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15-826: Multimedia Databases  
and Data Mining 

Lecture #21: Tensor decompositions 
C. Faloutsos 
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Must-read Material 
•  Tamara G. Kolda and Brett W. Bader. 

Tensor decompositions and applications. 
Technical Report SAND2007-6702, Sandia 
National Laboratories, Albuquerque, NM 
and Livermore, CA, November 2007  
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Outline 
Goal: ‘Find similar / interesting things’ 
•  Intro to DB 
•  Indexing - similarity search 
•  Data Mining 
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Indexing - Detailed outline 

•  primary key indexing 
•  secondary key / multi-key indexing 
•  spatial access methods 
•  fractals 
•  text 
•  Singular Value Decomposition (SVD) 

-  … 
-  Tensors 

•  multimedia 
•  ... 
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Most of foils by 
•  Dr. Tamara Kolda (Sandia N.L.) 
•  csmr.ca.sandia.gov/~tgkolda  

•  Dr. Jimeng Sun (CMU -> IBM)   
•   www.cs.cmu.edu/~jimeng  

3h tutorial: www.cs.cmu.edu/~christos/TALKS/SDM-tut-07/ 
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Outline 

•  Motivation - Definitions 
•  Tensor tools 
•  Case studies 
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Motivation 0: Why “matrix”? 

•  Why matrices are important? 
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Examples of Matrices:  
Graph - social network 

John Peter Mary Nick ... 
John 
Peter 
Mary 
Nick 

... 

0 11 22 55 ... 
5  0  6 7 ... 

... ... ... ... ... 

... ... ... ... ... 

... ... ... ... ... 
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Examples of Matrices: 
 cloud of n-d points 

chol# blood# age .. ... 
John 
Peter 
Mary 
Nick 

... 
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Examples of Matrices: 
 Market basket  

•  market basket as in Association Rules 

milk bread choc. wine ... 
John 
Peter 
Mary 
Nick 

... 
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Examples of Matrices: 
 Documents and terms 

Paper#1 
Paper#2 
Paper#3 
Paper#4 

data mining classif. tree ... 

... 
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Examples of Matrices: 
Authors and terms 

data mining classif. tree ... 
John 
Peter 
Mary 
Nick 

... 
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Examples of Matrices: 
 sensor-ids and time-ticks 

t1 
t2 
t3 
t4 

temp1 temp2 humid. pressure ... 

... 
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Motivation: Why tensors? 

•  Q: what is a tensor? 
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Motivation 2: Why tensor? 

•  A: N-D generalization of matrix: 

data mining classif. tree ... 
John 
Peter 
Mary 
Nick 

... 

KDD’07 
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Motivation 2: Why tensor? 

•  A: N-D generalization of matrix: 

data mining classif. tree ... 
John 
Peter 
Mary 
Nick 

... 

KDD’06 

KDD’05 

KDD’07 
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Tensors are useful for 3 or more 
modes  

Terminology: ‘mode’ (or ‘aspect’): 

data mining classif. tree ... 

Mode (== aspect) #1 

Mode#2 

Mode#3 
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Motivating Applications  
•  Why matrices are important? 
•  Why tensors are useful?  

– P1: social networks 
– P2: web mining 
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P1: Social network analysis 
•  Traditionally, people focus on static networks and 

find community structures 
•  We plan to monitor the change of the community 

structure over time 
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P2: Web graph mining 

•  How to order the importance of web pages? 
– Kleinberg’s algorithm HITS 
– PageRank 
– Tensor extension on HITS (TOPHITS) 

•  context-sensitive hypergraph analysis  
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Outline 

•  Motivation – 
Definitions 

•  Tensor tools 
•  Case studies 

•  Tensor Basics 
•  Tucker 
•  PARAFAC 
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Reminder: SVD 

– Best rank-k approximation in L2 

A m 

n 

Σ 
m 

n 

U 

VT 

≈ 	
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Reminder: SVD 

– Best rank-k approximation in L2 

A m 

n 

≈ 	

 + 

σ1u1°v1 σ2u2°v2 
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Goal: extension to >=3 modes 

