

CMU SC

15-826: Multimedia Databases and Data Mining

Lecture#3: Primary key indexing – hashing *C. Faloutsos*

MU SCS

Reading Material

- [Litwin] Litwin, W., (1980), Linear Hashing: A New Tool for File and Table Addressing, VLDB, Montreal, Canada, 1980
- textbook, Chapter 3
- Ramakrinshan+Gehrke, Chapter 11

15-826

Copyright: C. Faloutsos (2012)

2

CMU SC

Outline

Goal: 'Find similar / interesting things'

- Intro to DB
- **.** . . .
- Indexing similarity search
 - · Data Mining

15-826

Copyright: C. Faloutsos (2012)

Division hashing

• eg., M=2; hash on driver-license number (dln), where last digit is 'gender' (0/1 = M/F)

• in an army unit with predominantly male soldiers

• Thus: avoid cases where M and keys have common divisors - prime M guards against that!

Size of hash table

• eg., 50,000 employees, 10 employees/page

• Q: M=?? pages/buckets/slots

• A: utilization ~ 90% and

- M: prime number

Eg., in our case: M= closest prime to

50,000/10 / 0.9 = 5,555

Indexing- overview

• B-trees

• (static) hashing

- hashing functions

- size of hash table

- collision resolution

- Hashing vs B-trees

- Indices in SQL

• Extendible hashing

Copyright: C. Faloutsos (2012)

15-826

Indexing- overview

• B-trees
• (static) Hashing
• extensible hashing
- 'linear' hashing [Litwin]

CMU Se

Solution: Dynamic/extendible hashing

- idea: shrink / expand hash table on demand..
- · ..dynamic hashing

Details: how to grow gracefully, on overflow?

Many solutions – simplest: Linear hashing [Litwin]

15-826

Copyright: C. Faloutsos (2012)

ht: C. Faloutsos (2012)

41

14

CMU SCS

Linear hashing - Detailed overview

- Motivation
- main idea
- · search algo
- insertion/split algo
- deletion
- performance analysis
- · variations

15-826

Copyright: C. Faloutsos (2012)

CMU SCS

Linear hashing

Motivation: ext. hashing needs directory etc etc; which doubles (ouch!)

Q: can we do something simpler, with smoother growth?

15-826

Copyright: C. Faloutsos (2012)

CMU SCS

Linear hashing

Motivation: ext. hashing needs directory etc etc; which doubles (ouch!)

Q: can we do something simpler, with smoother growth?

A: split buckets from left to right, **regardless** of which one overflowed ('crazy', but it works well!) - Eg.:

15-826

Copyright: C. Faloutsos (2012)

45

Linear hashing - insertion?

notice: overflow criterion is up to us!!
Q: suggestions?
A1: space utilization > u-max
A2: avg length of ovf chains > max-len
A3:

Linear hashing - insertion?

Algo: insert key 'k'

• compute appropriate bucket 'b'

• if the overflow criterion is true

• split the bucket of 'split-ptr'

• split-ptr ++ (*)

what if we reach the right edge??

15-826 Copyright: C. Faloutsos (2012) 63

CMU SCS		
Linear hashing - observations		
,	In general, at any point of time, we have at most two h.f. active, of the form:	
$\bullet h_n(x) = x n$	$\bullet h_n(x) = x \bmod (N * 2^n)$	
$\bullet h_{n+1}(x) = x \bmod (N * 2^{n+1})$		
(after a full expansion, we have only one h.f.)		
15-826	Copyright: C. Faloutsos (2012)	69

Linear hashing - overview

• Motivation
• main idea
• search algo
• insertion/split algo
• deletion
• performance analysis

→ variations

15-826 Copyright: C. Faloutose (2012) 83

Other hashing variations

- 'order preserving'
- 'perfect hashing' (no collisions!) [Ed. Fox, et al]

15-826

Copyright: C. Faloutsos (2012)

CMU SCS

Primary key indexing - conclusions

- hashing is O(1) on the average for search
- linear hashing: elegant way to grow a hash
- B-trees: industry work-horse for primarykey indexing (O(log(N) w.c.!)

15-826

Copyright: C. Faloutsos (2012)

95

CMU SCS

References for primary key indexing

- [Fagin+] Ronald Fagin, Jürg Nievergelt, Nicholas Pippenger, H. Raymond Strong: Extendible Hashing - A Fast Access Method for Dynamic Files. TODS 4(3): 315-344(1979)
- [Fox] Fox, E. A., L. S. Heath, Q.-F. Chen, and A. M. Daoud. "Practical Minimal Perfect Hash Functions for Large Databases." Communications of the ACM 35.1 (1992): 105-21.

15-826

Copyright: C. Faloutsos (2012)

ľ	CMUSCS	
	References, cont'd	
	• [Knuth] D.E. Knuth. The Art Of Computer Programming, Vol. 3, Sorting and Searching, Addison Wesley	
	[Larson] Per-Ake Larson Performance Analysis of Linear Hashing with Partial Expansions ACM TODS, 7,4, Dec.	
1982, pp 566587 [Litwin] Litwin, W., (1980), Linear Hashing: A New Tool for File and Table Addressing, VLDB, Montreal, Canada,		
	1980	
	15-826 Copyright: C. Faloutsos (2012) 97	
Į		