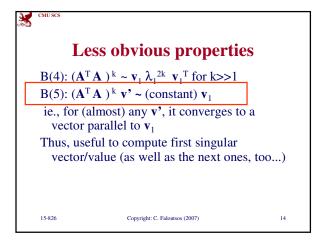
 λ_1 : strongest singular value

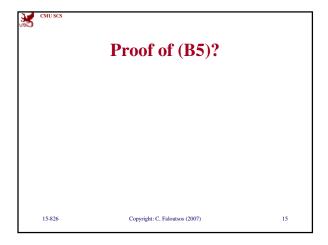
15-826

Copyright: C. Faloutsos (2007)

12







C. Faloutsos 15-826

16

Less obvious properties repeated:

A(0):
$$\mathbf{A}_{[n \times m]} = \mathbf{U}_{[n \times r]} \mathbf{\Lambda}_{[r \times r]} \mathbf{V}^{\mathbf{T}}_{[r \times m]}$$

B(1):
$$\mathbf{A}_{[n \times m]} (\mathbf{A}^T)_{[m \times n]} = \mathbf{U} \mathbf{\Lambda}^2 \mathbf{U}^T$$

$$\mathbf{B}(2): (\mathbf{A}^{\mathrm{T}})_{[\mathbf{m} \times \mathbf{n}]} \mathbf{A}_{[\mathbf{n} \times \mathbf{m}]} = \mathbf{V} \mathbf{\Lambda}^{2} \mathbf{V}^{\mathrm{T}}$$

B(3):
$$((\mathbf{A}^T)_{[m \times n]} \mathbf{A}_{[n \times m]} = \mathbf{V} \mathbf{A}^{2k} \mathbf{V}^T$$

B(4): $((\mathbf{A}^T)_{[m \times n]} \mathbf{A}_{[n \times m]})^k = \mathbf{V} \mathbf{A}^{2k} \mathbf{V}^T$
B(4): $((\mathbf{A}^T \mathbf{A})^k \sim \mathbf{V}_1 \lambda_1^{2k} \mathbf{V}_1^T$

B(4):
$$({\bf A}^{\rm T} {\bf A})^k \sim v_1 \lambda_1^{2k} v_1^{\rm T}$$

B(5):
$$(\mathbf{A}^{\mathrm{T}} \mathbf{A})^{\mathrm{k}} \mathbf{v}' \sim \text{(constant)} \mathbf{v}_{1}$$

Copyright: C. Faloutsos (2007)

Least obvious properties

$$\mathbf{A}(0): \mathbf{A}_{[n \times m]} = \mathbf{U}_{[n \times r]} \mathbf{\Lambda}_{[r \times r]} \mathbf{V}^{\mathbf{T}}_{[r \times m]}$$

C(1):
$$\mathbf{A}_{[n \times m]} \mathbf{x}_{[m \times 1]} = \mathbf{b}_{[n \times 1]}$$

let $\mathbf{x}_0 = \mathbf{V} \mathbf{\Lambda}^{(-1)} \mathbf{U}^T \mathbf{b}$

if under-specified, \mathbf{x}_0 gives 'shortest' solution if over-specified, it gives the 'solution' with the smallest least squares error

(see Num. Recipes, p. 62)

15-826

Copyright: C. Faloutsos (2007)

Least obvious properties Illustration: under-specified, eg [1 2] [w z] T = 4 (ie, 1 w + 2 z = 4) shortest-length solution all possible solutions 1 2 3 4 w Copyright: C. Faloutsos (2007) 18

19

21

CMU

Verify formula:

 $A = [1 \ 2]$ b = [4]

 $\mathbf{A} = \mathbf{U} \, \mathbf{\Lambda} \, \mathbf{V}^{\mathrm{T}}$

U = ??

 $\Lambda = ??$

V= ??

