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Must-read Material 

•  MM Textbook Appendix D  
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Outline 

Goal: ‘Find similar / interesting things’ 
•  Intro to DB 
•  Indexing - similarity search 
•  Data Mining 
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Indexing - Detailed outline 
•  primary key indexing 
•  secondary key / multi-key indexing 
•  spatial access methods 
•  fractals 
•  text 
•  Singular Value Decomposition (SVD) 
•  multimedia 
•  ... 
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SVD - Detailed outline 
•  Motivation 
•  Definition - properties 
•  Interpretation 
•  Complexity 
•  Case studies 
•  SVD properties 
•  Conclusions 
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SVD - Case studies 
•  multi-lingual IR; LSI queries  
•  compression  
•  PCA - ‘ratio rules’ 
•  Karhunen-Lowe transform 
•  query feedbacks 
•  google/Kleinberg algorithms 
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Case study - LSI 
Q1: How to do queries with LSI? 
Q2: multi-lingual IR (english query, on 

spanish text?) 
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Case study - LSI 
Q1: How to do queries with LSI? 
Problem: Eg., find documents with ‘data’ 

data inf. retrieval 
brain lung 

= 
CS 

MD 

x x 
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Case study - LSI 
Q1: How to do queries with LSI? 
A: map query vectors into ‘concept space’ – how? 

data inf. retrieval 
brain lung 

= 
CS 

MD 

x x 
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Case study - LSI 
Q1: How to do queries with LSI? 
A: map query vectors into ‘concept space’ – how? 

data inf. retrieval 
brain lung 

q= 

term1 

term2 

v1 

q 

v2 
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Case study - LSI 
Q1: How to do queries with LSI? 
A: map query vectors into ‘concept space’ – how? 

data inf. retrieval 
brain lung 

q= 

term1 

term2 

v1 

q 

v2 

A: inner product  
(cosine similarity) 
with each ‘concept’ vector vi 
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Case study - LSI 
Q1: How to do queries with LSI? 
A: map query vectors into ‘concept space’ – how? 

data inf. retrieval 
brain lung 

q= 

term1 

term2 

v1 

q 

v2 

A: inner product  
(cosine similarity) 
with each ‘concept’ vector vi 

q o v1 
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Case study - LSI 
compactly, we have: 
                                 q V=  qconcept 
Eg: 

data inf. retrieval 
brain lung 

q= 

term-to-concept 
 similarities 

= 

CS-concept 
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Case study - LSI 
Drill: how would the document (‘information’, 

‘retrieval’) be handled by LSI? 
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Case study - LSI 
Drill: how would the document (‘information’, 

‘retrieval’) be handled by LSI? A: SAME: 
dconcept = d V 
Eg: 

data inf. retrieval 
brain lung 

d= 

term-to-concept 
 similarities 

= 

CS-concept 
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Case study - LSI 
Observation: document (‘information’, ‘retrieval’) 

will be retrieved by query (‘data’),  although it 
does not contain ‘data’!! 

data inf. retrieval 
brain lung 

d= 

CS-concept 

q= 
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Case study - LSI 
Q1: How to do queries with LSI? 
Q2: multi-lingual IR (english query, on 

spanish text?) 
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Case study - LSI 
•  Problem: 

–  given many documents, translated to both 
languages (eg., English and Spanish) 

–  answer queries across languages 
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Case study - LSI 
•  Solution: ~ LSI 

data inf. retrieval 
brain lung 

CS 

MD 

datos 
informacion 
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SVD - Case studies 
•  multi-lingual IR; LSI queries  
•  compression  
•  PCA - ‘ratio rules’ 
•  Karhunen-Lowe transform 
•  query feedbacks 
•  google/Kleinberg algorithms 
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Case study: compression 

[Korn+97] 
Problem: 
•  given a matrix 
•  compress it, but maintain ‘random access’ 
(surprisingly, its solution leads to data mining 

and visualization...) 
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Problem - specs 

•  ~10**6 rows; ~10**3 columns; no updates; 
•  random access to any cell(s) ; small error: OK 
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Idea 
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SVD - reminder 

•  space savings: 2:1 
•  minimum RMS error 

first singular 

vector 
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Case study: compression 
outliers? 
A: treat separately 
   (SVD with ‘Deltas’) first singular 

vector 
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Compression - Performance 

•  3 pass algo (-> scalability) (HOW?) 
•  random cell(s) reconstruction 
•  10:1 compression with < 2% error 
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Performance - scaleup 

space 

error 
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Compression - Visualization 

•  no Gaussian clusters; Zipf-like distribution 
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SVD - Case studies 
•  multi-lingual IR; LSI queries  
•  compression  
•  PCA - ‘ratio rules’ 
•  Karhunen-Lowe transform 
•  query feedbacks 
•  google/Kleinberg algorithms 
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PCA - ‘Ratio Rules’ 

[Korn+00] 
Typically: ‘Association Rules’ (eg., 

 {bread, milk} -> {butter} 
But: 

– which set of rules is ‘better’? 
–  how to reconstruct missing/corrupted values? 
–  need binary/bucketized values 
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PCA - ‘Ratio Rules’ 

Idea: try to find ‘concepts’: 
•  singular vectors dictate rules about ratios: 

 bread:milk:butter = 2:4:3  

$ on bread 

$ on milk 

$ on butter 

2
3 4 
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PCA - ‘Ratio Rules’ 

Identical to PCA = Principal Components 
Analysis 
– Q1: which set of rules is ‘better’? 
– Q2: how to reconstruct missing/corrupted 

values? 
– Q3: is there need for binary/bucketized values? 
– Q4: how to interpret the rules (= ‘principal 

components’)? 
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PCA - ‘Ratio Rules’ 

Q2: how to reconstruct missing/corrupted 
values? 

