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Outline

Goal: ‘Find similar / interesting things’

• Intro to DB

• Indexing - similarity search

• Data Mining
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Indexing - Detailed outline

• primary key indexing

• secondary key / multi-key indexing

• spatial access methods

– z-ordering

– R-trees

– misc

• fractals

– intro

– applications

• text
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Intro to fractals - outline

• Motivation – 3 problems / case studies

• Definition of fractals and power laws

• Solutions to posed problems

• More examples and tools

• Discussion - putting fractals to work!

• Conclusions – practitioner’s guide

• Appendix: gory details - boxcounting plots
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Road end-points of

Montgomery county:

•Q1: how many d.a. for an

R-tree?

•Q2 : distribution?

•not uniform

•not Gaussian

•no rules??

Problem #1: GIS - points
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Problem #2 - spatial d.m.

Galaxies (Sloan Digital Sky Survey w/ B.

Nichol)
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- ‘spiral’ and ‘elliptical’

galaxies

  (stores and households ...)

- patterns?

- attraction/repulsion?

- how many ‘spi’ within r

from an ‘ell’?
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Problem #3: traffic

• disk trace (from HP - J.

Wilkes); Web traffic - fit

a model

• how many explosions to

expect?

• queue length distr.?time

# bytes
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Problem #3: traffic

time

# bytes

Poisson

indep.,

ident. distr
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Problem #3: traffic

time

# bytes

Poisson

indep.,

ident. distr
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Problem #3: traffic

time

# bytes

Poisson

indep.,

ident. distr

Q: Then, how to generate

such bursty traffic?
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Common answer:

• Fractals / self-similarities / power laws

• Seminal works from Hilbert, Minkowski,

Cantor, Mandelbrot, (Hausdorff, Lyapunov,

Ken Wilson, …)
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Road map

• Motivation – 3 problems / case studies

• Definition of fractals and power laws

• Solutions to posed problems

• More examples and tools

• Discussion - putting fractals to work!

• Conclusions – practitioner’s guide

• Appendix: gory details - boxcounting plots
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What is a fractal?

= self-similar point set, e.g., Sierpinski triangle:

...
zero area;

infinite length!
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Definitions (cont’d)

• Paradox: Infinite perimeter ; Zero area!

• ‘dimensionality’: between 1 and 2

• actually: Log(3)/Log(2) = 1.58...
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Dfn of fd:

ONLY for a perfectly self-similar point set:

 =log(n)/log(f) =  log(3)/log(2) = 1.58

...
zero area;

infinite length!
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Intrinsic (‘fractal’) dimension

• Q: fractal dimension of a
line?

• A: 1 (= log(2)/log(2)!)
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Intrinsic (‘fractal’) dimension

• Q: fractal dimension of a
line?

• A: 1 (= log(2)/log(2)!)
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Intrinsic (‘fractal’) dimension

• Q: dfn for a given set

of points?

42

33

24

15

yx
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Intrinsic (‘fractal’) dimension

• Q: fractal dimension of a
line?

• A: nn ( <= r ) ~ r^1

(‘power law’: y=x^a)

• Q: fd of a plane?

• A: nn ( <= r ) ~ r^2

fd== slope of (log(nn) vs
log(r) )
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Intrinsic (‘fractal’) dimension

• Algorithm, to estimate it?

Notice

• avg nn(<=r) is exactly

   tot#pairs(<=r) / N

including ‘mirror’ pairs
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Sierpinsky triangle

log( r )

log(#pairs 

within <=r )

1.58

== ‘correlation integral’
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Observations:

• Euclidean objects have integer fractal

dimensions

– point: 0

– lines and smooth curves: 1

– smooth surfaces: 2

• fractal dimension -> roughness of the

periphery

15-826 Copyright: C. Faloutsos (2007) 23

CMU SCS

Important properties

• fd = embedding dimension -> uniform

pointset

• a point set may have several fd, depending

on scale
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Important properties

• fd = embedding dimension -> uniform

pointset

• a point set may have several fd, depending

on scale

2-d
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Important properties

• fd = embedding dimension -> uniform

pointset

• a point set may have several fd, depending

on scale

1-d
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Important properties

0-d
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Road map

• Motivation – 3 problems / case studies

• Definition of fractals and power laws

• Solutions to posed problems

• More examples and tools

• Discussion - putting fractals to work!

