

15-826: Multimedia Databases and Data Mining

Lecture#2: Primary key indexing – B-trees

Christos Faloutsos - CMU

www.cs.cmu.edu/~christos

Reading Material

[Ramakrishnan & Gehrke, 3rd ed, ch. 10]

15-826

Copyright: C. Faloutsos (2012)

Problem

Given a large collection of (multimedia) records, find similar/interesting things, ie:

- Allow fast, approximate queries, and
- Find rules/patterns

15-826

Copyright: C. Faloutsos (2012)

CMU SCS

Primary key indexing

• find employee with ssn=123

15.00

Copyright: C. Faloutsos (2012)

CMU SCS

B-trees

- the **most successful** family of index schemes (B-trees, B*-trees, B*-trees)
- Can be used for primary/secondary, clustering/non-clustering index.
- balanced "n-way" search trees

15-826

Copyright: C. Faloutsos (2012)

)

CMU SCS

Citation

- Rudolf Bayer and Edward M. McCreight, *Organization and Maintenance of Large Ordered Indices*, Acta Informatica, 1:173-189, 1972.
- Received the 2001 SIGMOD innovations award
- among the most cited db publications
 - $\hbox{-}www.informatik.uni-trier.de/} \hbox{-}ley/db/about/top.html}$

15-826

Copyright: C. Faloutsos (2012)

×	CMU SCS				
	Properties				
	• "block aware" nodes: each node -> disk page				
	• O(log (N)) for everything! (ins/del/search)				
	• typically, if $n = 50 - 100$, then 2 - 3 levels				
	• utilization >= 50%, guaranteed; on average 69%				
	15-826 Copyright: C. Faloutsos (2012) 1	2			

3	Caroses
	B-trees: Insertion
	• Q: What if there are two middles? (eg, order 4)
	• A: either one is fine

Copyright: C. Faloutsos (2012)

B-trees: Insertion

Insert in leaf; on overflow, push middle up (recursively – 'propagate split')

split: preserves all B - tree properties (!!)

notice how it grows: height increases when root overflows & splits

Automatic, incremental re-organization

B-trees – Deletion

- Case2: delete a key at a non-leaf no underflow (eg., delete 6 from T0)
- Q: How to promote?
- A: pick the largest key from the left sub-tree (or the smallest from the right sub-tree)
- Observation: every deletion eventually becomes a deletion of a leaf key

15-826

Copyright: C. Faloutsos (2012)

B-trees – Deletion

- Case1: delete a key at a leaf no underflow
- Case2: delete non-leaf key no underflow
- → Case3: delete leaf-key; underflow, and 'rich sibling'
 - Case4: delete leaf-key; underflow, and 'poor sibling'

15-82

Copyright: C. Faloutsos (2012)

41

B-trees — Deletion

• Case3: underflow & 'rich sibling' (eg., delete 7 from T0)

Delete & borrow, ie:

15-826

Copyright: C. Faloutsos (2012)

42

.7	CMU SC
200	
K	

Conclusions

- Main ideas: recursive; block-aware; on overflow -> split; **defer** splits
- All B-tree variants have excellent, O(logN) worst-case performance for ins/del/search
- B+ tree is the prevailing indexing method
- More details: [Knuth vol 3.] or [Ramakrishnan & Gehrke, 3rd ed, ch. 10]

5-826	Copyright: C. Faloutsos (2012)	7

_	4
,	/1
/	4