 $\mathbf{x_0} = \mathbf{V} \mathbf{\Lambda}^{(-1)} \mathbf{U}^{\mathrm{T}} \mathbf{b}$

15-826

Copyright: C. Faloutsos (2007)

×

CMU SCS

Verify formula:

 $A = [1 \ 2]$ b = [4]

 $\mathbf{A} = \mathbf{U} \, \mathbf{\Lambda} \, \mathbf{V}^{\mathrm{T}}$

U = [1]

 $\Lambda = [sqrt(5)]$

 $V = [1/sqrt(5) 2/sqrt(5)]^T$

 $\mathbf{x_0} = \mathbf{V} \; \mathbf{\Lambda}^{(-1)} \; \mathbf{U}^{\mathrm{T}} \; \mathbf{b}$

15-826

Copyright: C. Faloutsos (2007)

34

CMU SCS

Verify formula:

 $A = [1 \ 2]$ b = [4]

 $\mathbf{A} = \mathbf{U} \, \mathbf{\Lambda} \, \mathbf{V}^{\mathrm{T}}$

U = [1]

 $\Lambda = [sqrt(5)]$

 $V = [1/sqrt(5) 2/sqrt(5)]^T$

 $\mathbf{x_0} = \mathbf{V} \, \mathbf{\Lambda}^{(-1)} \, \mathbf{U}^{\mathrm{T}} \, \mathbf{b} = [1/5 \ 2/5]^{\mathrm{T}} [4]$

= $[4/5 \ 8/5]^{T}$: w= 4/5, z = 8/5

15-826

3 0

Verify formula:

Show that w = 4/5, z = 8/5 is

- (a) A solution to 1*w + 2*z = 4 and
- (b) Minimal (wrt Euclidean norm)

15-826

Copyright: C. Faloutsos (2007)

×

CMU SCS

Verify formula:

Show that w = 4/5, z = 8/5 is

- (a) A solution to 1*w + 2*z = 4 and A: easy
- (b) Minimal (wrt Euclidean norm)

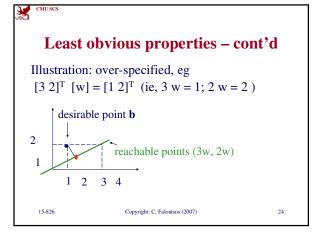
A: [4/5 8/5] is perpenticular to [2 -1]

15-826

Copyright: C. Faloutsos (2007)

23

22



25

CMU S

Verify formula:

 $A = [3 \ 2]^T$ $b = [1 \ 2]^T$

 $\mathbf{A} = \mathbf{U} \, \mathbf{\Lambda} \, \mathbf{V}^{\mathrm{T}}$

U = ??

 $\Lambda = ??$

V = ??

 $\mathbf{x_0} = \mathbf{V} \mathbf{\Lambda}^{(-1)} \mathbf{U}^{\mathrm{T}} \mathbf{b}$

15-826

Copyright: C. Faloutsos (2007)

З СМІ

Verify formula:

 $\mathbf{A} = [3\ 2]^{\mathrm{T}} \quad \mathbf{b} = [\ 1\ 2]^{\mathrm{T}}$

 $\mathbf{A} = \mathbf{U} \, \mathbf{\Lambda} \, \mathbf{V}^{\mathrm{T}}$

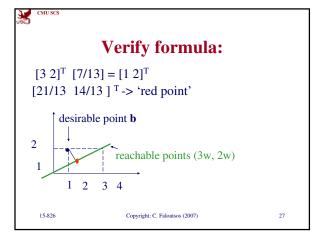
 $U = [3/sqrt(13) \ 2/sqrt(13)]^T$

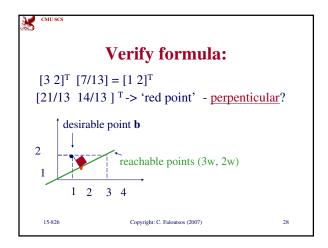
 $\Lambda = [sqrt(13)]$

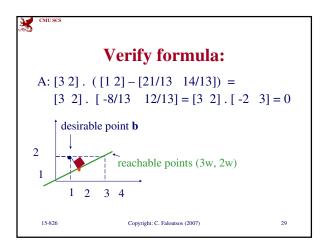
V = [1]

