
\qquad $\underline{ }$
\qquad

\qquad
\qquad

Optional Material
Optional, but very useful: Manfred Schroeder
Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise W.H. Freeman and Company, 1991
${ }^{15.826}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

- forecasting [CIKM’02]
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad M-tree?
\qquad
\qquad
\qquad
\qquad
Metric trees - analysis
- Problem: How many disk accesses, for an
M-tree?
- Given:
- N (\# of objects)
- C (fanout of disk pages)
- r (radius of range query - BIASED model)
- NOT ENOUGH - what else do we need?
Copyright c. Faloutsos (2011)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- A: something about the distribution
[Ciaccia, Patella, Zezula, PODS98]: assumed that the distance distribution is the same, for \qquad every object:

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- A: something about the distribution
- Given our 'fractal' tools, we could try them which one?
- A: Correlation integral [Traina+, ICDE2000]

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\underline{\longrightarrow}$
\underline{L}
\qquad
\qquad
\qquad
\qquad
\qquad

- So, what is the \# of disk accesses, for a node of radius r_{d}, on a query of radius r_{q} ?
- $A: \sim\left(r_{d}+r_{q}\right) \ldots$ \qquad
\qquad
\qquad
\qquad

\qquad
- So, what is the \# of disk accesses, for a node
\qquad
\qquad of radius r_{d}, on a query of radius r_{q} ?
- A: $\sim\left(\mathrm{r}_{\mathrm{d}}+\mathrm{r}_{\mathrm{q}}\right)^{\wedge} \boldsymbol{D}$ \qquad
\qquad
\qquad

\qquad

- Normally, D takes O($\mathrm{N}^{\wedge} 2$) time
- Anything faster? suppose we have already built an M-tree
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\int^{3 \text { Index }}$ Indexing - Detailed outline

- fractals
- intro
- applications
- disk accesses for R-trees (range queries) \qquad
- dimensionality reduction
- selectivity in M-trees
- dim. curse revisited
. "fat fractals"
- quad-tree analysis [Gaede+] \qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

(Overview of proofs)

- assume that your points are uniformly distributed in a d-dimensional manifold (= hyper-plane)
- derive the formulas
- substitute d for the fractal dimension
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Reminder: Hausdorff Dimension (D_{0})

- $r=$ side length (each dimension)
- $B(r)=\#$ boxes containing points $\propto r^{D 0}$

$$
\log r=-1
$$

$$
\log _{26} B=1
$$

$$
\log B=2
$$

Copyright: C. Faloutsos (2011)
29
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- How to determine avg MBR side l ?
$-N=\#$ pts, $C=$ MBR capacity

Hausdorff dimension: $B(r) \propto r^{D 0}$

$$
B(l)=N / C=l^{-\mathrm{D} 0} \Rightarrow l=(N / C)^{-1 / \mathrm{D} 0}
$$

$15-826$
Copyright: C. Faloutsos (2011)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- For k pts, what radius ε do we expect?

Correlation dimension: $S(r) \propto r^{D 2}$
15-826

$$
\underset{\operatorname{ses}(2011)}{S(\varepsilon)}=\frac{k}{N-1}=(2 \varepsilon)^{D 2}
$$

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

Asymptotic Formula $P_{\text {all }}^{L \infty}(k) \approx \sum_{j=0}^{h}\left\{\frac{1}{C^{h-j}}+\left[1+\left(\frac{k}{C^{h-j}}\right)^{1 / D}\right]^{D}\right\}$

- NO mention of the embedding dimensionality!!
- Still have dim. curse, but on f.d. D

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Conclusions	
	Worst-case theory is over-pessimistic
	High dimensional data can exhibit good performance if correlated, non-uniform
	Many real data sets are self-similar
	Determinant is intrinsic dimensionality - multiple fractal dimensions (D_{0} and D_{2}) - indication of how far one can go
15.826	Copristrc CFFlousose (2011)

References
Cuvscs

- Ciaccia, P., M. Patella, et al. (1998). A Cost Model for
Similarity Queries in Metric Spaces. PODS.
• Pagel, B.-U., F. Korn, et al. (2000). Deflating the
Dimensionality Curse Using Multiple Fractal
Dimensions. ICDE, San Diego, CA.
•Traina, C., A. J. M. Traina, et al. (2000). Distance
Exponent: A New Concept for Selectivity Estimation in
Metric Trees. ICDE, San Diego, CA.
Copyight c. Faloutoss (2011)
15.826

