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Outline

Goal: ‘Find similar / interesting things’

• Intro to DB

• Indexing - similarity search

• Data Mining
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Indexing - Detailed outline

• primary key indexing

• secondary key / multi-key indexing

• spatial access methods

– z-ordering

– R-trees

– misc

• fractals

– intro

– applications

• text

• ...
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Indexing - Detailed outline

• fractals

– intro

– applications

• disk accesses for R-trees (range queries)

• dimensionality reduction

• selectivity in M-trees

• dim. curse revisited

• “fat fractals”

• quad-tree analysis [Gaede+]

• nn queries [Belussi+]
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‘Fat’ fractals & R-tree 

performance on region data
• Problem [Proietti+,’99]

• Given 

– N (# of data regions )

• estimate how many of them will qualify for 
the average range query (q1 x q2 x ... qE)

Of course, we need more info

Q: what?
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R-tree performance on region 

data
A: the distributions of their sizes

Q: do we also need some info about the 
locations?
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R-tree performance on region 

data
A: the distributions of their sizes

Q: do we also need some info about the 
locations?

A: no (not for range queries)
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R-tree performance on region 

data
A: the distributions of their sizes

Q: what exactly would we need?
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R-tree performance on region 

data
A: the distributions of their sizes

Q: what exactly would we need?

A: for self-similar regions (~ ‘fat’ fractals), 
we just need the slope of  the Korcak law!

(and the total area) [Proietti+]
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More power laws: areas –

Korcak’s law

Scandinavian lakes

Any pattern?
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More power laws: areas –

Korcak’s law

Scandinavian lakes  
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More power laws: Korcak

Japan islands
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More power laws: Korcak
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Korcak’s law & “fat fractals”

15-826 Copyright: C. Faloutsos (2007) 15

CMU SCS

R-tree performance on regions

• Once we know ‘B’ (and the total area)

• we can second-guess the individual sizes

• and then apply the [Pagel+93] formula

• Bottom line:
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R-tree performance on regions
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R-tree performance on regions

query side

sel. error
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‘Fat’ fractals - observation

B= DH / d   

B: patchiness exp; d: dim, DH: Hausdorff of periphery
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‘Fat’ fractals - observation
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‘Fat’ fractals

• intuition behind B = DH / d ?
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‘Fat’ fractals

• intuition behind B = DH / d ?

• A: consider ‘flooding’:
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‘Fat’ fractals

• intuition behind B = DH / d ?

• A: consider ‘flooding’:
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Conclusions

• ‘Fat’ fractals model regions well

• patchiness exp.: B = DH / d

• can help us estimate selectivities
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Indexing - Detailed outline

• fractals

– intro

– applications

• disk accesses for R-trees (range queries)

• dimensionality reduction

• selectivity in M-trees

• dim. curse revisited

• “fat fractals”

• quad-tree analysis [Gaede+]

• nn queries [Belussi+]
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Fractals and Quadtrees

• Problem: how many quadtree nodes will we 

need, to store a region in some level of 

approximation? [Gaede+96]
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Fractals and Quadtrees

• I.e.:
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Fractals and Quadtrees

• I.e.:

level of quadtree

# of quadtree

‘blocks’

?
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Fractals and Quadtrees

• Datasets:

Franconia
Brain Atlas
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Fractals and Quadtrees

• Hint:

– assume that the boundary is self-similar, with a 

given fd

– how will the quad-tree  (oct-tree) look like?
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Fractals and Quadtrees

white

black

gray
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Fractals and Quadtrees
Let pg(i) the prob. to find a gray node at level i.

If self-similar, what can we say for pg(i) ?
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Fractals and Quadtrees
Let pg(i) the prob. to find a gray node at level i.

If self-similar, what can we say for pg(i) ?

A: pg(i) = pg= constant
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Fractals and Quadtrees

Assume only ‘gray’ and ‘white’ nodes (ie., no volume’)

Assume that pg is given - how many gray nodes at level i?
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Fractals and Quadtrees

Assume only ‘gray’ and ‘white’ nodes (ie., no volume’)

Assume that pg is given - how many gray nodes at level i?

A: 1 at level 0;

4*pg 

(4*pg)* (4*pg)

...