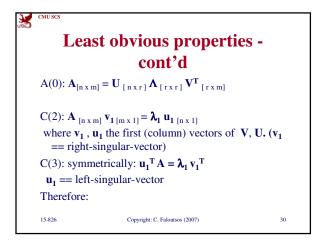
 $\mathbf{x_0} = \mathbf{V} \, \mathbf{\Lambda}^{(-1)} \, \mathbf{U}^{\mathrm{T}} \, \mathbf{b} = [7/13]$

15-826









C. Faloutsos 15-826

Least obvious properties cont'd

$$\mathbf{A}(0): \mathbf{A}_{[n \times m]} = \mathbf{U}_{[n \times r]} \mathbf{\Lambda}_{[r \times r]} \mathbf{V}^{\mathbf{T}}_{[r \times m]}$$

C(4):
$$A^T A v_1 = \lambda_1^2 v_1$$

(fixed point - the dfn of eigenvector for a symmetric matrix)

15-826

Copyright: C. Faloutsos (2007)

Least obvious properties altogether

$$\mathbf{A}(0): \mathbf{A}_{[n \times m]} = \mathbf{U}_{[n \times r]} \mathbf{\Lambda}_{[r \times r]} \mathbf{V}^{\mathbf{T}}_{[r \times m]}$$

 $C(1): \mathbf{A}_{[n \times m]} \ \mathbf{x}_{[m \times 1]} = \mathbf{b}_{[n \times 1]}$ then, $\mathbf{x}_0 = \mathbf{V} \ \mathbf{A}^{(-1)} \ \mathbf{U}^T \ \mathbf{b}$: shortest, actual or least-squares solution

$$\begin{aligned} &C(2) \colon \mathbf{A}_{[n \times m]} \, \mathbf{v}_{1 \, [m \times 1]} = \boldsymbol{\lambda}_{1} \, \mathbf{u}_{1 \, [n \times 1]} \\ &C(3) \colon \mathbf{u}_{1}^{\mathsf{T}} \, \mathbf{A} = \boldsymbol{\lambda}_{1} \, \mathbf{v}_{1}^{\mathsf{T}} \end{aligned}$$

$$C(3): \mathbf{u_1}^T \mathbf{A} = \boldsymbol{\lambda_1} \mathbf{v_1}^T$$

C(4):
$$A^T A v_1 = \lambda_1^2 v_1$$

Copyright: C. Faloutsos (2007)

32

31

Properties - conclusions

A(0):
$$\mathbf{A}_{[n \times m]} = \mathbf{U}_{[n \times r]} \mathbf{\Lambda}_{[r \times r]} \mathbf{V}^{T}_{[r \times m]}$$

B(5):
$$(\mathbf{A}^T \mathbf{A})^k \mathbf{v}' \sim \text{(constant) } \mathbf{v}_1$$

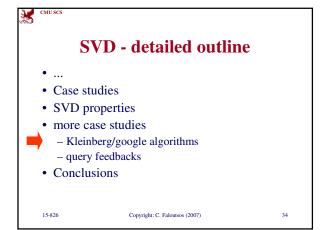
C(1):
$$\mathbf{A}_{[n \times m]} \mathbf{x}_{[m \times 1]} = \mathbf{b}_{[n \times 1]}$$

then, $\mathbf{x}_0 = \mathbf{V} \mathbf{\Lambda}^{(-1)} \mathbf{U}^T \mathbf{b}$: shortest, actual or least-squares solution

C(4):
$$A^T A v_1 = \lambda_1^2 v_1$$

Copyright: C. Faloutsos (2007)