~ 

I x R 
K x 

R 
A 

B 
J x R 

C 
R x R x R 

I x J x K 

+…+ = 
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Main points: 

•  2 major types of tensor decompositions: 
PARAFAC and Tucker 

•  both can be solved with ``alternating least 
squares’’ (ALS) 

•  Details follow 

CMU SCS 

Specially Structured Tensors 
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= 
U 

I x R 

V 
J x R 

W
 K x 

R 

R x R x R 

Specially Structured Tensors 
•  Tucker Tensor •  Kruskal Tensor 

I x J x K 

= 
U 

I x R 

V 
J x S 

W
 K x 

T 

R x S x T 

I x J x K 

Our  
Notation 

Our  
Notation 

+…+ = 

u1 uR 

v1 

w1 

vR 

wR 

“core” 
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Specially Structured Tensors 
•  Tucker Tensor •  Kruskal Tensor 

In matrix form: In matrix form: 

details 

CMU SCS 

Tensor Decompositions 
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Tucker Decomposition - intuition 

I x J x K 

~ 
A 

I x R 

B 
J x S 

C K x 
T 

R x S x T 

•  author x keyword x conference 
•  A: author x author-group 
•  B: keyword x keyword-group 
•  C: conf. x conf-group 
•   : how groups relate to each other 

Needs elaboration! 
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Intuition behind core tensor 

•  2-d case: co-clustering 
•  [Dhillon et al. Information-Theoretic Co-

clustering, KDD’03] 
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m 

m 

n 

n l 

k 

k 
l 

eg, terms x documents 
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term x 

term-group 

doc x 
doc group 

term group x 
doc. group 

med. terms 

cs terms 
common terms 

med. doc 
cs doc 
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Tucker Decomposition 

•  Proposed by Tucker (1966) 
•  AKA: Three-mode factor analysis, three-mode 

PCA, orthogonal array decomposition 
•  A, B, and C generally assumed to be orthonormal 

(generally assume they have full column rank) 
•      is not diagonal  
•  Not unique 

Recall the equations for 
converting a tensor to a matrix 

I x J x K 

~ 
A 

I x R 

B 
J x S 

C K x 
T 

R x S x T 

Given A, B, C, the optimal core is: 
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Outline 

•  Motivation – 
Definitions 

•  Tensor tools 
•  Case studies 

•  Tensor Basics 
•  Tucker 
•  PARAFAC 
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CANDECOMP/PARAFAC 
Decomposition 

•  CANDECOMP = Canonical Decomposition (Carroll & Chang, 1970) 
•  PARAFAC = Parallel Factors (Harshman, 1970) 
•  Core is diagonal (specified by the vector λ) 
•  Columns of A, B, and C are not orthonormal 
•  If R is minimal, then R is called the rank of the tensor (Kruskal 1977)  
•  Can have rank(  ) > min{I,J,K} 

¼ 

I x R 

K x 
R 

A 
B 

J x R 

C 

R x R x R 

I x J x K 

+…+ = 

CMU SCS 

39 

Tucker vs. PARAFAC Decompositions 
•  Tucker 

–  Variable transformation in 
each mode 

–  Core G may be dense 
–  A, B, C generally 

orthonormal 
–  Not unique 

•  PARAFAC 
–  Sum of rank-1 components 
–  No core, i.e., superdiagonal 

core 
–  A, B, C may have  linearly 

dependent columns 
–  Generally unique 

I x J x K 

~ 
A 

I x R 

B 
J x S 

C K x 
T 

R x S x T 

I x J x K 

+…+ ~ 

a1   aR 

b1 

c1 

bR 

cR 

IMPORTANT 
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Tensor tools - summary 
•  Two main tools 

– PARAFAC 
– Tucker 

•  Both find row-, column-, tube-groups 
–  but in PARAFAC the three groups are identical 