• Conclusions – practitioner’s guide

• Appendix: gory details - boxcounting plots
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Cross-roads of

Montgomery county:

•any rules?

Problem #1: GIS points

15-826 Copyright: C. Faloutsos (2007) 29

CMU SCS

Solution #1

A: self-similarity ->

• <=> fractals

• <=> scale-free

• <=> power-laws

(y=x^a, F=C*r^(-2))

• avg#neighbors(<= r )

= r^D

log( r )

log(#pairs(within <= r))

1.51
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Solution #1

A: self-similarity

• avg#neighbors(<= r )

~ r^(1.51)

log( r )

log(#pairs(within <= r))

1.51
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Examples:MG county

• Montgomery County of MD (road end-

points)
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Examples:LB county

• Long Beach county of CA (road end-points)
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Solution#2: spatial d.m.

Galaxies ( ‘BOPS’ plot - [sigmod2000])
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Solution#2: spatial d.m.
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Spatial d.m.
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Spatial d.m.
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Spatial d.m.

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

1e-081e-071e-061e-050.00010.001 0.01 0.1 1 10 100

 

"ell-ell.points.ns"
"spi-spi.points.ns"

"spi.dat-ell.dat.points"

log(r)

log(#pairs within <=r )

spi-spi

spi-ell

ell-ell

- 1.8 slope

- plateau!

- repulsion!

15-826 Copyright: C. Faloutsos (2007) 38

CMU SCS

Spatial d.m.
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- 1.8 slope

- plateau!

-repulsion!!

-duplicates
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Solution #3: traffic

• disk traces: self-similar:

time

#bytes
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Solution #3: traffic

• disk traces (80-20 ‘law’ = ‘multifractal’)

time

#bytes

20% 80%
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80-20 / multifractals
20 80
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80-20 / multifractals

20
• p ; (1-p) in general

• yes, there are

dependencies

80
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More on 80/20: PQRS

• Part of ‘self-* storage’ project

time

cylinder#
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More on 80/20: PQRS

• Part of ‘self-* storage’ project

p q

r s

q

r s
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Solution#3: traffic

Clarification:

• fractal: a set of points that is self-similar

• multifractal: a probability density function

that is self-similar

Many other time-sequences are

bursty/clustered: (such as?)
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Example:

• network traffic
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Web traffic

• [Crovella Bestavros, SIGMETRICS’96]
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Figure 2: Tra�c Bursts over Four Orders of Magnitude; Upper Left: 1000, Upper Right: 100, Lower Left: 10, and Lower Right:
1 Second Aggegrations. (Actual Transfers)

this e�ect is by visually inspecting time series plots of tra�c
demand.

In Figure 2 we show four time series plots of the WWW
tra�c induced by our reference traces. The plots are produced
by aggregating byte tra�c into discrete bins of 1, 10, 100, or
1000 seconds.

The upper left plot is a complete presentation of the entire
tra�c time series using 1000 second (16.6 minute) bins. The
diurnal cycle of network demand is clearly evident, and day
to day activity shows noticeable bursts. However, even within
the active portion of a single day there is signi�cant burstiness;
this is shown in the upper right plot, which uses a 100 second
timescale and is taken from a typical day in the middle of the
dataset. Finally, the lower left plot shows a portion of the 100
second plot, expanded to 10 second detail; and the lower right
plot shows a portion of the lower left expanded to 1 second
detail. These plots show signi�cant bursts occurring at the
second-to-second level.

4.2.2 Statistical Analysis

We used the four methods for assessing self-similarity described
in Section 2: the variance-time plot, the rescaled range (or
R/S) plot, the periodogram plot, and the Whittle estimator.
We concentrated on individual hours from our tra�c series, so
as to provide as nearly a stationary dataset as possible.