33



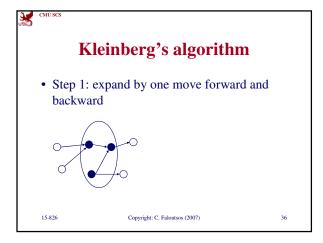
Kleinberg's algorithm

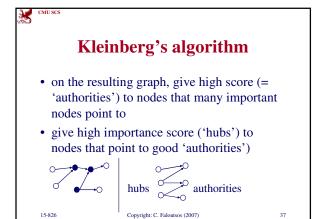
• Problem dfn: given the web and a query
• find the most 'authoritative' web pages for this query

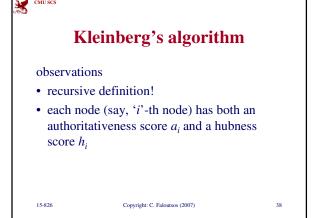
Step 0: find all pages containing the query terms

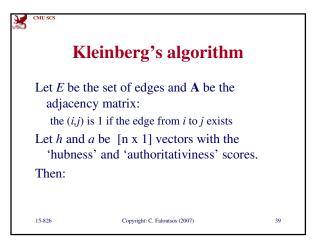
Step 1: expand by one move forward and backward

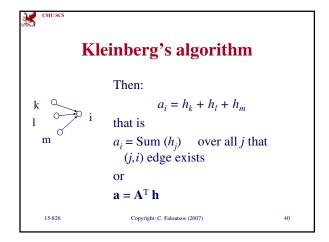
15-826 Copyright: C. Faloutsos (2007) 35

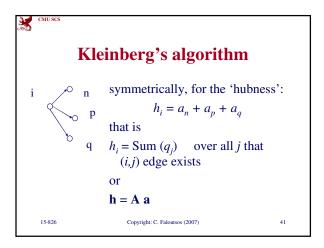


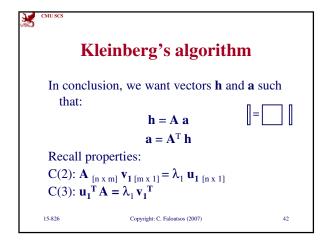












Kleinberg's algorithm

In short, the solutions to

 $\mathbf{h} = \mathbf{A} \mathbf{a}$ $\mathbf{a} = \mathbf{A}^{\mathrm{T}} \mathbf{h}$

are the <u>left- and right- singular-vectors</u> of the adjacency matrix ${\bf A.}$

Starting from random **a'** and iterating, we'll eventually converge

(Q: to which of all the singular-vectors? why?)

15-826

Copyright: C. Faloutsos (2007)

Kleinberg's algorithm

(Q: to which of all the singular-vectors? why?)

A: to the ones of the strongest singular-value, because of property B(5):

B(5): $(\mathbf{A}^{\mathrm{T}} \mathbf{A})^{\mathrm{k}} \mathbf{v}' \sim \text{(constant)} \mathbf{v}_{1}$

15-826

Copyright: C. Faloutsos (2007)

Kleinberg's algorithm - results

Eg., for the query 'java':

0.328 www.gamelan.com

0.251 java.sun.com

0.190 www.digitalfocus.com ("the java developer")

15-826

Copyright: C. Faloutsos (2007)

45

CMU SCS

Kleinberg's algorithm - discussion

- 'authority' score can be used to find 'similar pages' (how?)
- closely related to 'citation analysis', social networs / 'small world' phenomena

15-826

Copyright: C. Faloutsos (2007)

MU SCS

google/page-rank algorithm

- closely related: imagine a particle randomly moving along the edges (*)
- compute its steady-state probabilities

(*) with occasional random jumps

15-826

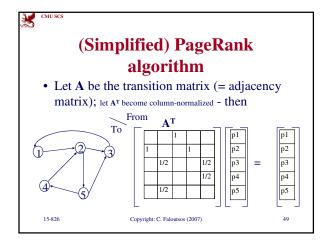
Copyright: C. Faloutsos (2007)

