

15-826: Multimedia Databases and Data Mining

Lecture #21: Tensor decompositions *C. Faloutsos*

	-
4	•
***	5
o	

MU SCS

Must-read Material

 Tamara G. Kolda and Brett W. Bader.
 <u>Tensor decompositions and applications.</u>
 Technical Report SAND2007-6702, Sandia National Laboratories, Albuquerque, NM and Livermore, CA, November 2007

2

CMU SCS

Outline

Goal: 'Find similar / interesting things'

- Intro to DB
- Indexing similarity search
 - Data Mining

CMU SC

Indexing - Detailed outline

- primary key indexing
- secondary key / multi-key indexing
- · spatial access methods
- · fractals
- text
- Singular Value Decomposition (SVD)

- Tensors

• multimedia

• ...

4

CMU SC

Most of foils by

- Dr. Tamara Kolda (Sandia N.L.)
- csmr.ca.sandia.gov/~tgkolda

- Dr. Jimeng Sun (CMU -> IBM)
- www.cs.cmu.edu/~jimeng

3h tutorial: www.cs.cmu.edu/~christos/TALKS/SDM-tut-07/

5

CMU SCS

Outline

- Motivation Definitions
- · Tensor tools
- Case studies

	Grup	11 500	ial net	WOIK	
	John	Peter	Mary	Nick	
John	0	11	22	55	
Peter	5	0	6	7	
Mary					
Nick					

Motivation: Why tensors?

• Q: what is a tensor?

Motivation 2: Why tensor?

• A: N-D generalization of matrix:

KDD'07 data mining classif. tree

John 13 11 22 55 ...
Peter 5 4 6 7 ...
Mary
Nick

CMU SC

P2: Web graph mining

- How to order the importance of web pages?
 - Kleinberg's algorithm HITS
 - PageRank
 - Tensor extension on HITS (TOPHITS)
 - context-sensitive hypergraph analysis

20

CMU SCS

Outline

- Motivation Definitions
- Tensor tools
- Case studies
- Tensor Basics
- Tucker
- PARAFAC

CMU SCS

Main points:

- 2 major types of tensor decompositions: PARAFAC and Tucker
- both can be solved with ``alternating least squares'' (ALS)
- · Details follow

26

CMU SC

Specially Structured Tensors

×	CMU SCS		
		Tensor Decompositions	

Tensor tools - summary

- Two main tools
 - PARAFAC
 - Tucker
- Both find row-, column-, tube-groups
 - but in PARAFAC the three groups are identical
- To solve: Alternating Least Squares
- Toolbox: from Tamara Kolda: http://csmr.ca.sandia.gov/~tgkolda/TensorToolbox/

40

Outline

- Motivation Definitions
- Tensor tools
- Case studies

GigaTensor: Scaling Tensor Analysis Up By 100 Times – Algorithms and Discoveries

U Evangelos Abhay Christos Kang Papalexakis Harpale Faloutsos

> School of Computer Science Carnegie Mellon University

A1: (Concep	t Discovery
Noun Phrase 1	Noun Phrase 2	Context
Concept 1: '	'Web Protocol	"
internet	protocol	'np1' 'stream' 'np2'
file	software	'np1' 'marketing' 'np2'
data	suite	'np1' 'dating' 'np2'
Concept 2: '	'Credit Cards'	'
credit	information	'np1' 'card' 'np2'
Credit	debt	'np1' 'report' 'np2'
library	number	'np1' 'cards' 'np2'
Concept 3: '	'Health Systen	1"
health	provider	'np1' 'care' 'np2'
child	providers	'np' 'insurance' 'np2'
home	system	'np1' 'service' 'np2'
Concept 4: '	'Family Life''	
life	rest	'np2' 'of' 'my' 'np1'
family	part	'np2' 'of' 'his' 'np1"
body	vears	'np2' 'of' 'her' 'np1'

(Given) Noun Phrase	(Discovered) Potential Synonyms	
pollutants	dioxin, sulfur dioxide, greenhouse gases, nitrogen oxide, air pollutants, cholesterol	
disabilities	infections, dizziness, injuries, diseases, drowsiness, stiffness, injuries	
vodafone	verizon, comcast	
Christian history	European history, American history, Islamic history, history	
disbelief	dismay, disgust, astonishment	
cyberpunk	online-gaming	
soul	body	

CMU SO

Conclusions

- Real data are often in high dimensions with multiple aspects (modes)
- Matrices and tensors provide elegant theory and algorithms

55

CMU SCS

References

- Inderjit S. Dhillon, Subramanyam Mallela, Dharmendra S. Modha: Information-theoretic co-clustering. KDD 2003: 89-98
- T. G. Kolda, B. W. Bader and J. P. Kenny. *Higher-Order Web Link Analysis Using Multilinear Algebra*. In: ICDM 2005, Pages 242-249, November 2005.
- Jimeng Sun, Spiros Papadimitriou, Philip Yu. *Window-based Tensor Analysis on High-dimensional and Multi-aspect Streams*, Proc. of the Int. Conf. on Data Mining (ICDM), Hong Kong, China, Dec 2006