
$\qquad$
$\qquad$


Goal: 'Find similar / interesting things'

- Intro to DB $\qquad$
- Indexing - similarity search
- Data Mining


## Indexing - Detailed outline

- primary key indexing
- secondary key / multi-key indexing
- spatial access methods
- z-ordering
- R-trees
- misc
fractals
- intro
- applications
- text
-15-82.6.

$\qquad$
$\qquad$
(Fractals mentioned before:)
- for performance analysis of R-trees
- fractals for dim. reduction
$\qquad$


## 3 cmuscs <br> Case study\#1: R-tree performance

Problem

- Given $\qquad$
- N points in E-dim space
- Estimate \# disk accesses for a range query
( $\mathrm{q} 1 \mathrm{x} \ldots \mathrm{x} \mathrm{q}_{\mathrm{E}}$ )
(assume: 'good' R-tree, with tight, cube-like MBRs)

```
$3 cmuccs
Case study#1: R-tree performance
Problem
- Given
    - N points in E-dim space
- with fractal dimension D
- Estimate # disk accesses for a range query
    (q1 x ... x q q )
(assume: 'good' R-tree, with tight, cube-like MBRs)
Typically, in DB Q-opt: uniformity + independence
15-826
Copyright: C. Faloutsos (2007)
```

$\qquad$
$\qquad$

## Examples:World's countries

- BUT: area vs population for $\sim 200$ countries (1991 CIA fact-book). $\qquad$

$\qquad$
$\qquad$
$\qquad$
15-826




## $\int^{\text {cmuscs }}$ <br> How to proceed?

- recall the [Pagel+] formula, for range queries of size q1 x q2
\#DiskAccesses(q1,q2) =

$$
\operatorname{sum}\left(x_{i, 1}+q 1\right) *\left(x_{i, 2}+q 2\right)
$$

But:
formula needs to know the $x_{i, j}$ sizes of MBRs! $\qquad$
15-826
Copyright: C. Faloutsos (2007)
11

## R-trees - performance analysis

I.e: for range queries - how many disk accesses, if we just now that we have

- $N$ points in $E$-d space?

A: can not tell! need to know distribution


$\qquad$
$\qquad$
$\qquad$

## 3 CMUSCS <br> R-trees - performance analysis

Hint: dfn of Hausdorff f.d.:


Felix Hausdorff (1868-1942)

## Reminder:

## Hausdorff or box-counting fd:

$\qquad$

- Box counting plot: $\log (\mathrm{N}(\mathrm{r})$ ) vs $\log (\mathrm{r})$
- r: grid side $\qquad$
- N (r ): count of non-empty cells
- (Hausdorff) fractal dimension D0:

$$
D_{0}=-\frac{\partial \log (N(r))}{\partial \log (r)}
$$



- dfn of Hausdorff fd implies that

\# non-empty cells of side $r$

Q (rephrased): what is the side $\mathrm{s} 1, \mathrm{~s} 2, \ldots$ of parent nodes, given $N$ data points, packed by $C$, with f.d. $=D 0$


$\qquad$

## R-trees - performance analysis

Q (rephrased): what is the side $\mathrm{s} 1, \mathrm{~s} 2, \ldots$ of parent nodes, given $N$ data points, packed by $C$, with f.d. $=D 0$

$\mathrm{S} 1 \stackrel{\mathrm{~S} 2}{\longleftrightarrow}=\mathrm{s}$


## R-trees - performance analysis

Details of derivations: in [PODS 94].
Finally, expected side $s$ of parent MBRs:

$$
s=(C / N)^{1 / D 0}
$$

Q : sanity check: how does $s$ change with $D 0$ ?
A:
$\qquad$

## R-trees - performance analysis

Details of derivations: in [Kamel+, PODS 94].
Finally, expected side $s$ of parent MBRs:

$$
s=(C / N)^{1 / D 0}
$$

Q: sanity check: how does $s$ change with $D 0$ ?
A: $s$ grows with $D 0$
Q : does it make sense? $\qquad$

Q : does it suffer from (intrinsic) dim. curse? $\qquad$

## R-trees - performance analysis

Q: Final-final formula (\# disk accesses for range queries $q 1 \times q 2 \times \ldots$ ):
A: \# of parent-node accesses:

$$
N / C *(s+q 1) *(s+q 2) * \ldots\left(s+q_{E}\right)
$$

$\qquad$
A: \# of grand-parent node accesses

## R-trees - performance analysis

Q: Final-final formula (\# disk accesses for range
$\qquad$ queries $q 1 \times q 2 \times \ldots$ ):
A: \# of parent-node accesses:

$$
N / C *(s+q 1) *(s+q 2) * \ldots\left(s+q_{E}\right)
$$

A: \# of grand-parent node accesses

$$
N /\left(C^{\wedge} 2\right) *\left(s^{\prime}+q 1\right) *\left(s^{\prime}+q 2\right) * \ldots\left(s^{\prime}+q_{E}\right)
$$

$$
s^{\prime}=\left(C^{\wedge} 2 / N\right)^{1 / D 0}
$$

## R-trees - performance analysis


query side
15-826
Copyright: C. Faloutsos (2007)

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$



教

## Case study \#2: Dim. reduction

Problem definition: 'Feature selection'

- given $N$ points, with $E$ dimensions $\qquad$
- keep the $k$ most 'informative' dimensions
[Traina+,SBBD'00] $\qquad$




## Dim. reduction

A: Hint: correlated attributes do not affect the intrinsic/fractal dimension, e.g., if $\qquad$

$$
y=f(x, z, w)
$$

we can drop $y$
(hence: 'partial fd' (PFD) of a set of attributes $=$ the fd of the dataset, when $\qquad$ projected on those attributes)

Dim. reduction = W/ fractals

- (problem: given N points in E-d, choose k
best dimensions)
- Q: Algorithm?
Copstight: C. Faloutsos (2007)


## Dim. reduction - w/ fractals

- Q: Algorithm?
- A: e.g., greedy - forward selection: $\qquad$
- keep the attribute with highest partial fd
- add the one that causes the highest increase in
$\qquad$ pfd
- etc., until we are within epsilon from the full
$\qquad$ f.d.
Dim. reduction - W/ fractals
- (backward elimination: ~ reverse)
- drop the attribute with least impact on the p.f.d.
- repeat
- until we are epsilon below the full f.d.
Copyright c. Faloutsos (2007)


Dim. reduction - w/ fractals

- Q: what is the smallest \# of attributes we should keep? $\qquad$
- A: we should keep at least as many as the f.d. (and probably, a few more) $\qquad$
$\qquad$
$\qquad$

15-826 $\qquad$

## Dim. reduction - w/ fractals

- Results: E.g., on the 'currency' dataset
- (daily exchange rates for USD, HKD, BP, $\qquad$ FRF, DEM, JPY - i.e., 6-d vectors, one per day - base currency: CAD) $\qquad$




## Dim. reduction - w/ fractals

Conclusion:

- can do non-linear dim. reduction
global $\mathrm{FD}=1$


PFD~1

## References

- [PODS94] Faloutsos, C. and I. Kamel (May 24-26, 1994). Beyond Uniformity and Independence: Analysis of R-trees Using the Concept of Fractal Dimension. $\qquad$ Proc. ACM SIGACT-SIGMOD-SIGART PODS, Minneapolis, MN.
- [Traina+, SBBD’00] Traina, C., A. Traina, et al. (2000). Fast feature selection using the fractal dimension. XV Brazilian Symposium on Databases (SBBD), Paraiba, Brazil.