•  To solve: Alternating Least Squares 

•  Toolbox: from Tamara Kolda: 
http://csmr.ca.sandia.gov/~tgkolda/TensorToolbox/ 
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Outline 

•  Motivation - Definitions 
•  Tensor tools 
•  Case studies 
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P1: Web graph mining 

•  How to order the importance of web pages? 
– Kleinberg’s algorithm HITS 
– PageRank 
– Tensor extension on HITS (TOPHITS) 
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Kleinberg’s Hubs and Authorities 
(the HITS method) 

Sparse adjacency matrix and its SVD: 

authority scores 
for 1st topic 

hub scores 
for 1st topic 

hub scores 
for 2nd topic 

authority scores 
for 2nd topic 

fro
m

 to 

Kleinberg, JACM, 1999 
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authority scores 
for 1st topic 

hub scores 
for 1st topic 

hub scores 
for 2nd topic 

authority scores 
for 2nd topic 

fro
m

 to 

HITS Authorities on Sample Data 

We started our crawl from 
http://www-neos.mcs.anl.gov/neos,  

and crawled 4700 pages, 
resulting in 560  

 cross-linked hosts. 
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Three-Dimensional View of the Web 

Observe that this 
tensor is very sparse! 

Kolda, Bader, Kenny, ICDM05 



Faloutsos 

16 

CMU SCS 

46 

Topical HITS (TOPHITS) 
Main Idea: Extend the idea behind the HITS model to incorporate 
term (i.e., topical) information. 

authority scores 
for 1st topic 

hub scores 
for 1st topic 

hub scores 
for 2nd topic 

authority scores 
for 2nd topic 

fro
m

 

to 

ter
m 

term scores 
for 1st topic 

term scores 
for 2nd topic 
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Topical HITS (TOPHITS) 
Main Idea: Extend the idea behind the HITS model to incorporate 
term (i.e., topical) information. 

authority scores 
for 1st topic 

hub scores 
for 1st topic 

hub scores 
for 2nd topic 

authority scores 
for 2nd topic 

fro
m

 

to 

ter
m 

term scores 
for 1st topic 

term scores 
for 2nd topic 
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TOPHITS Terms & Authorities 
on Sample Data 

TOPHITS uses 3D analysis to find 
the dominant groupings of web 
pages and terms. 

authority scores 
for 1st topic 

hub scores 
for 1st topic 

hub scores 
for 2nd topic 

authority scores 
for 2nd topic fro

m
 

to 

ter
m 

term scores 
for 1st topic 

term scores 
for 2nd topic 

Tensor PARAFAC 

wk = # unique links using term 
k 
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GigaTensor: Scaling Tensor Analysis 
Up By 100 Times –  

Algorithms and Discoveries 

U  
Kang 

Christos 
Faloutsos 

School of Computer Science 
Carnegie Mellon University 

Evangelos 
Papalexakis 

Abhay 
Harpale 
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P2: N.E.L.L. analysis 
•  NELL: Never Ending Language Learner 

– Q1: dominant concepts / topics? 
– Q2: synonyms for a given new phrase? 

50 

“Barrack Obama is the 
president of  U.S.” 	


“Eric Clapton plays 
guitar” 	


(26M)	


(48M)	

NELL (Never Ending 

Language Learner) 
Nonzeros =144M	


(26M)	
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A1: Concept Discovery 

•  Concept Discovery in Knowledge Base 
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A1: Concept Discovery 
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A2: Synonym Discovery 

•  Synonym Discovery in Knowledge Base 

a1	
a2	
 aR	
…	


(Given) subject	

(Discovered) synonym 1	


(Discovered) synonym 2	


CMU SCS 
A2: Synonym Discovery 
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Conclusions 

•  Real data are often in high dimensions with 
multiple aspects (modes) 

•  Matrices and tensors provide elegant theory 
and algorithms 

I x J x K 

+…+ ~ 

a1   aR 

b1 

c1 

bR 

cR 
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