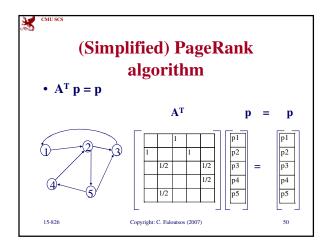
CMU SCS

google/page-rank algorithm

• ~identical problem: given a Markov Chain, compute the steady state probabilities p1 ... p5

15-826





(2	Simplified) PageRan algorithm	K
• A ^T p =	: 1 * p	
to the	o is the eigenvector that corre highest eigenvalue (=1, since the normalized)	-
	definition of eigenvector/val	ue: soon
	,	ue: soon

CMI

(Simplified) PageRank algorithm

- In short: imagine a particle randomly moving along the edges
- compute its steady-state probabilities (ssp)

Full version of algo: with occasional random jumps

15-826

Copyright: C. Faloutsos (2007)

CMU SCS

Formal definition

If A is a $(n \times n)$ square matrix (λ, x) is an eigenvalue/eigenvector pair of A if

$$\mathbf{A} \mathbf{x} = \lambda \mathbf{x}$$

CLOSELY related to singular values:

15-826

Copyright: C. Faloutsos (2007)

53

54

52

CMU SC

Eigen- vs singular-values

if

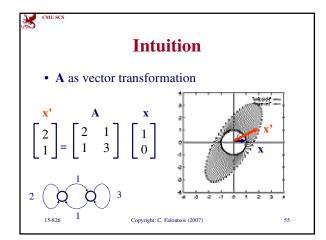
$$\begin{split} \boldsymbol{B}_{[n \ x \ m]} &= \boldsymbol{U}_{[n \ x \ r]} \ \boldsymbol{\Lambda}_{[r \ x \ r]} \ (\boldsymbol{V}_{[m \ x \ r]})^T \\ \text{then } \boldsymbol{A} &= (\boldsymbol{B}^T \boldsymbol{B}) \text{ is symmetric and} \\ \boldsymbol{C}(4) \colon \boldsymbol{B}^T \ \boldsymbol{B} \ \boldsymbol{v}_i &= \boldsymbol{\lambda}_i^2 \ \boldsymbol{v}_i \end{split}$$

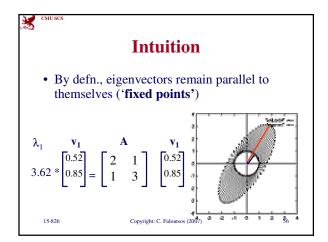
To Tax

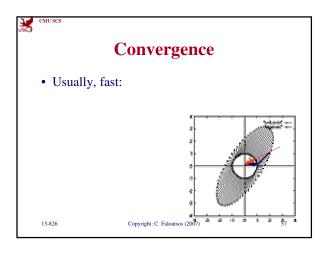
ie, $\mathbf{v_1}$, $\mathbf{v_2}$, ...: eigenvectors of $\mathbf{A} = (\mathbf{B^T}\mathbf{B})$