To provide an example of these approaches, analysis of a
single hour (4pm to 5pm, Thursday 5 Feb 1995) is shown in
Figure 3. The �gure shows plots for the three graphical meth-
ods: variance-time (upper left), rescaled range (upper right),
and periodogram (lower center). The variance-time plot is lin-

ear and shows a slope that is distinctly di�erent from -1 (which
is shown for comparison); the slope is estimated using regres-
sion as -0.48, yielding an estimate for H of 0.76. The R/S plot
shows an asymptotic slope that is di�erent from 0.5 and from
1.0 (shown for comparision); it is estimated using regression
as 0.75, which is also the corresponding estimate of H. The
periodogram plot shows a slope of -0.66 (the regression line is
shown), yielding an estimate of H as 0.83. Finally, the Whittle
estimator for this dataset (not a graphical method) yields an
estimate of H = 0:82 with a 95% con�dence interval of (0.77,
0.87).

As discussed in Section 2.1, the Whittle estimator is the
only method that yields con�dence intervals on H, but short-
range dependence in the timeseries can introduce inaccura-
cies in its results. These inaccuracies are minimized by m-
aggregating the timeseries for successively large values of m,
and looking for a value of H around which the Whittle esti-
mator stabilizes.

The results of this method for four busy hours are shown in
Figure 4. Each hour is shown in one plot, from the busiest hour
in the upper left to the least busy hour in the lower right. In
these �gures the solid line is the value of the Whittle estimate
of H as a function of the aggregation level m of the dataset.
The upper and lower dotted lines are the limits of the 95%
con�dence interval on H. The three level lines represent the
estimate of H for the unaggregated dataset as given by the
variance-time, R-S, and periodogram methods.

The �gure shows that for each dataset, the estimate of H
stays relatively consistent as the aggregation level is increased,
and that the estimates given by the three graphical methods

1000 sec; 100sec

10sec; 1sec
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Tape accesses

time

Tape#1 Tape# N

# tapes needed, to

retrieve n records?

(# days down, due to

failures / hurricanes /

communication

noise...)
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Tape accesses

LD16

rdb50.out
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Road map

• Motivation – 3 problems / case studies

• Definition of fractals and power laws

• Solutions to posed problems

• More tools and examples

• Discussion - putting fractals to work!

• Conclusions – practitioner’s guide

• Appendix: gory details - boxcounting plots
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A counter-intuitive example

• avg degree is, say 3.3

• pick a node at random

– guess its degree,

exactly (-> “mode”)

degree

count

avg: 3.3
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A counter-intuitive example

• avg degree is, say 3.3

• pick a node at random

– guess its degree,

exactly (-> “mode”)

• A: 1!!

degree

count

avg: 3.3
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A counter-intuitive example

• avg degree is, say 3.3

• pick a node at random
- what is the degree
you expect it to have?

• A: 1!!

• A’: very skewed distr.

• Corollary: the mean is
meaningless!

• (and std -> infinity (!))

degree

count

avg: 3.3
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Rank exponent R
• Power law in the degree distribution

[SIGCOMM99]

internet domains

log(rank)

log(degree)

-0.82

att.com

ibm.com
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More tools

• Zipf’s law

• Korcak’s law / “fat fractals”

15-826 Copyright: C. Faloutsos (2007) 56

CMU SCS

A famous power law: Zipf’s

law

• Q: vocabulary word frequency in a document

- any pattern?

aaron zoo

freq.
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A famous power law: Zipf’s

law

• Bible - rank vs

frequency (log-log)

log(rank)

log(freq)

“a”

“the”
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A famous power law: Zipf’s

law

• Bible - rank vs

frequency (log-log)

• similarly, in many

other languages; for

customers and sales

volume; city

populations etc etclog(rank)

log(freq)
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A famous power law: Zipf’s

law

•Zipf distr:

 freq = 1/ rank

•generalized Zipf:

freq = 1 / (rank)^a

log(rank)

log(freq)
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Olympic medals (Sidney):

y = -0.9676x + 2.3054

R2 = 0.9458
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Linear (Series1)

rank

log(#medals)
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Olympic medals (Sidney’00,

Athens’04):

log( rank)

log(#medals)

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2

athens

sidney
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TELCO data

# of service units

count of

customers

‘best customer’
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SALES data – store#96

# units sold

count of 

products

“aspirin”
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More power laws: areas –

Korcak’s law

Scandinavian lakes

Any pattern?
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More power laws: areas –

Korcak’s law

Scandinavian lakes

area vs

complementary

cumulative count
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More power laws: Korcak
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(Korcak’s law: Aegean islands)
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Korcak’s law & “fat fractals”

How to generate such regions?
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Korcak’s law & “fat fractals”
Q: How to generate such regions?