(4*pg  )
i
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Fractals and Quadtrees

• I.e.:

level of quadtree

# of quadtree

‘blocks’

? (4*pg) 
i
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Fractals and Quadtrees

• I.e.:

level of quadtree

log(# of quadtree

‘blocks’)

? log[(4*pg) 
i]
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Fractals and Quadtrees

• Conclusion: Self-similarity leads to easy 

and accurate estimation

level

log2(#blocks)
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Fractals and Quadtrees

• Conclusion: Self-similarity leads to easy 

and accurate estimation

level

log2(#blocks)
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Fractals and Quadtrees
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Fractals and Quadtrees

level

log(#blocks)

15-826 Copyright: C. Faloutsos (2007) 41

CMU SCS

Fractals and Quadtrees

• Final observation: relationship between pg

and fractal dimension?
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Fractals and Quadtrees

• Final observation: relationship between pg

and fractal dimension?

• A: very close:

(4*pg)
i = # of gray nodes at level i =

# of Hausdorff grid-cells of side (1/2)i = r

Eventually: DH = 2 + log2( pg )

and, for E-d spaces: DH = E + log2( pg )
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Fractals and Quadtrees

for E-d spaces: DH = E + log2( pg )

Sanity check:

- point: DH = 0                    pg = ??

- line in 2-d: DH = 1            pg = ??

- plane in 2-d: DH=2            pg= ??
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Fractals and Quadtrees

Final conclusions:

• self-similarity leads to estimates for # of z-

values = # of quadtree/oct-tree blocks

• close dependence on the Hausdorff fractal 

dimension of  the boundary
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Indexing - Detailed outline

• fractals

– intro

– applications

• disk accesses for R-trees (range queries)

• dimensionality reduction

• selectivity in M-trees

• dim. curse revisited

• “fat fractals”

• quad-tree analysis [Gaede+]

• nn queries [Belussi+]
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NN queries

• Q: in NN queries, what is the effect of the  
shape of the query region? [Belussi+95]

r
Linf

L2

L1
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NN queries

• Q: in NN queries, what is the effect of the  
shape of the query region?

• that is, for L2, and self-similar data:

log(d)

log(#pairs-within(<=d))

r L2

D2
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NN queries

• Q: What about L1, Linf?

log(d)

log(#pairs-within(<=d))

r L2

D2
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NN queries

• Q: What about L1, Linf?

• A: Same slope, different intercept

log(d)

log(#pairs-within(<=d))

r L2

D2
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NN queries

• Q: What about L1, Linf?

• A: Same slope, different intercept

log(d)

log(#neighbors)
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NN queries

• Q: what about the intercept? Ie., what can 
we say about N2 and Ninf

r L2

N2 neighbors

r
Linf

Ninf neighbors

volume: V2 volume: Vinf

SKIP
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NN queries

• Consider sphere with volume Vinf and r’ 
radius

r L2

N2 neighbors

r
Linf

Ninf neighbors

volume: V2 volume: Vinf

r’

SKIP
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NN queries

• Consider sphere with volume Vinf and r’ 
radius

• (r/r’)^E = V2 / Vinf

• (r/r’)^D2 = N2 / N2’

• N2’ = Ninf (since shape does not matter)

• and finally:

SKIP
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NN queries

( N2 / Ninf ) ^ 1/D2 = (V2 / Vinf) ^ 1/E

SKIP
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NN queries

Conclusions: for self-similar datasets

• Avg # neighbors: grows like (distance)^D2 , 
regardless of query shape (circle, diamond, 
square, e.t.c. )
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Indexing - Detailed outline

• fractals

– intro

– applications
• disk accesses for R-trees (range queries)

• dimensionality reduction

• selectivity in M-trees

• dim. curse revisited

• “fat fractals”

• quad-tree analysis [Gaede+]

• nn queries [Belussi+]

– Conclusions
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Fractals - overall conclusions

• self-similar datasets: appear often

• powerful tools: correlation integral, NCDF, 
rank-frequency plot

• intrinsic/fractal dimension helps in 

– estimations (selectivities, quadtrees, etc)

– dim. reduction / dim. curse

• (later: can help in image compression...)
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