15-826

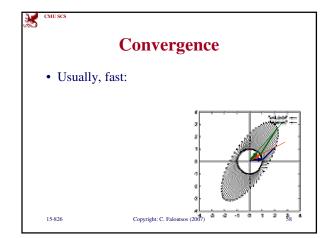
15-826

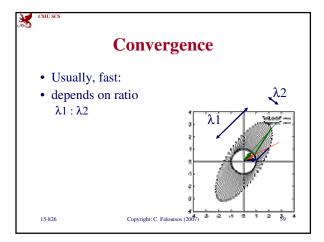




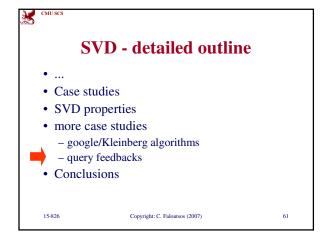


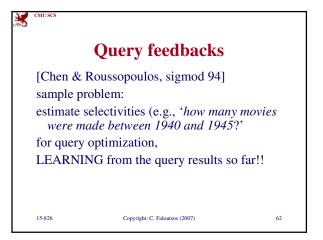
15-826

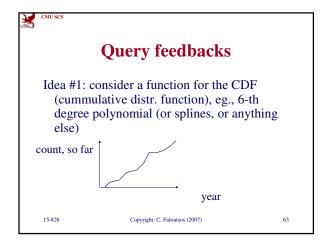


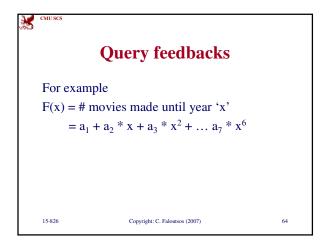


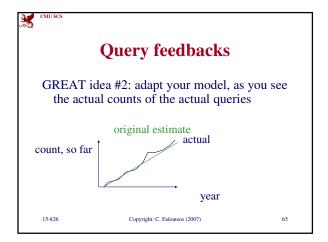
3	CMU SCS				
	Kleinberg/google - conclusions				
	SVD helps in graph analysis:				
	hub/authority scores: strongest left- and right- singular-vectors of the adjacency matrix				
	random walk on a graph: steady state probabilities are given by the strongest eigenvector of the transition matrix				
	15-826	Copyright: C. Faloutsos (2007)	60		

