

CMU S

15-826: Multimedia Databases and Data Mining

Lecture #11: Fractals: M-trees and dim. curse (case studies – Part II)

C. Faloutsos

CMU SCS

Must-read Material

 Alberto Belussi and Christos Faloutsos, <u>Estimating the Selectivity of Spatial Queries</u> <u>Using the 'Correlation' Fractal Dimension</u> Proc. of VLDB, p. 299-310, 1995

15-826

Copyright: C. Faloutsos (2011)

2

CMU SCS

Optional Material

Optional, but **very** useful: Manfred Schroeder *Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise* W.H. Freeman and Company, 1991

15-826

Copyright: C. Faloutsos (2011)

Metric trees - analysis

- Problem: How many disk accesses, for an M-tree?
- Given:
 - N (# of objects)
 - C (fanout of disk pages)
 - r (radius of range query BIASED model)

15-826

Copyright: C. Faloutsos (2011)

Metric trees - analysis

- Problem: How many disk accesses, for an M-tree?
- Given:
 - N (# of objects)
 - C (fanout of disk pages)
 - r (radius of range query BIASED model)
- NOT ENOUGH what else do we need?

15-826

Copyright: C. Faloutsos (2011)

CMU SCS

Metric trees - analysis

• A: something about the distribution

15-826

Copyright: C. Faloutsos (2011)

CMU SCS

Metric trees - analysis

10

• A: something about the distribution [Ciaccia, Patella, Zezula, PODS98]: assumed that the distance distribution is the same, for every object:

Paolo Ciaccia Marco Patella

15-826

Copyright: C. Faloutsos (2011)

12

11

Metric trees - analysis

 A: something about the distribution [Ciaccia+, PODS98]: assumed that the distance distribution is the same, for every object:

F1(d) = Prob(an object is within d from object #1)

= F2(d) = ... = F(d)

15-826

Copyright: C. Faloutsos (2011)

1

Metric trees - analysis

• A: something about the distribution
• Given our 'fractal' tools, we could try them - which one?
• A: Correlation integral [Traina+, ICDE2000]

C. Faloutsos 15-826

28

Reminder: Hausdorff Dimension (D_0) • r = side length (each dimension)• B(r) = # boxes containing points $\propto r^{D0}$ r = 1/2 B = 2r = 1/4 B = 4 $r = 1/8 \ B = 8$ $\log r = -3$ $\log r = -2$ $\log r = -1$ $\log B = 1$ $\log B = 2$ log B = 3Copyright: C. Faloutsos (2011) 29

15-826

×	Observation #3
	 Estimate avg # query-sensitive anchors: How many expected q will touch avg page? Page touch: q stabs ε-dilated MBR(p)
	p p p p p p p p p p

Asymptotic Formula

- k-NN page accesses as N $\rightarrow \infty$
 - -C = page capacity
 - -D = fractal dimension (= $D0 \sim D2$)

$$P_{all}^{L\infty}(k) \approx \sum_{j=0}^{h} \left\{ \frac{1}{C^{h-j}} + \left[1 + \left(\frac{k}{C^{h-j}} \right)^{1/D} \right]^{D} \right\}$$

15-826

Copyright: C. Faloutsos (2011)

CMU SCS

Asymptotic Formula

$$P_{all}^{L^{\infty}}(k) \approx \sum_{j=0}^{h} \left\{ \frac{1}{C^{h-j}} + \left[1 + \left(\frac{k}{C^{h-j}} \right)^{1/D} \right]^{D} \right\}$$

- NO mention of the embedding dimensionality!!
- Still have dim. curse, but on f.d. D

15-826

Copyright: C. Faloutsos (2011)

35

Non-Euclidean Data Set

\overline{E}	unif ind	f ractai	leaf
2	3.49	2.53	4.72±1.81
10	847.26	2.53	6.42±2.11
20	all	2.53	7.76±4.12
50	all	2.53	6.15±2.82
100	all	2.53	5.64±2.32

sierpinski, k = 50, L_{∞} dist

CMU SCS

Conclusions

- Worst-case theory is **over-pessimistic**
- High dimensional data can exhibit good performance if correlated, non-uniform
- Many real data sets are self-similar
- Determinant is **intrinsic** dimensionality
 - multiple fractal dimensions (D_0 and D_2)
 - indication of how far one can go

15-826

Copyright: C. Faloutsos (2011)

41

CMU S

References

- Ciaccia, P., M. Patella, et al. (1998). A Cost Model for Similarity Queries in Metric Spaces. PODS.
- Pagel, B.-U., F. Korn, et al. (2000). *Deflating the Dimensionality Curse Using Multiple Fractal Dimensions*. ICDE, San Diego, CA.
- Traina, C., A. J. M. Traina, et al. (2000). *Distance Exponent: A New Concept for Selectivity Estimation in Metric Trees*. ICDE, San Diego, CA.

15-826

Copyright: C. Faloutsos (2011)

42