A: recursively, from a single region
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so far we’ve seen:

• concepts:

– fractals, multifractals and fat fractals

• tools:

– correlation integral (= pair-count plot)

– rank/frequency plot (Zipf’s law)

– CCDF (Korcak’s law)
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so far we’ve seen:

• concepts:

– fractals, multifractals and fat fractals

• tools:

– correlation integral (= pair-count plot)

– rank/frequency plot (Zipf’s law)

– CCDF (Korcak’s law)

same

info
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Road map

• Motivation – 3 problems / case studies

• Definition of fractals and power laws

• Solutions to posed problems

• More tools and examples

• Discussion - putting fractals to work!

• Conclusions – practitioner’s guide

• Appendix: gory details - boxcounting plots



15-826 C. Faloutsos

25

15-826 Copyright: C. Faloutsos (2007) 73

CMU SCS

Other applications:  Internet

• How does the internet look like?

CMU
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Other applications: Internet

• How does the internet look like?

• Internet routers: how many neighbors

within h hops?

CMU
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(reminder: our tool-box:)

• concepts:

– fractals, multifractals and fat fractals

• tools:

– correlation integral (= pair-count plot)

– rank/frequency plot (Zipf’s law)

– CCDF (Korcak’s law)
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Internet topology

• Internet routers: how many neighbors

within h hops?

Reachability function:

number of neighbors

within r hops, vs r (log-

log).

Mbone routers, 1995log(hops)

log(#pairs)

2.8
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More power laws on the

Internet

degree vs rank, for Internet domains

(log-log) [sigcomm99]

log(rank)

log(degree)

-0.82
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More power laws - internet

• pdf of degrees: (slope: 2.2 )

1

10

100

1000

10000

1 10 100

 

"981205.out"
exp(8.11393)  * x ** (  -2.20288 )Log(count)

Log(degree)

-2.2



15-826 C. Faloutsos

27

15-826 Copyright: C. Faloutsos (2007) 79

CMU SCS

Even more power laws on the

Internet

Scree plot  for Internet domains (log-

log) [sigcomm99]

log(i)

log( i-th eigenvalue)

1

10

100

1 10 100

 

"971108.internet.svals"
exp(3.57926)  * x ** (  -0.471327 )

0.47
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Fractals & power laws:

appear in numerous settings:

• medical

• geographical / geological

• social

• computer-system related
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More apps: Brain scans

• Oct-trees; brain-scans

7
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s
)

level k

"oct-count"
x*2.63871-2.9122

octree levels

Log(#octants)

2.63 =

fd
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More apps: Medical images

[Burdett et al, SPIE ‘93]:

• benign tumors: fd ~ 2.37

• malignant: fd ~ 2.56
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More fractals:

• cardiovascular system: 3 (!)

• lungs: 2.9
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Fractals & power laws:

appear in numerous settings:

• medical

• geographical / geological

• social

• computer-system related
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More fractals:

• Coastlines: 1.2-1.58

1 1.1

1.3
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More fractals:

• the fractal dimension for the Amazon river

is 1.85 (Nile: 1.4)

[ems.gphys.unc.edu/nonlinear/fractals/examples.html]
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More fractals:

• the fractal dimension for the Amazon river

is 1.85 (Nile: 1.4)

[ems.gphys.unc.edu/nonlinear/fractals/examples.html]
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More power laws

• Energy of earthquakes (Gutenberg-Richter

law) [simscience.org]

log(freq)

magnitudeday

amplitude
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Fractals & power laws:

appear in numerous settings:

• medical

• geographical / geological

• social

• computer-system related
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More fractals:

stock prices (LYCOS) - random walks: 1.5

1 year 2 years
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Even more power laws:

• Income distribution (Pareto’s law)

• size of firms

• publication counts (Lotka’s law)
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Even more power laws:

library science (Lotka’s law of publication

count); and citation counts:

(citeseer.nj.nec.com 6/2001)

1

10

100

100 1000 10000

lo
g
 c

o
u
n
t

log # citations

’cited.pdf’

log(#citations)

log(count)

Ullman
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Even more power laws:

• web hit counts [w/ A. Montgomery]

Web Site Traffic

log(freq)

log(count)

Zipf

“yahoo.com”
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Fractals & power laws:

appear in numerous settings:

• medical

• geographical / geological

• social

• computer-system related
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Power laws, cont’d

• In- and out-degree distribution of web sites

[Barabasi], [IBM-CLEVER]

log indegree

- log(freq)

from [Ravi Kumar, 

Prabhakar Raghavan, 

Sridhar Rajagopalan, 

Andrew Tomkins ]
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Power laws, cont’d

• In- and out-degree distribution of web sites

[Barabasi], [IBM-CLEVER]

log indegree

log(freq)

from [Ravi Kumar, 

Prabhakar Raghavan, 

Sridhar Rajagopalan, 

Andrew Tomkins ]
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“Foiled by power law”

• [Broder+, WWW’00]

“The anomalous bump at 120

on the x-axis 

is due a large clique 

formed by a single spammer”

(log) in-degree

(log) count
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Power laws, cont’d

• In- and out-degree distribution of web sites

[Barabasi], [IBM-CLEVER]

• length of  file transfers [Crovella+Bestavros

‘96]

• duration of UNIX jobs [Harchol-Balter]
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Even more power laws:

• Distribution of UNIX file sizes

• web hit counts [Huberman]
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Road map

• Motivation – 3 problems / case studies

• Definition of fractals and power laws

• Solutions to posed problems

• More examples and tools

• Discussion - putting fractals to work!

• Conclusions – practitioner’s guide

• Appendix: gory details - boxcounting plots
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What else can they solve?

• separability [KDD’02]

• forecasting [CIKM’02]

• dimensionality reduction [SBBD’00]

• non-linear axis scaling [KDD’02]

• disk trace modeling [PEVA’02]

• selectivity of spatial/multimedia queries

[PODS’94, VLDB’95, ICDE’00]

• ...
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Settings for fractals:

Points; areas (-> fat fractals), eg:
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Settings for fractals:

Points; areas, eg:

• cities/stores/hospitals, over earth’s surface

• time-stamps of events (customer arrivals,

packet losses, criminal actions) over time

• regions (sales areas, islands, patches of

habitats) over space
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Settings for fractals:

• customer feature vectors (age, income,

frequency of visits, amount of sales per

visit)

‘good’ customers

‘bad’ customers
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Some uses of fractals:

• Detect non-existence of rules (if points are

uniform)

• Detect non-homogeneous regions (eg., legal

login time-stamps may have different fd

than intruders’)

• Estimate number of neighbors / customers /

competitors within a radius
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Multi-Fractals

Setting: points or objects, w/ some value, eg:

– cities w/ populations

– positions on earth and amount of gold/water/oil

underneath

– product ids and sales per product

– people and their salaries

– months and count of accidents
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Use of multifractals:

• Estimate tape/disk accesses

–  how many of the 100 tapes contain my 50

phonecall records?

–  how many days without an accident?

time

Tape#1 Tape# N
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Use of multifractals

• how often do we exceed the threshold?

time

#bytes

Poisson
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Use of multifractals cont’d

• Extrapolations for/from samples

time

#bytes
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Use of multifractals cont’d

• How many distinct products account for

90% of the sales?
20% 80%
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Road map

• Motivation – 3 problems / case studies

• Definition of fractals and power laws

• Solutions to posed problems

• More examples and tools

• Discussion - putting fractals to work!