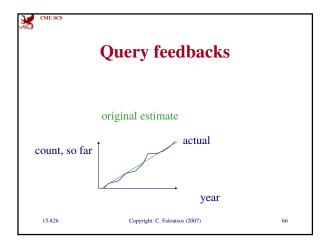


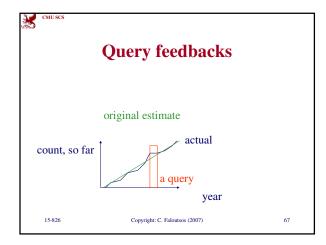


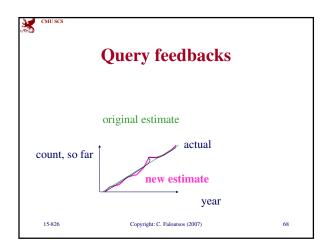


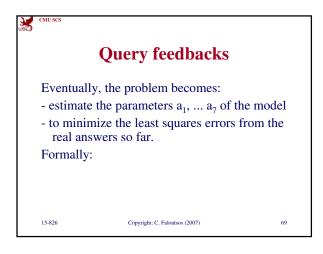


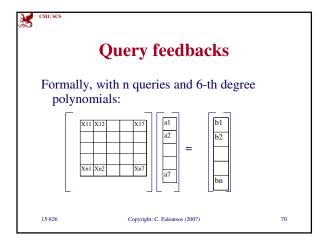


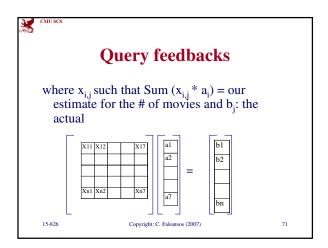


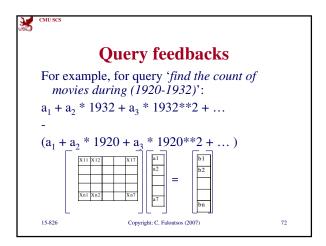


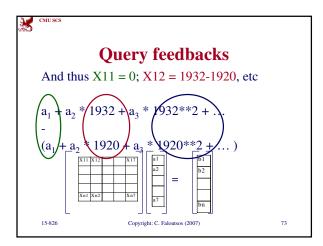


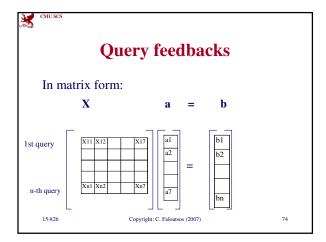


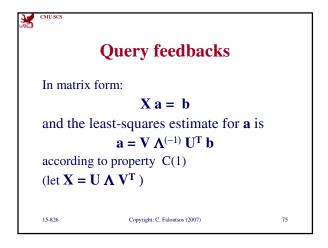


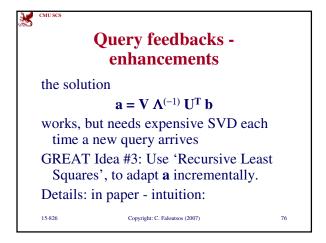


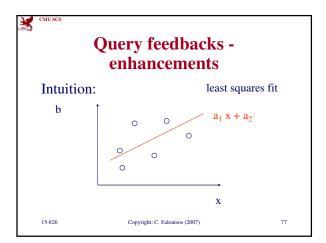


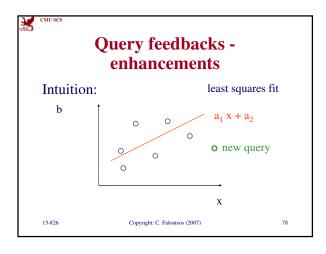


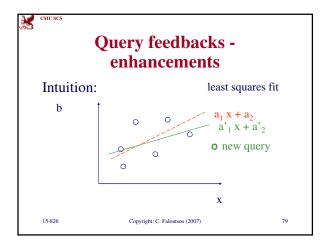






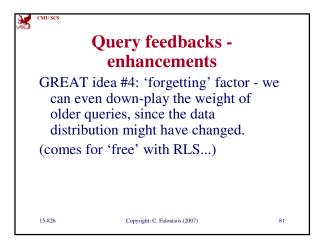






Query feedbacks enhancements

the new coefficients can be quickly
computed from the old ones, plus
statistics in a (7x7) matrix
(no need to know the details, although
the RLS is a brilliant method)



C. Faloutsos 15-826

82

83

Query feedbacks - conclusions

SVD helps find the Least Squares solution, to adapt to query feedbacks (RLS = Recursive Least Squares is a great method to incrementally update least-squares fits)

15-826

Copyright: C. Faloutsos (2007)

SVD - detailed outline

- Case studies
- SVD properties
- more case studies
 - google/Kleinberg algorithms
- query feedbacks

Conclusions

Copyright: C. Faloutsos (2007)

Conclusions

- SVD: a valuable tool
- given a document-term matrix, it finds 'concepts' (LSI)
- ... and can reduce dimensionality (KL)
- ... and can find rules (PCA; RatioRules)

15-826

CMU SCS

Conclusions cont'd

• ... and can find fixed-points or steady-state probabilities (google/ Kleinberg/ Markov Chains)

• ... and can solve optimally over- and underconstraint linear systems (least squares / query feedbacks)

15-826

Copyright: C. Faloutsos (2007)

CMU SCS

References

- Brin, S. and L. Page (1998). Anatomy of a Large-Scale Hypertextual Web Search Engine. 7th Intl World Wide Web Conf.
- Chen, C. M. and N. Roussopoulos (May 1994).
 Adaptive Selectivity Estimation Using Query Feedback. Proc. of the ACM-SIGMOD, Minneapolis, MN.

15-826

Copyright: C. Faloutsos (2007)

96

87

85

CMU SC

References cont'd

- Kleinberg, J. (1998). Authoritative sources in a hyperlinked environment. Proc. 9th ACM-SIAM Symposium on Discrete Algorithms.
- Press, W. H., S. A. Teukolsky, et al. (1992).
 Numerical Recipes in C, Cambridge University Press.

15-826