Eg: 
•  rule: bread:milk = 3:4 
•  a customer spent $6 on bread - how about 

milk? 



C. Faloutsos 15-826 

12 

CMU SCS 

15-826 Copyright: C. Faloutsos (2012) 34 

PCA - ‘Ratio Rules’ 

pictorially: 
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PCA - ‘Ratio Rules’ 

harder cases: overspecified/underspecified 
over-specified: 
• milk:bread:butter = 1:2:3 
• a customer got 

•  $2 bread and $4 milk 
• how much milk? 

Answer: minimize distance 
between ‘feasible’ and ‘expected’ 
values (using SVD...) 
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PCA - ‘Ratio Rules’ 

harder cases: underspecified 
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PCA - ‘Ratio Rules’ 

bottom line: we can reconstruct any count of 
missing values 

This is very useful: 
•  can spot outliers (how?) 
•  can measure the ‘goodness’ of a set of rules 

(how?) 
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PCA - ‘Ratio Rules’ 

Identical to PCA = Principal Components 
Analysis 
– Q1: which set of rules is ‘better’? 
– Q2: how to reconstruct missing/corrupted 

values? 
– Q3: is there need for binary/bucketized values? 
– Q4: how to interpret the rules (= ‘principal 

components’)? 
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PCA - ‘Ratio Rules’ 

•  Q1: which set of rules is ‘better’? 
•  A: the ones that needs the fewest outliers: 

–  pretend we don’t know a value (eg., $ of 
‘Smith’ on ‘bread’) 

–  reconstruct it 
–  and sum up the squared errors, for all our 

entries 
•  (other answers are also reasonable) 
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PCA - ‘Ratio Rules’ 

Identical to PCA = Principal Components 
Analysis 
– Q1: which set of rules is ‘better’? 
– Q2: how to reconstruct missing/corrupted 

values? 
– Q3: is there need for binary/bucketized values? 
– Q4: how to interpret the rules (= ‘principal 

components’)? 
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PCA - ‘Ratio Rules’ 

Identical to PCA = Principal Components 
Analysis 
– Q1: which set of rules is ‘better’? 
– Q2: how to reconstruct missing/corrupted 

values? 
– Q3: is there need for binary/bucketized values? 
– Q4: how to interpret the rules (= ‘principal 

components’)? 

NO 
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PCA - Ratio Rules 
NBA dataset 
~500 players; 
~30 attributes 
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PCA - Ratio Rules 

•  PCA: get singular vectors v1, v2, ... 
•  ignore entries with small abs. value 
•  try to interpret the rest 
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PCA - Ratio Rules 
NBA dataset - V matrix (term to ‘concept’ similarities) 

v1 
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Ratio Rules - example 

•  RR1: minutes:points = 2:1 
•  corresponding concept? 

v1 
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Ratio Rules - example 

•  RR1: minutes:points = 
2:1 

•  corresponding 
concept? 

v1 
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Ratio Rules - example 

•  RR1: minutes:points = 
2:1 

•  corresponding 
concept? 

v1 
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Ratio Rules - example 

•  RR1: minutes:points = 2:1 
•  corresponding concept?  
•  A: ‘goodness’ of player 
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Ratio Rules - example 

•  RR2: points: rebounds negatively correlated
(!)  
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Ratio Rules - example 

•  RR2: points: rebounds negatively correlated
(!) - concept? 

v2 
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Ratio Rules - example 

•  RR2: points: rebounds negatively correlated
(!) - concept? 

•  A: position: offensive/defensive 
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SVD - Case studies 
•  multi-lingual IR; LSI queries  
•  compression  
•  PCA - ‘ratio rules’ 
•  Karhunen-Lowe transform 
•  query feedbacks 
•  google/Kleinberg algorithms 
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K-L transform 
[Duda & Hart]; [Fukunaga] 

A subtle point: 
SVD will give vectors that 
go through the origin 

v1 
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K-L transform 
A subtle point: 
SVD will give vectors that 
go through the origin 
Q: how to find v1’ ? 

v1 

v1’ 
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K-L transform 
A subtle point: 
SVD will give vectors that 
go through the origin 
Q: how to find v1’ ? 

A: ‘centered’ PCA, ie., 
     move the origin to center 
     of gravity v1 

v1’ 
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K-L transform 
A subtle point: 
SVD will give vectors that 
go through the origin 
Q: how to find v1’ ? 

A: ‘centered’ PCA, ie., 
     move the origin to center 
     of gravity 
     and THEN do SVD 

v1’ 
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K-L transform 

•  How to ‘center’ a set of vectors (= data 
matrix)? 

•  What is the covariance matrix? 
•  A: see textbook 
•  (‘whitening transformation’) 
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Conclusions 

•  SVD: popular for dimensionality reduction / 
compression 

•  SVD is the ‘engine under the hood’ for PCA 
(principal component analysis) 

•  ... as well as the Karhunen-Lowe transform 
•  (and there is more to come ...) 
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