• Conclusions – practitioner’s guide

• Appendix: gory details - boxcounting plots
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Conclusions

• Real data often disobey textbook

assumptions (Gaussian, Poisson,

uniformity, independence)
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Conclusions - cont’d

Self-similarity & power laws: appear in many

cases

Bad news:

lead to skewed distributions

(no Gaussian, Poisson,

uniformity, independence,

mean, variance)

Good news:

• ‘correlation integral’
for separability

• rank/frequency plots

• 80-20 (multifractals)
• (Hurst exponent,

• strange attractors,

• renormalization theory,

• ++)
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Conclusions

• tool#1: (for points) ‘correlation integral’:

(#pairs within <= r)  vs (distance r)

• tool#2: (for categorical values) rank-

frequency plot (a’la Zipf)

• tool#3: (for numerical values) CCDF:

Complementary cumulative distr. function

(#of elements with value >= a )
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Practitioner’s guide:
• tool#1: #pairs vs distance, for a set of objects,

with a distance function (slope = intrinsic

dimensionality)

log(hops)

log(#pairs)

2.8

log( r )

log(#pairs(within <= r))

1.51

internet

MGcounty
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Practitioner’s guide:

• tool#2: rank-frequency plot (for categorical

attributes)

log(rank)

log(degree)

-0.82

internet domains
Bible

log(freq)

log(rank)
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Practitioner’s guide:
• tool#3: CCDF, for (skewed) numerical

attributes, eg. areas of islands/lakes, UNIX

jobs...)
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Area distribution of regions (SL dataset)

-0.85*x +10.8

log(count( >= area))

log(area)

scandinavian lakes
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Resources:

• Software for fractal dimension

– http://www.cs.cmu.edu/~christos

– christos@cs.cmu.edu

15-826 Copyright: C. Faloutsos (2007) 120

CMU SCS

Books

• Strongly recommended intro  book:

– Manfred Schroeder Fractals, Chaos, Power

Laws: Minutes from an Infinite Paradise W.H.

Freeman and Company, 1991

• Classic book on fractals:

– B. Mandelbrot Fractal Geometry of Nature,

W.H. Freeman, 1977
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Appendix - Gory details

• Bad news: There are more than one fractal

dimensions

– Minkowski fd; Hausdorff fd; Correlation fd;

Information fd

• Great news:

– they can all be computed fast!

– they usually have nearby values
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Fast estimation of fd(s):

• How, for the (correlation) fractal dimension?

• A: Box-counting plot:

log( r )

rpi

log(sum(pi ^2))
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Definitions

• pi : the percentage (or count) of points in

the i-th cell

• r: the side of the grid
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Fast estimation of fd(s):

• compute sum(pi^2) for another grid side, r’

log( r )

r’

pi’

log(sum(pi ^2))
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Fast estimation of fd(s):

• etc; if the resulting plot has a linear part, its

slope is the correlation fractal dimension D2

log( r )

log(sum(pi ^2))
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Definitions (cont’d)

• Many more fractal dimensions Dq (related to
Renyi entropies):

)log(

)log(

1
)log(

)log(

1

1

1
r

pp
D

q
r

p

q
D

ii

q

i

q

∂

∂
=

≠
∂

∂

−
=

∑

∑

15-826 Copyright: C. Faloutsos (2007) 132

CMU SCS

Hausdorff or box-counting fd:

• Box counting plot: Log( N ( r ) ) vs Log ( r)

• r: grid side

• N (r ): count of non-empty cells

• (Hausdorff) fractal dimension D0:

)log(

))(log(
0

r

rN
D

∂

∂
−=
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Definitions (cont’d)

• Hausdorff  fd:

r

log(r)

log(#non-empty cells)

D0
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Observations

• q=0: Hausdorff fractal dimension

• q=2: Correlation fractal dimension

(identical to the exponent of the number

of neighbors vs radius)

• q=1: Information fractal dimension
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Observations, cont’d

• in general, the Dq’s take similar, but not

identical, values.

• except for perfectly self-similar point-sets,

where Dq=Dq’ for any q, q’
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Examples:MG county

• Montgomery County of MD (road end-

points)
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Examples:LB county

• Long Beach county of CA (road end-points)
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Conclusions

• many fractal dimensions, with nearby

values

• can be computed quickly

(O(N) or O(N log(N))

• (code: on the web)


